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Abstract

Some aspects of strong time operators in an abstract algebraic quantum mechanics (in-
cluding quantum statistical mechanics) and in quantum field theory (QFT) are described. As
for the facts presented in QFT, they have essentially been established in a previous paper (A.
Arai, Rev. Math. Phys. 17(2005), 1071-1109).

§1. Introduction: Strong Time Operators and Their Fundamental
Properties

This paper is concerned with time operators in algebraic quantum mechanics (in-
cluding quantum statistical mechanics) and quantum field theory. The concept of time
operators itself is a general one and there are some types on them [1, 2, 5, 9]. In the
present paper we concentrate our attention on strong time operators as defined below
and their realizations in algebraic quantum mechanics and quantum field theory.

Let $ be a complex Hilbert space. We denote the inner product and the norm of £
by (-, - ) (anti-linear in the first variable) and || - |4 respectively. If there is no danger
of confusion, then the subscript § in (-, - )¢ and || - || is omitted. For a linear operator
A on a Hilbert space, D(A) (resp. Ran(A)) denotes the domain (resp. range) of A. If
A is closable, then we denote its closure by A.

Let H be a self-adjoint operator on $) and 7" be a symmetric operator on §. If
there exists a bounded self-adjoint operator C' # 0 on $ such that D(C) = 9,

(1.1) e "HD(T) Cc D(T), VteR,

Received March 28, 2009. Revised July 17, 2009.
2000 Mathematics Subject Classification(s): 81Q10, 47N50.
Key Words: time operator, Hamiltonian, Liouvillian, algebraic quantum mechanics, quantum field,
Fock space.
Supported by the Grant-In-Aid No.21540206 for Scientific Research from Japan Society for the
Promotion of Science (JSPS).
*Department of Mathematics, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
e-mail: arai@math.sci.hokudai.ac.jp

(© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



2 ASAO ARAI

and
(1.2) Te ey = e H(T 1 tC)), Vo € D(T),Vt € R,

then we call T" a strong time operator of H with non-commutative factor C. The
operator C' is uniquely determined by the pair (7, H), because (1.1) and (1.2) are
equivalent to the operator equality

(1.3) MTe " — T 1 tC, Vvt eR.

and D(T) is dense in $.
The name “non-commutative factor” for C' comes from the following fact:

Proposition 1.1.  If T is a strong time operator of H with non-commutative
factor C, then

(1.4) (T'y, Hp) — (H, To) = (4,iC¢), Vip,¢ € D(T) N D(H).
Proof. For all t € R and v, ¢ € D(T) N D(H), we have
(T, e o) = ("M, T) +t (¢, Co).
Differentiating the both sides in ¢ at ¢ = 0, we obtain (1.4). |
Remark. In the case C' = I (the identity on $)), T is simply called a strong
time operator of H. In this case, (1.4) shows that (7, H) is a symmetric representation

of the canonical commutation relation (CCR) with one degree of freedom in the weak

sense.

Remark. The converse of Proposition 1.1 is not true, i.e., (1.4) does not neces-
sarily imply that T is a strong time operator of H with non-commutative factor C.

Domain properties of a pair (7', H) satisfying (1.3) can be found in an explicit way.
Let f € C§°(R) (the set of all the infinitely differentiable functions on R with compact
support) and 1 € §). Then one can define a vector

(1.5) Yy = /Rf(t)e_“det,

where the integral on the right hand side is taken in the sense of the strong Riemann
integral. For a subset © # ) of 9, we define a subspace Dy by

(1.6) O = L{s|f € C°(R), ¢ € D}),

where £(S) means the subspace algebraically spanned by all the vectors in the set S.
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Proposition 1.2.

(i) ®g C D(H) and

(1.7) Hipp = =iy, Vo5 € Dy,
where f' is the derivative of f. In particular, HOy C Dp.
(ii) If © is dense in $), then so is Dp.

Proof. (i) For all ¢ € D(H) and ¢y € ®, we have

(Ho,4y) =i/Rf(t)% (e, 1) dt

= —i/ f(t) (s, e_itH¢> dt (integration by parts)
R
= (&, (=i)y) -

Hence ¢y € D(H*) = D(H) and Hyy = —itpyr.

