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On the nonrelativistic limit of Dirac operators with

potentials diverging at innity

By

Hiroshi T. ITO * and Osanobu YAMADA **

Abstract

We investigate the spectral property and the nonrelativisitic limit of the Dirac operator
with a dilation analytic potential diverging at infinity by introducing two kinds of relativistic

Schrödinger operators. We prove an abstract theorem on the spectrum of a self‐adjoint operator
defined as a boundary value of some analytic family of closed operators and then use this

theorem to study the properties of the above operators. Almost all proofs are omitted in this

note. For the proofs we refer the reader to [12].

§1. Introduction

Let us consider the Dirac operator

(1.1) H(c)=c $\alpha$\cdot D+mc^{2} $\beta$+V(x)

in the Hilbert space L^{2}(R^{3})^{4} ,
where c>0 is the velocity of light, m>0 the rest

mass of a relativistic particle moving in the electric field determined by an electric

potential V\in C(R^{3}\rightarrow R) and  $\alpha$\displaystyle \cdot D=\sum_{j=1}^{3}$\alpha$_{j}D_{j} ,
where D=-i\nabla_{x}=(D_{1}, D_{2}, D_{3}) ,

 $\alpha$=($\alpha$_{1}, $\alpha$_{2}, $\alpha$_{3}) . Here each $\alpha$_{j} and  $\beta$ are  4\times 4 Hermitian matrices defined by

$\alpha$_{j}=\left(\begin{array}{ll}
0 & $\sigma$_{j}\\
$\sigma$_{j} & 0
\end{array}\right),  $\beta$=\left(\begin{array}{ll}
I_{2} & 0\\
0 & -I_{2}
\end{array}\right),
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where

$\sigma$_{1}=\left(\begin{array}{l}
01\\
10
\end{array}\right), $\sigma$_{2}=\left(\begin{array}{l}
0-i\\
0i
\end{array}\right), $\sigma$_{3}=\left(\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right)
are Pauli matrices, and I_{n} is the n\times n unit matrix.

It is believed that a Dirac operator converges to the corresponding Schrödinger
operator acting in L(R)

(1.2) S=-\displaystyle \frac{1}{2m}\triangle+V(x)
in some sense if the velocity of light, c

, goes to infinity (the nonrelativistic limit) and

this expectation has been verified by many authors [3, 4, 18, 19, 21], if the potential

V(x) decays uniformly at infinity. Indeed, in this case the resolvent (H(c)-mc^{2}-z)^{-1},
{\rm Im} z\neq 0 , converges to

(1.3) \left(\begin{array}{l}
(S-z)^{-1}I_{2}0\\
00
\end{array}\right)
as  c\rightarrow\infty in the operator norm (see, e.g., [18]), and the spectrum of the Dirac opera‐

tor is similar to that of the Schrödinger operator in the sense that the Dirac operator

has the essential spectrum $\sigma$_{\mathrm{e}\mathrm{s}\mathrm{s}}(H(c))=(-\infty, -mc^{2}] \cup[mc^{2}, \infty) and the discrete spec‐

trum $\sigma$_{\mathrm{d}}(H(c))\subset(-mc^{2} ,
mc2 ) ,

and the Schrödinger operator has $\sigma$_{\mathrm{e}\mathrm{s}\mathrm{s}}(S)=[0, \infty ) and

$\sigma$_{\mathrm{d}}(S)\subset(-\infty, 0) .

On the other hand, if the potential diverges at infinity :

(1.4)  V(x)\rightarrow+\infty as |x|\rightarrow\infty,

their spectra are quite different. Indeed, the Schödinger operator S has a purely discrete

spectrum, whereas the Dirac operator H(c) has a purely absolutely continuous spectrum

covering the whole real line (, +\infty) for a wide class of potentials including radial

potentials [14]. Therefore, in this case, we cannot expect the norm resolvent convergence

of H(c)-mc^{2} to S as in the case of decaying potentials since their spectra are quite
different. However, we can consider S as the nonrelativistic limit of H(c) even in this

case. In fact, there are two typical approaches to relate them: �spectral concentration�

[11, 20] and �resonances� [1, 19]. In this work we study this problem from the standpoint
of resonances. Roughly speaking, we assume that the potential V(x) is dilation analytic
and behaves like const.|x|^{M} as |x|\rightarrow\infty for some  M>0.

The following is our assumption, which is similar to the one of [1].

Assumption

(V1) V(x) is a real‐valued continuous function on R^{3}\mathrm{a}\mathrm{n}\mathrm{d} there are constants M>0,
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K>0 ,
a small constant a_{0}>0 and a \mathrm{C}(\mathrm{S}) ‐valued analytic function V(z, \cdot) of z defined

on S_{a_{0}},
S_{a_{0}}:=\{re^{i $\tau$}\in C;r\in(0, \infty), -a_{0}< $\tau$<a_{0}\},

such that

(1.5) \displaystyle \sup_{ $\omega$\in S^{2}}|V(z,  $\omega$)|\leq K(1+|z|)^{M}
for all z\in S_{a_{0}} and V(r,  $\omega$)=V(r $\omega$) if r>0 and  $\omega$\in S^{2}.