(ii) It is sufficient to show that ® C Dp. Take a function p € C$°(R) such that
p(t) > 0,Vt € R, suppp C [—1,1] and [, p(t)dt = 1, where, for a function f on R, supp f
means the support of f. Let ¢ € © and ¢, := ¢, , where p,(t) :=np(nt),t € R. Then
¢n € Dy and

I = oull = || [ 0w e magar < [ piolo = emmar
R [_171]
It is easy to see that one can apply the Lebesgue dominated convergence theorem to the

last integral, obtaining lim,, f[—1,1] p(t)||Y — e *H/map||dt = 0. Hence lim,, o0 ¢ =
1. Thus the desired result follows. O

Proposition 1.3.  Let T be a strong time operator of H with non-commutative
factor C'. Then:

(i) One has

(1.8) D(T)y ¢ D(T)ND(H)

and

(1.9) Ty = (TY)s + (C¥)iy, Yoy € D(T)m.

In particular, D(T) N D(H) is dense in $).



4 ASAO ARAI

(ii) One has

(1.10) D(T)y C D(TH)ND(HT)
and
(1.11) [T,H] =iC on D(T),

where [X,Y] = XY — Y X. In particular, D(TH) ND(HT) is dense in §.
Proof. (i) Let 1y € D(T)g. Then f(t)e 4 € D(T) for all t € R and
T(f()e M) = ft)e Ty + tf(t)e™ " C.

Hence [ T(f(t)e~"Hq))dt exists and is equal to (T4) s + (Cv)sy. Therefore 1y € D(T)
and (1.9) holds. In particular, we have (1.8). Since D(T") is dense, so is D(T)g by
Proposition 1.2-(ii).

(ii) It follows from Proposition 1.2-(i) and (1.9) that T%; € D(H) and

HTy = —i(T¥)y —i(CP)y — i(C)eyr.

Similarly Hyy = —itpp € D(T') and

THYp = —i(TV)p — i(CY)p.

Hence (1.11) follows. O

Remark. In the case C = I, (1.11) means that (T, H) is a symmetric represen-
tation of the CCR with one degree of freedom. Hence, for a general C, (T, H) may be
regarded as a symmetric representation of a deformed CCR with one degree of freedom.

Remarkable properties of a strong time operator are summarized in the next theo-
rem [1].

Theorem 1.4. Let T be a strong time operator of H with non-commutative

factor C.

(i) Let H be semi-bounded (bounded below or bounded above) and CT C TC. Then
T is not essentially self-adjoint.

(ii) H is reduced by Ran(C) and the reduced part H|Ran(C') to Ran(C) is purely
absolutely continuous.

(iii) Let H be bounded below. Then, for all 8> 0, e PHD(T) c D(T) and

Te Py — e PHTY, = —ige PHCy, o € D(T).
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(iv) For ¢,¢ € D(T™) (n € N), we define constants di (¢,) (k=1,---,n) by the
following recursion relation:

(1.12) di (¢, %) = [IT¢lll%]l + Il T,

n—1

(1.13) dy (o, 9) = (TNl + [DUNT ¢l + D nCrdy_ (6, T79), n =2,

r=1

where ,Cy :==n!/(n —r)lrl. Assume that
(1.14) CT c TC.
Then, for all t € R\ {0},

T
(1.15) (g, eHempy | < l0¥) e pmy,

(v) For each n € N, there exists a subspace Dy (T,C) such that, for all ¢ € D(T™)
and 1 € Dy (T, C) (6,9 #0),

|@m%wwwﬂs@%%@,teR\m}

where d,,($,10) > 0 is a constant independent of t.

§2. Strong Time Operators in Algebraic Quantum Mechanics

In this section we show how strong time operators appear in the context of abstract
algebraic quantum mechanics described by a density operator.

Let $) be a separable complex Hilbert space and L2($)) be the Hilbert space of the
Hilbert-Schmidt class on $ with inner product

(2.1) (A,B), :=Tr(A*B), A,B € Ly(%),

where Tr means trace. Let H be a self-adjoint operator on $ and, for a linear operator

Aon $,
(2.2) A(t) := e Ae™H ¢ R,

the Heisenberg operator of A with H. If H represents the Hamiltonian of a quantum
system, then A(t) is interpreted as the time development of a quantum object A with
the Hamiltonian H, where t denotes time in the classical sense. Let p be a nonnegative
trace class operator on $) such that Trp = 1. Such an operator p is called a density
operator or a density matriz on §. Then a two-point correlation function with density
operator p is defined by

(2.3) Wap(t) == Tr (pAB(t)) = (A*p, B(t)),, A,B € Ly($),t€R.
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Remark. 1If p= (¥, -) g9 with [[¢]lg =1 (¢ € 9), then
WAB(t) - <¢7 AB(tW’)y) 3
the standard expectation value of AB(t) with the state vector .

Let J be a conjugation on $), i.e., J is an anti-linear operator on $ such that
J? =T and ||J| = |||,V € 9. Tt is well known [4, Chapter 1, 1.3.3] that there exists
a unique unitary operator Uy : L2($)) — H ®@ § such that

(2.4) UiPpy =@ Jd, 9,0 €9,
where
(2.5) Py = (¢, ).

Moreover, under the condition that

(2.6) JD(H) C D(H),

one has [4, Chapter 4]

(2.7) Wap(t) = (Us(A*p), ™ U (B)) g o » A BELa(D),

where the operator

(2.8) Ly =HXI -1 JHJ
is called the Liouvillian of H. It would be natural to ask if L has a strong time
operator.

Proposition 2.1.  Let T be a strong time operator of H with non-commutative

factor C. Then, for all a,b € R such that a + b # 0, the operator
(2.9) Top:=al' @1 +bI®JTJ

with domain D(T,p) = D(T)®JD(T) (© means algebraic tensor product) is a strong
time operator of L with non-commutative factor

(2.10) Cap = aC &I +bl © JCJ 0.

Proof. One has
e—itLH — e—itH ® (Je_itHJ).

Using this formula, one can directly see that (T'® I)|(D(T)®JD(T)) (resp. (I ®
JTI)|(D(T)®JD(T)) ) is a strong time operator of Lz with non-commutative fac-
tor C ® I (resp. I ® (JCJ)). The desired result immediately follows from these facts.



STRONG TIME OPERATORS IN ALGEBRAIC QUANTUM MECHANICS AND QUANTUM FIELD THEORY 7

It is easy to see that the condition a + b # 0 ensures that Cy, # 0, which implies that
Tap # 0. O

By Proposition 2.1, we can apply Theorem 1.4-(iv) to obtain a decay property (in
time) of Wap(t):

Theorem 2.2. Let T be a strong time operator of H with non-commutative
factor C and n € N. Assume (2.6). Let A € L2($) be such that U;(A*p) € D(T ;) and
B € Ly(9) be such that Uy(B) = C ¥ with some ¥ € D(T, ;). Then

dp™ (U (A% p), ©)

(2.11) Wap(t)] < o ,

t € R\ {0}.

Proof. Let ® = Uj(A*p). Then, by (2.7), we have Wap(t) = <<I>, eitLHCQb\I'>ﬁ .

’ 2
Since ® and ¥ are in D(T7;), (2.7) follows from a simple application of Theorem 1.4-
(iv). O

§3. Strong Time Operators on Fock Spaces

A fundamental Hilbert space for the description of quantum fields is a Fock space
over a Hilbert space $):

S(ﬁ) = @ZOZO ®n 57)7

where @°§) := C and ®@" (n > 1) is the n-fold tensor product of §). For a self-adjoint
operator H on § and each n > 1, one can define a self-adjoint operator H™ on ®"§
by

n jth
HW =3 (I®--- 1o HRI®-- @ I)|®"D(H),
j=1
where &@" denotes n-fold algebraic tensor product. Let H(© := 0 on C. Then the direct
sum of {HM™}oo
AT (H) := @2 H™

on F(9) is self-adjoint and called the second quantization of H. We show that, if H
has a strong time operator, then so does dI'(H).