Define a function V(x) for each  $\theta$\in C with |{\rm Im} $\theta$|<a_{0} by

V_{ $\theta$}(x):=V(e^{ $\theta$}|x|,\hat{x}) , \hat{x}=x/|x|, x\neq 0.

(V2) There is a constant R_{0}>0 such that for each  $\tau$\in(-a_{0}, a_{0}) the function V_{i $\tau$}(x)
is C^{\infty} for |x|>R_{0} and satisfies the estimate

(1.6) |\partial_{x}^{ $\alpha$}V_{i $\tau$}(x)|\leq K_{ $\alpha$}|x|^{M-| $\alpha$|}

for | $\alpha$|\geq 0 and for |x|>R_{0} uniformly in | $\tau$|<a_{0}.

(V3) There exist a constant K_{0}>0 such that

(1.7) V(x)\geq K_{0}|x|^{M}, x\cdot\nabla V(x)\geq K_{0}|x|^{M}

for |x|\geq R_{0}.

The resonances of H(c) are defined as the eigenvalues of the dilated Dirac operator

(1.8) H(c,  $\theta$) :=c $\alpha$\cdot e^{- $\theta$}D+mc^{2} $\beta$+V(x)

for  $\theta$\in C with 0<{\rm Im} $\theta$<a_{0} (see [1]). In [1] Amour, Brummelhuis and Nourrigat
show that the family of H(c,  $\theta$) is an analytic family of type (A) [13, 17] with compact

resolvent, and so H(c,  $\theta$) has only discrete spectrum. The standard argument of the

complex scaling method shows that the resonances are independent of  $\theta$ with  0<{\rm Im} $\theta$<

a_{0}[2 , 6, 17] . In [1] they prove that there are resonances of H(c)-mc^{2} , eigenvalues of

H(c,  $\theta$)-mc^{2} ,
near each eigenvalue of S if c is large enough and the resonances converge

to the eigenvalue as c\rightarrow\infty.

Our purpose is to clarify this mechanism by introducing two relativistic Schrödinger

operators

(1.9) L_{\pm}(c) :=\pm\sqrt{-c^{2}\triangle+m^{2}c^{4}}-mc^{2}+V(x) in L(R)

as intermediates between the Dirac operator H(c) and the Schrödinger operator S.
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§2. Relativistic Schrödinger Operators

Let  $\sigma$( $\xi$) :=\sqrt{| $\xi$|^{2}+m^{2}},  $\xi$\in R^{3} ,
and

A( $\xi$):=(\displaystyle \frac{ $\sigma$( $\xi$)+m}{ $\sigma$( $\xi$)})^{1/2}
Define a 4\times 4 matrix U_{c}( $\xi$) by U_{c}( $\xi$) :=U( $\xi$/c) ,

where

U( $\xi$):=\displaystyle \frac{1}{\sqrt{2}}(A( $\xi$)I_{4}+A( $\xi$)^{-1} $\beta \alpha$\cdot\frac{ $\xi$}{ $\sigma$( $\xi$)})
Then the operator U(D) is unitary and diagonalizes the free Dirac operator (V(x) =0) :

U_{c}(D)H_{0}(c)U_{c}(D)^{-1}=(^{\sqrt{-c^{2}\triangle+m^{2}c^{4}}I_{2}0}0-\sqrt{-c^{2}\triangle+m^{2}c^{4}}I_{2}) .

This transformation by U(D) is called the FWT transformation (the Foldy‐Wouthuysen‐
Tani transformation). It is easy to see that the FWT transformation maps S^{4} onto

itself, where S denotes the Schwartz space S(R^{3}) . Now we apply this transformation

to H(c)-mc^{2}=H_{0}(c)-mc^{2}+V(x) :

L(c) :=U_{c}(D)(H(c)-mc^{2})U_{c}(D)^{-1}=L_{1}(c)+W(c) ,

where

(2.1) L_{1}(c) :=\left(\begin{array}{ll}
L_{+}(c)I_{2} & 0\\
0 & L_{-}(c)I_{2}
\end{array}\right),
(2.2) L_{\pm}(c) :=\pm\sqrt{-c^{2}\triangle+m^{2}c^{4}}-mc^{2}+V(x) ,

and

(2.3) W(c) :=U_{c}(D)V(x)U_{c}(D)^{-1}-V(x) .

Since the potential V(x) is continuous, H(c) defined on S^{4} is essentially self‐adjoint (see
e.g. [18]), and so L(c) defined on S^{4} is also essentially self‐adjoint since U(D) maps S^{4}

onto itself. Hereafter we denote by L(c) and H(c) the unique self‐adjoint extensions of

them, respectively.
In this work we shall investigate L(c) ,

instead of H(c) , by considering W(c) as a

perturbation of L_{1}(c) ,
since not only L(c) and H(c)-mc^{2} are unitarily equivalent but

also their resonances coincide (see the remark below Proposition 4.4). However, there

is a difficulty to consider W(c) as a perturbation of L(c) directly, because L_{-}(c) has

no global ellipticity though L(c) has, and so L(c) cannot control W(c) . To overcome

this difficulty we introduce a complex scaling argument as in [1].
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First we study the relativistic Schrödinger operators L_{\pm}(c) . Here we remark that

L_{\pm}(c) defined on S are essentially self‐adjoint operators (see [8, 9]) under our assumption
and denote again by the same notation L_{\pm}(c) their self‐adjoint extensions, respectively.