Before doing that, however, we make some preliminary remarks. Let T" be a strong
time operator of H with non-commutative factor C. For eachn € Nand j=1,--- ,n,
we define an operator To(n’j ) on ®"$H by

) jth
(3.1) T = QI - 1& T QI -+ &I,
)

where @ means algebraic tensor product. It is easy to see that To(n is symmetric.
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We also introduce
jth

(3.2) Ci) =R I CRI---&1,
which is a bounded self-adjoint operator on ®™$).

Lemma 3.1.  The operator Tén’j ) is a strong time operator of H™ with non-
commutative factor C(™J)

Moreover, if (1.14) holds, then
(33) C’(”»j)Téan) C Tén’J)C(n’j),

jth

Proof. Note that D(To(n’j)) =HR---D(T)®---®H. We have for all t € R

o itH™ _ ®}1=1e—itH.
Hence e~itH™'D (T(n’j)) cD (T(n’J)) and, for all ¥ € D(T(n’]))
T(n J) —th<"> (e Qe M @ TemtH g o—itH | g e—z'tH) U
= (e it @ ... =it g o—ItH(T 4 t0) g e~tH ... g e—z'tH) N
—th(") (n,5) (n,])
=e (I5 +tCV" )0,

Thus the desired result follows. O

Lemma 3.1 yields the following fact:

Lemma 3.2. Let
n
(3.4) " =3 "1, n>1
j=1
with D(To(n)) = ®nD(T). Then To(n) is a strong time operator of H™ with non-
commutative factor

(3.5) ctm =3 "¢,
j=1
Moreover, if (1.14) holds, then
(3.6) cmrim c Mo,
We are now ready to show that dI'(H) has strong time operators.
Let j > 1 and
(37) T7 = ap b CL1I D---P a/j_ll P (@;)LO:JTén,])) ,
(3.8) Ci=000® - 00 (@zozjc(n,j)) ’

where a1, -+ ,a;_1 are real constants.
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Theorem 3.3.  For each j > 1, T, is a strong time operator of dI'(H) with
non-commutative factor Cj.
Moreover, if (1.14) holds, then

dy’ (@, T)

(39) (@ TICrw) | < o

U, ® e D(T}),t € R\ {0}.
Proof. We have for all t € R
Tje—itdF(H) _ (@i;loaje_”H(n)) o (@%o:jTOn,j)e—itH(n))

= (GBf;;Baje_itH(n)) o (@zo:j (e_“H(n)Tén’j) i te—itH(n)C,(n,j)>>
(by Lemma 3.1)
— e—itdF(H)Tj + te—z'tdF(H)Cj'

Hence the first half of the theorem follows.
Assume (1.14). Then we have C;T; C T;C;. Hence we can apply Theorem 1.4-(iv)

with (H,T,C) replaced by (dI'(H),T},C;) to obtain (3.9). O
Let
(3.10) N = dr(l),

the number operator on F($). The vector Q = {1,0,0,---} € F(H) is called the Fock
vacuum in §F($). Let P be the orthogonal projection onto the one dimensional subspace

(3.11) 5o = {aQ|a € C}

Then the operator

(3.12) Q:=I1-P

is the orthogonal projection onto the closed subspace
(3.13) 3o =052, ®" 9.

It is easy to see that the number operator N is reduced by Fg. We denote the
reduced part of N to g5 by N,. Explicitly we have

(3.14) Ny =@, nl.
Let

(3.15) To = QN; dr(C)N?q.
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Lemma 3.4.  The operator T'c is a bounded self-adjoint operator with ||I'¢|| <
1l

Proof. For all ¥ € D(T'¢), we have

0 n=20
Le®)™ =",
fet) {_0;’m<n>n21

Hence a vector ¥ € F(9) is in D(T'¢) if and only if

o0

1
> SICMEM)? < .
n2
n=1
It is easy to see that
IC™] < nfC].
Hence, for all ¥ € F($),
= 1 n n - n
> FIIC( N E SO e TP < oo
n=1 n=1

Therefore it follows that D(I'¢) = §($) and
T < |C|P(1e .
It is straightforward to see that I'¢ is symmetric. Thus the desired result follows. [
Remark. Note that, if C' = I, then
(3.16) I'r=0.
Namely I'; is an orthogonal projection.

Let ap € R and
J
(3.17) Tr = {ag} ® (@;;;%Tg >) .

Theorem 3.5.  The operator Tr is a strong time operator of dU'(H) with non-
commutative factor I'c.
Moreover, if (1.14) holds, then

(3.18) I'eTr C Trle.
and
. T (H, U
(3.19) | <q>,e—ztdF<H>rg\p> | < %, U, 3 e DI, t € R\ {0},
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Proof. 1t is easy to see that Tp is symmetric. We have

) 1 o rr(n
‘.TTe_thF(H) _ {GO} @ (@1010:1_110( )e—th( ))
n

N . g C™)
={ag} ® (EB%OZI(@_”H( )_To( ) 4 e itH! )—) (by Lemma 3.2)
n n
— o AN (H) gy o —itdN (),

Hence the first half of the theorem holds.
Assume (1.14). Then we have C(”)Tén) C To(n)C(”) (n > 0), which implies (3.18).
O

We have from Remark 3 and Theorem 1.4 the following fact:

Corollary 3.6.  Consider the case C' = 1. Then

(2, 0)

(3.20) |<q>,e—itdF<H>Qm1/>| < i L@ EDTR) e R {0}

§4. Strong Time Operators on Boson Fock Spaces and Fermion Fock
Spaces

There are two important closed subspaces of F($)). The one is the boson Fock
space over $):

§b(9) = Oy ®F 9,

where ®['$ denotes the n-fold symmetric tensor product of $ with ®25§ := C, and the
other is the fermion Fock space over $:

§:(9) = SnZo Ous 9,

where ®7.§ denotes the n-fold anti-symmetric tensor product of § with ®2.6 := C.
The second quantization dI'(H) is reduced by §n($) and F¢(9). We denote the
reduced part of dI'(H) to F4($) by dUx(H) (# =b, f).
It is easy to see that Jp and I'c are reduced by §x(9). We denote the reduced
part of Tp (resp. I'c) to §4x(9) by Tg,,#) (resp. I‘(C#)). Then Theorem 3.5 implies the
following theorem:

Theorem 4.1.  The operator ‘J’éﬂ#) is a strong time operator of dT'y(H) with non-
commutative factor I‘(C#). Moreover, if C = I, then (3.20) with (dT'(H),Tr, Q) replaced
by (dl'x(H), T;#),Q#) holds, where Qy, (resp. Q) is the orthogonal projection onto
{0} @ (@52, ©F 9) (resp- {0} © (D3Ly @3 9)) from Fu(9) (resp. 3 (9))-
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§5. Perturbations

In the context of quantum field theory based on the Fock spaces, the second quan-
tization dI'x(H) of H represents the Hamiltonian of a quantum system of mutually
independent infinitely many quantum particles each of which is described by the one
particle Hamiltonian H. Hence dI'yx(H) is not a Hamiltonian with interactions among

the quantum particles. An interaction among the quantum particles can be introduced
by perturbing dI'y(H):

(5.1) H .= dF#(H) + H,

where Hfy is a symmetric operator on §x($). Suppose that H is essentially self-adjoint
and that there exist a closed subspace & of F4($) which reduces H and a unitary
operator U from £ to §4 () satisfying

UHgU * = dT 4 (H),
where Hg denotes the reduced part of H to 8.

Theorem 5.1. Let

(5.2) r# .=y,
(5.3) AF#) =Py

Then #) is a strong time operator of Hg with non-commutative factor v#).
Moreover, if (1.14) holds, then

(#)
A n ar (e, n
(5.4) |<<I>,e_’tHﬁ (7<#>) qf> | < % U, P eD((T<#>) ),t € R\ {0}
Remark. A unitary operator U satisfying the condition stated above may be
constructed via the scattering theory for the pair (H, dI'x(H)) [10], depending on the
form of H.
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