Fix a constant a with 0<a<a_{0} in this work and let

 $\Omega$:=\{ $\theta$\in C;|{\rm Im} $\theta$|<a\},

$\Omega$_{+}:=\{ $\theta$\in C;0<{\rm Im} $\theta$<a\}.

Our assumptions on V make it possible to define the following operators on S

(2.4) L_{\pm}(c,  $\theta$):=\pm\sqrt{-c^{2}e^{-2 $\theta$}\triangle+m^{2}c^{4}}-mc^{2}+V(x)

for  $\theta$\in $\Omega$ ,
where \sqrt{-c^{2}e^{-2 $\theta$}\triangle+m^{2}c^{4}} is considered as the pseudodifferential operator

with symbol \sqrt{c^{2}e^{-2 $\theta$}| $\xi$|^{2}+m^{2}c^{4}} . Here \sqrt{z} is defined to have the branch on the negative
real line. Note that if t is a real number, they are written as

(2.5) L\pm(c, t)=\mathcal{U}(t)L\pm(c)\mathcal{U}(t)^{-1}

on S ,
where \mathcal{U}(t) is the dilation group defined by

\mathcal{U}(t)f(x)=e^{3t/2}f (etx).

Let us define the weighted L^{2} ‐space L_{M}^{2}(R) by L_{M}^{2}(R^{3})=L^{2}(R^{3};\langle x\rangle^{2M}dx) and set

D_{M} :=H^{1}(R^{3})\cap L_{M}^{2}(R^{3}) ,
where H^{1}(R) is the Sobolev space of order one. Here

we note that according to Rellich�s criterion any closed operator with domain D_{M} has

compact resolvent if the resolvent set is not empty.
Hereafter we suppose a>0 is sufficiently small and c\geq 1 . The following proposi‐

tion is the main result in this section.

Proposition 2.1. (a) For each  $\theta$\in $\Omega$ and  c\geq 1, L_{+}(c,  $\theta$) defined on S is clos‐

able, and its closure (denoted by the same notation L_{+}(c,  $\theta$) ) has domain D_{M} . Moreover,
its resolvent set is nonempty and, in particular, L_{+}(c,  $\theta$) has compact resolvent.

(b) For each c\geq 1 the fa mily of closed operators \{L_{+}(c,  $\theta$)\}_{ $\theta$\in $\Omega$} is an analytic fa mily

of type (A) (e.g. [13, 17]) with the following property:

(2.6) L_{+}(c, t+ $\theta$)=\mathcal{U}(t)L_{+}(c,  $\theta$)\mathcal{U}(t)^{-1}, t\in R,  $\theta$\in $\Omega$.

(c) For each  $\theta$\in$\Omega$_{+} and c\geq 1, L_{-}(c,  $\theta$) defined on S is closable and its closure

(denoted by the same notation L_{-}(c,  $\theta$) ) has domain D_{M} . Moreover, its resolvent set is

nonempty and, in particular, L_{-}(c,  $\theta$) has compact resolvent.

(d) For each c\geq 1 ,
the fa mily of closed operators \{L_{-}(c,  $\theta$)\}_{ $\theta$\in$\Omega$_{+}} is an analytic fa mily

of type (A) with the following property:

(2.7)  L_{-}(c, t+ $\theta$)=\mathcal{U}(t)L_{-}(c,  $\theta$)\mathcal{U}(t)^{-1}, t\in R,  $\theta$\in $\Omega$+\cdot
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(e) There is a constant  r_{0}>0 independent of c\geq 1 and  $\theta$\in $\Omega$+ such that \{z\in
 C;{\rm Im} z<-r_{0}\}\subset $\rho$(L_{-}(c,  $\theta$ the resolvent set of  L_{-}(c,  $\theta$) .

(f) Let c\geq 1 and {\rm Im} z<-r_{0} . Then the resolvent (L_{-}(c,  $\theta$)-z)^{-1} converges to

(L_{-}(c)-z)^{-1} strongly as  $\theta$\rightarrow 0 :

(2.8) s-\displaystyle \lim_{$\Omega$_{+}\ni $\theta$\rightarrow 0}(L_{-}(c,  $\theta$)-z)^{-1}=(L_{-}(c)-z)^{-1}
Remarks. (i) Since L_{+}(c,  $\theta$) has compact resolvent, it has a purely discrete spec‐

trum. Moreover, according to (b), with the help of the standard argument by Aguilar
and Combes [2] we see that the discrete spectrum is independent of  $\theta$\in $\Omega$ for each

 c\geq 1 . In particular, it coincides with that of L_{+}(c) . On the other hand, the above

argument is valid for L_{-}(c,  $\theta$) with only  $\theta$\in $\Omega$+\cdot Actually, the structure of spectrum

of  L_{-}(c,  $\theta$) for {\rm Im} $\theta$>0 and that of L_{-}(c) are quite different (see Section 4). Thus it

seems that the analysis of L_{-}(c,  $\theta$) for {\rm Im} $\theta$>0 does not contribute to that of L_{-}(c) .

But as shown in Section 3 the spectral property of L_{-}(c,  $\theta$) for {\rm Im} $\theta$>0 helps us to

determine that of L_{-}(c) through the relation (2.8).
(ii) The result of (e) is not optimal. Indeed, combining this proposition with a result

in the next section, we can prove that the whole lower half plane \{z\in C;{\rm Im} z<0\} is

contained in the resolvent set of L_{-}(c,  $\theta$) for all  $\theta$\in $\Omega$+ and all c\geq 1.

§3. Analytic Family

In this section we study an abstract theory, which is useful to investigate the spec‐

tral properties of Dirac operators and relativistic Schrödinger operators with dilation

analytic potentials (see the next section).
We will show that self‐adjoint operators defined as a boundary value of some type

of analytic family of closed operators can be classified into two types by following the

idea of Aguilar and Combes [2] (see also [5, 17]).
Let T be a self‐adjoint operator and \{T( $\theta$)\}_{ $\theta$\in$\Omega$_{+}} a family of closed operators in a

Hilbert space \mathcal{H} , where $\Omega$_{+}=\{ $\theta$\in C;0<{\rm Im} $\theta$<a\} for some a>0 . We assume the

following:

(A1) \{T( $\theta$)\}_{ $\theta$\in$\Omega$_{+}} is an analytic family in the sense of Kato (see [13], [17]).
(A2) Each T( $\theta$) has compact resolvent.

(A3) There is a strongly continuous one‐parameter unitary group \{U(t)\}_{t\in R} such

that

(3.1) U(t)T( $\theta$)U(t)^{*}=T( $\theta$+t)

for t\in R and  $\theta$\in $\Omega$+\cdot
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By (A1) and (A2) each  T( $\theta$) has purely discrete spectrum and the eigenvalues are

analytic functions or branches of one or several analytic functions. On the other hand

(A3) implies that the eigenvalues of T( $\theta$) are invariant when  $\theta$ is changed to  $\theta$+t if t is

real. Thus, each eigenvalue is a constant function of  $\theta$\in $\Omega$+(\mathrm{s}\mathrm{e}\mathrm{e} e.g. [2, 17 Therefore

we obtain

Proposition 3.1. Suppose (A1)(A3). Then there is a discrete set  $\Sigma$ in  C

such that  $\sigma$(T( $\theta$))=$\sigma$_{\mathrm{d}}(T( $\theta$))= $\Sigma$ for all  $\theta$\in$\Omega$_{+}.

Let c_{\pm}:=\{z\in C;\pm{\rm Im} z>0\} . The self‐adjoint operator T is related to the

analytic family \{T( $\theta$)\}_{ $\theta$\in$\Omega$_{+}} in the following sense.

(A4) There is a nonempty open set \mathcal{O}\subset C_{-}\backslash  $\Sigma$ such that

 w-\displaystyle \lim_{t\rightarrow+0}(T(it)-z)^{-1}=(T-z)^{-1} (weakly)

for each z\in \mathcal{O}.

Remark. For each s\in R define a self‐adjoint operator T(s) by T(s) :=U(s)TU(s)^{*}
Then T(0)=T and

w-\displaystyle \lim_{t\rightarrow+0}(T(s+it)-z)^{-1}=w-\lim_{t\rightarrow+0}U(s)(T(it)-z)^{-1}U(s)^{*}
=U(s)(T-z)^{-1}U(s)^{*}=(T(s)-z)^{-1}

by (A3). Thus the self‐adjoint operators T(s) , s\in R ,
are regarded as boundary values

of the operator‐valued function T( $\theta$) defined on $\Omega$_{+} . The following proposition shows

that the eigenvalues of T( $\theta$) (if exist) are located in the closed upper half plane \overline{c}_{+}=
\{z\in C:{\rm Im} z\geq 0\}.

Proposition 3.2. Suppose (A1)(A4). Then  $\Sigma$\subset\overline{c_{+}}.

Proof. Let A be the generator of U(t) ,
i.e. U(t)=e^{-itA} ,

and let \mathrm{P} be the

spectral projection for A . Then \mathcal{D}:= { u\in \mathcal{H};\mathrm{P}([-M, M])u=u for some M } is dense

in \mathcal{H} , and e^{-iwA}u is an entire function of w for each u\in \mathcal{D} . Moreover, e^{-iwA}\mathcal{D}=\mathcal{D} for

each w\in C . We fix z\in \mathcal{O} and f, g in \mathcal{D} and write f_{ $\theta$}=U(- $\theta$)f , etc., for simplicity.
Then we have the identity by (A3):

(3.2) ((T( $\theta$+t)-z)^{-1}f, g)=((T( $\theta$)-z)^{-1}f_{t}, g_{t})

for all  $\theta$\in $\Omega$+ and all t\in R ,
and by the use of analyticity of both sides in t we get

(3.3) ((T( $\theta$+ $\eta$)-z)^{-1}f, g)=((T( $\theta$)-z)^{-1}f_{ $\eta$}, g_{\overline{ $\eta$}})
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if  $\theta$\in $\Omega$+,  $\theta$+ $\eta$\in $\Omega$+\cdot Therefore, by (A4) we have

(3.4) ((T-z)^{-1}f, g)=\displaystyle \lim_{t\rightarrow+0}((T(it)-z)^{-1}f, g)
=\displaystyle \lim_{t\rightarrow+0}((T( $\theta$)-z)^{-1}f_{it- $\theta$}, g_{\overline{it- $\theta$}})
=((T( $\theta$)-z)^{-1}f_{- $\theta$}, g_{-\overline{ $\theta$}}) .

Since (T( $\theta$)-z)^{-1} and (T-z)^{-1} are analytic in  C_{-}\backslash  $\Sigma$ and in  C_{-} , respectively, the

above equality holds for all  z\in C_{-}\backslash  $\Sigma$ . Since both \{f_{- $\theta$};f\in \mathcal{D}\} and \{g_{-\overline{ $\theta$}};g\in \mathcal{D}\} are

dense in \mathcal{H} , we see that (T( $\theta$)-z)^{-1} is analytic in z\in C_{-} ,
and so C_{-}\cap $\Sigma$= $\phi$. \square 

The equality (3.4) is important in this section.

For E\in R ,
let  $\gamma$ be a positively‐oriented small circle |z-E|= $\epsilon$ enclosing  E with

\{z\in C;0<|z-E|\leq $\epsilon$\}\cap $\Sigma$= $\phi$ and let

 P_{ $\theta$}(E)=-\displaystyle \frac{1}{2 $\pi$ i}\int_{ $\gamma$}(T( $\theta$)-z)^{-1}dz.
Then this operator is the eigenprojection associated with  E\in$\sigma$_{\mathrm{d}}(T( $\theta$))= $\Sigma$ if  E\in $\Sigma$

and  P_{ $\theta$}(E)=0 otherwise. Moreover, for each  E\in $\Sigma$ the projection‐valued function

 P(E) is analytic in  $\theta$\in $\Omega$+\cdot In particular, the dimension of the range of  P(E) is

independent of  $\theta$ for each  E.

The following is our main result in this section. Let \mathrm{P}_{s}() be the spectral projection
of T(s) for s\in R.

Theorem 3.3. Suppose (A1)(A4). Then

(a) $\sigma$_{\mathrm{d}}(T( $\theta$))\cap R=$\sigma$_{\mathrm{p}}(T) for all  $\theta$\in $\Omega$+\cdot Moreover, for each  E\in$\sigma$_{\mathrm{p}}(T) and s\in R,
we have

(3.5) \displaystyle \lim_{$\Omega$_{+}\ni $\theta$\rightarrow s}||P_{ $\theta$}(E)-\mathrm{P}_{s}(\{E\})||=0.
In particular, the eigenvalues of T are discrete and each eigenvalue has finite multiplic‐

ity.

(b) Either

(I) H has a purely discrete spectrum, i.e.  $\sigma$(T)=$\sigma$_{\mathrm{d}}(T)
or

(II)  $\sigma$(T)=R,  $\sigma$_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}(T)= $\phi$
holds. In particular, we have  $\sigma$(T)\backslash $\sigma$_{\mathrm{p}}(T)\subset$\sigma$_{\mathrm{a}\mathrm{c}}(T) in the case of (II).

(c) If  $\Sigma$\cap(C\backslash R)\neq $\phi$ or  $\Sigma$= $\phi$ ,
then the case (II) holds. Thus,  $\Sigma$=$\sigma$_{\mathrm{p}}(T) in the case

of (I).
(d) Suppose the case (I) above holds and fix z\not\in$\sigma$_{\mathrm{d}}(T) . Then the resolvent (T( $\theta$)-z)^{-1}
has an analytic continuation of  $\theta$ fr om  $\Omega$+to $\Omega$:=\{ $\theta$\in C;|{\rm Im} $\theta$|<a\}.
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Remarks. (i) Hereafter we call T the boundary value of the analytic family

\{T( $\theta$)\}_{ $\theta$\in$\Omega$_{+}} and each element of  $\Sigma$ a resonance of  T
,

when \{T( $\theta$)\}_{ $\theta$\in$\Omega$_{+}} is given.

(ii) We discuss two simple and typical examples of T from the point of view of this

theorem, though the detail is omitted. Let us consider two Schrödinger operators

H_{+} :=-\triangle+|x|^{2}, H_{-} :=-\triangle-|x|^{2} in L^{2}(R^{3}) .

It is known that they are essentially self‐adjoint on S (see e.g. [10], [16]). We denote by
the same notation  H\pm their self‐adjoint extensions. The operator  H_{+} is known as the

harmonic oscillator and has a purely discrete spectrum. Define

H_{+}( $\theta$) :=-e^{-2 $\theta$}\triangle+e^{2 $\theta$}|x|^{2}, |{\rm Im} $\theta$|< $\pi$/4.

Then we can prove that each H_{+}( $\theta$) is a closed operator with domain D(H_{+}( $\theta$))=
D(\triangle)\cap D(x) and has compact resolvent and that the family \{H_{+}( $\theta$)\} forms an

analytic family of type (A). Moreover, we can see that H_{+} is a boundary value of the

analytic family restricted to 0<{\rm Im} $\theta$< $\pi$/4 . On the other hand, -H_{-} can be proved
to be a boundary value of the analytic family of operators

H_{-}( $\theta$) :=e^{-2 $\theta$}\triangle+e^{2 $\theta$}|x|^{2}=e^{\frac{ $\pi$}{2}i}(-e^{-2( $\theta$-\frac{ $\pi$}{4}i)}\triangle+e^{2( $\theta$-\frac{ $\pi$}{4}i)}|x|^{2})

=iH_{+}( $\theta$-\displaystyle \frac{ $\pi$}{4}i)
for 0<{\rm Im} $\theta$< $\pi$/4 . Since H_{+}( $\theta$) is an analytic family of type (A) for - $\pi$/4<{\rm Im} $\theta$<
 $\pi$/4 ,

the theorem implies that H_{+} is of type (I) in (b). In particular,  $\sigma$(H_{+}( $\theta$))=
$\sigma$_{\mathrm{d}}(H_{+}( $\theta$))=$\sigma$_{\mathrm{d}}(H_{+})=\{$\lambda$_{lmn};l, m, n=0, 1, 2, \} ,

where

(3.6) $\lambda$_{lmn}=(2l+1)+(2m+1)+(2n+1)=2(l+m+n)+3.

Furthermore, by virtue of this fact we know that

 $\sigma$(H_{-}( $\theta$))=$\sigma$_{\mathrm{d}}(H_{-}( $\theta$))=\{i$\lambda$_{lmn};l, m, n=0, 1, 2, \},

i.e., H_{-} has nonreal resonances. Thus, it follows by (c) that H_{-} is of type (II) and has

purely absolutely continuous spectrum with  $\sigma$(H_{-})=R.

§4. Resonances

We study spectral properties of the relativistic Schrödingr operators L_{\pm}(c) and the

operator L(c) ,
which is unitarily equivalent to H(c) —mc, with the help of Theorem

3.3 in Section 3. For the relativistic Schrödinger operators L_{\pm}(c) ,
we apply the theorem

to them as follows; \mathcal{H}=L^{2}(R^{3}) , $\Omega$_{+}= $\Omega$+, T=L_{\pm}(c) , T( $\theta$)=L_{\pm}(c,  $\theta$) , U(t)=\mathcal{U}(t) .
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Proposition 4.1. (a) $\Sigma$_{+}(c) :=$\sigma$_{\mathrm{d}}(L_{+}(c,  $\theta$)) is independent of  $\theta$\in $\Omega$ and coin‐

cides with  $\sigma$_{\mathrm{p}}(L_{+}(c)) .

(b) L(c) has a purely discrete spectrum.

Proposition 4.2. (a) $\Sigma$_{-}(c) :=$\sigma$_{d}(L_{-}(c,  $\theta$)) is independent of  $\theta$\in$\Omega$_{+} and

satisfies

$\Sigma$_{-}(c)\subset\overline{c_{+}}, $\Sigma$_{-}(c)\cap R=$\sigma$_{\mathrm{p}}(L_{-}(c)) .

(b) The set $\sigma$_{\mathrm{p}}(L_{-}(c)) of eigenvalues of L_{-}(c) (if exist) is a bounded discrete set, and

moreover, the multiplicity of each eigenvalue is finite.

(c)  $\sigma$(L_{-}(c))=R and  $\sigma$_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}(L_{-}(c))= $\phi$ . In particular,  $\sigma$(L_{-}(c))\backslash $\sigma$_{\mathrm{p}}(L_{-}(c))=
$\sigma$_{\mathrm{a}\mathrm{c}}(L_{-}(c)) .

Outline of the proof of Proposition 4.2. We apply Theorem 3.3 to L_{-}(c) . By

investigating the numerical range of L_{-}(c,  $\theta$) ,
we can see that there exists a constant

K>0 such that $\Sigma$_{-}(c)\cap((-\infty, -K] \cup[K, \infty) ) = $\phi$ . Hence the set of eigenvalues

(if exist) is bounded and each multiplicty is finite. Since the dimension of  L(R) is

infinite, this implies that L_{-}(c) should not be type (I). Consequently, we have proved
the proposition.

Remark. Each element of $\Sigma$_{\pm}(c) is called a resonance of L\pm(c) , respectively.
Hence L(c) has no nonreal resonance. On the other hand, L_{-}(c) may have a nonreal

resonance (see the remark below Proposition 5.5).

We define

(4.1) L(c,  $\theta$)=L_{1}(c,  $\theta$)+W(c,  $\theta$) ,

where

L_{1}(c,  $\theta$):=\left(\begin{array}{lll}
L_{+}(c &  $\theta$)I_{2} & 0\\
0 &  & L_{-}(c, $\theta$)I_{2}
\end{array}\right)
and

W(c,  $\theta$) :=U_{c}(e^{- $\theta$}D)V_{ $\theta$}(x)U_{c}(e^{- $\theta$}D)^{-1}-V_{ $\theta$}(x) .

Proposition 4.3.

(a) L(c,  $\theta$) defined on S^{4} is closable and its closure (denoted by the same notation

L(c,  $\theta$)) has domain D(L(c,  $\theta$))=(D_{M})^{4} for  $\theta$\in $\Omega$+\cdot

(b) The resolvent set  ofL(c,  $\theta$) ,  $\theta$\in $\Omega$+ ,
is not empty and its resolvent (L(c,  $\theta$)-z)^{-1}

is compact. Moreover, L(c,  $\theta$) is an analytic family of type (A) in  $\theta$\in $\Omega$+\cdot
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(c) There is a large constant  T>0 such that

(4.2) s-\displaystyle \lim_{$\Omega$_{+}\ni $\theta$\rightarrow 0}(L(c,  $\theta$)-z)^{-1}=(L(c)-z)^{-1}
for all z\in C with {\rm Re} z<-T and {\rm Im} z<-T.

In the proof of (c) we introduce

\tilde{H}(c,  $\theta$) :=ce^{- $\theta$} $\alpha$\cdot D+ $\beta$ mc^{2}-mc^{2}+V(x)

for  $\theta$\in$\Omega$_{+} . Then

(4.3) L(c,  $\theta$)=U_{c}(e^{ $\theta$}D)\tilde{H}(c,  $\theta$)U_{c}(e^{ $\theta$}D)^{-1}

This proposition shows that L(c) is the boundary value of the analytic family \{L(c,  $\theta$)\}_{ $\theta$\in$\Omega$_{+}}.
Thus by Theorem 3.3 we have

Proposition 4.4. (a) The set  $\Sigma$(c) :=$\sigma$_{\mathrm{d}}(L(c,  $\theta$)) is independent of  $\theta$\in$\Omega$_{+} and

satisfies

 $\Sigma$(c)\subset\overline{c_{+}},  $\Sigma$(c)\cap R=$\sigma$_{\mathrm{p}}(L(c)) .

Moreover, the multiplicity of each eigenvalue (if exists) of L(c) is finite.

(b)  $\sigma$(L(c))=R and  $\sigma$_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}(L(c))= $\phi$ . In particular,  $\sigma$(L(c))\backslash $\sigma$_{\mathrm{p}}(L(c))=$\sigma$_{\mathrm{a}\mathrm{c}}(L(c)) .

Proof. It is known that  $\sigma$(H(c) -- mc)= $\sigma$(L(c))=R (see e.g.[18]). Thus, by

applying Theorem 3.3 to L(c) ,
we see that L(c) is of type (II) in (b) of Theorem 3.3,

and thus obtain the desired result. \square 

Remark. We call an element of  $\Sigma$(c) a resonance of L(c) . On the other hand, in [1]
eigenvalues of \tilde{H}(c,  $\theta$) ,

which independent  $\theta$\in$\Omega$_{+} ,
are called resonances of H(c)-mc^{2}.

Then (4.3) shows that the the resonances of H(c)-mc^{2} coincide with those of L(c) .

Theorem 4.5. (a) The resonances of the Dirac operator H(c) are contained in

the upper half plane \overline{c}_{+} ,
and the real resonances coincide with the eigenvalues of H(c) .

In particular, the set of eigenvalues (if exist) is a discrete set. Moreover, the multiplicity

of each eigenvalue is finite.

(b)  $\sigma$(H(c))=R and  $\sigma$_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}(H(c))= $\phi$ . In particular,  $\sigma$(H(c))\backslash $\sigma$_{\mathrm{p}}(H(c))\subset$\sigma$_{\mathrm{a}\mathrm{c}}(H(c)) .

Remarks. (i) It is a natural question whether there is a resonance of H(c) or not.

In the next section we will show that there are resonances near the eigenvalue of the

Schrödinger operator S=-(2m)^{-1}\triangle+V(x) if c is large enough.

(ii) We can see that the resonances of L(c) are contained in a half‐plane having no

intersection with (-\infty, -K) for large K>0 . Hence, the set of the eigenvalues of H(c)
(if exist) is bounded from below.
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(iii) If the potential V(x) satisfies some mild condition, then the Dirac operator

H(c) has a purely absolutely continuous spectrum and  $\sigma$(H(c))=R[14 , 23].

§5. Nonrelativistic Limit

In this section we shall show that there exist resonances of L(c) (and so H(c)-
mc) near each eigenvalue of S if c is sufficiently large. Furthermore, we study the

nonrelativistic limit of the spectral projection of H(c)-mc^{2} at the end of this section.

We fix a constant L>0 and an interval I\subset R with  I\cap $\sigma$(S)\neq $\phi$ and define

\mathcal{O} :=\{z\in C;{\rm Re} z\in I, |{\rm Im} z|<L\},

\mathcal{O}^{+}:=\{z\in C;{\rm Re} z\in I, 0<{\rm Im} z<L\}

For small  $\epsilon$>0 we also define

\displaystyle \mathcal{O}_{ $\epsilon$}:=\mathcal{O}\backslash \bigcup_{j=1}^{N}B_{ $\epsilon$}($\lambda$_{j}) ,

\displaystyle \mathcal{O}_{ $\epsilon$}^{+}:=\mathcal{O}^{+}\backslash \bigcup_{j=1}^{N}B_{ $\epsilon$}($\lambda$_{j}) ,

where I\cap$\sigma$_{d}(S)=\{$\lambda$_{j}\}_{j=1}^{N} and B_{ $\epsilon$}( $\lambda$)=\{z\in C;|z- $\lambda$|\leq $\epsilon$\} . Let m_{j} be the multiplicity
of the eigenvalue $\lambda$_{j} of S.

Proposition 5.1. Fix  $\theta$\in$\Omega$_{+} . There is a constant c_{0}>0 and K>0 such that

\mathcal{O}\subset $\rho$(L_{-}(c,  $\theta$)) and

(5.1) ||(L_{-}(c,  $\theta$)-z)^{-1}||\leq Kc^{-2}

for all c>c_{0} and all z\in \mathcal{O}.

Let S( $\theta$) :=-(2m)^{-1}e^{-2 $\theta$}\triangle+V_{ $\theta$}(x) ,  $\theta$\in $\Omega$.

Proposition 5.2. (a) S( $\theta$) defined on S is closable and its closure (denoted by
the same notation S( $\theta$) ) has the domain D(S( $\theta$))=D(-\triangle)\cap L_{M}^{2} (R3).
(b) The resolvent set of S( $\theta$) is not empty and its resolvent is compact.

(c) \{S( $\theta$)\}_{ $\theta$\in $\Omega$} is an analytic fa mily of type (A) .

(d) The spectrum of S( $\theta$) is independent of  $\theta$ and consists of only a discrete spectrum
which coincides with that of  S.

Proposition 5.3. Let G be a compact set in  $\rho$(S) and fix  $\theta$\in $\Omega$ . Then there are

constants  c_{0}>0 and K>0 such that G\subset $\rho$(L_{+}(c,  $\theta$)) forc\geq c_{0} and

\displaystyle \sup_{z\in G}||(L_{+}(c,  $\theta$)-z)^{-1}-(S( $\theta$)-z)^{-1}||\leq Kc^{-2}
for c\geq c_{0}.
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This result implies that for each eigenvalue  $\lambda$ (with multiplicity n) of  S there exists

n eigenvalues (counting multiplicity) $\lambda$_{j}(c) , j=1 ,
. . .

,
n

,
of L(c) near  $\lambda$ for large  c and

 $\lambda$_{j}(c)\rightarrow $\lambda$ as  c\rightarrow\infty.

A similar argument is useful to prove the existence of nonreal resonances of L_{-}(c) .

Let \overline{S}( $\theta$) :=(2m)^{-1}e^{-2 $\theta$}\triangle+V_{ $\theta$}(x) ,  $\theta$\in $\Omega$+\cdot

Proposition 5.4. (a) \overline{S}( $\theta$) defined on S is closable and its closure (denoted by
the same notation \overline{S}( $\theta$) ) has the domain D(\overline{S}( $\theta$))=D(-\triangle)\cap L_{M}^{2} (R3).
(b) The resolvent set of \overline{S}( $\theta$) is not empty and its resolvent is compact.

(c) \{\overline{S}( $\theta$)\}_{ $\theta$\in$\Omega$_{+}} is an analytic fa mily of type (A) .

(d) \overline{S}( $\theta$) has a purely discrete spectrum \overline{ $\Sigma$}
,

which is independent of  $\theta$.

Moreover, we have

Proposition 5.5. Let G be a compact set in C\backslash \overline{ $\Sigma$} and fix  $\theta$\in $\Omega$+\cdot Then there

are constants  c_{0}>0 and K>0 such that G\subset $\rho$(L_{-}(c,  $\theta$)+2mc^{2}) forc\geq c_{0} and

\displaystyle \sup_{z\in G}||(L_{-}(c,  $\theta$)+2mc^{2}-z)^{-1}-(\overline{S}( $\theta$)-z)^{-1}||\leq Kc^{-2}
for c\geq c_{0}.

Remark. This proposition implies that if \overline{ $\Sigma$} has a nonreal element  $\lambda$ there exists a

nonreal resonance  $\lambda$(c) of L_{-}(c) for large c such that  $\lambda$(c)+2mc^{2}\rightarrow $\lambda$ as  c\rightarrow\infty . For

example, if  V(x)=|x|^{2} and m=1/2 ,
then \overline{S}( $\theta$) with m=1/2 coincides with H_{-}( $\theta$)

in Section 3 and has nonreal eigenvalues i$\lambda$_{lmn} (see (3.6)). Thus, in this case L_{-}(c) has

nonreal resonances for large c.

Proposition 5.6. Fix  $\theta$\in $\Omega$+\cdot Then for any  $\epsilon$>0 there exists c_{ $\epsilon$}>0 such that

\mathcal{O}_{ $\epsilon$}\subset $\rho$(L(c,  $\theta$))\cap $\rho$(S) forc>c_{ $\epsilon$} and

(5.2) \displaystyle \lim_{c\rightarrow\infty}\sup_{z\in \mathcal{O}_{ $\epsilon$}}\Vert(L(c,  $\theta$)-z)^{-1}-\left(\begin{array}{ll}
(S( $\theta$)- & z)^{-1}I_{2}0\\
0 & 0
\end{array}\right)\displaystyle \Vert=0.
The following is our main result on the nonrelativisitic limit. A similar result has

already been obtained in [1].

Theorem 5.7. For any small  $\epsilon$>0 there exists a constant c_{ $\epsilon$}>0 such that

\mathcal{O}_{ $\epsilon$}\subset $\rho$(L(c,  $\theta$  $\theta$\in $\Omega$+ ,
and there exist 2m_{j} eigenvalues of L(c,  $\theta$) (counting their

algebraic multiplicities) in B_{ $\epsilon$}($\lambda$_{j})\cap\overline{\mathcal{O}}^{+} for each j=1 ,
. . .

,
N if c>c_{ $\epsilon$} ,

where \overline{\mathcal{O}}^{+}=

\{z\in C, ; {\rm Re} z\in I, 0\leq{\rm Im} z<M\} . That is to say, there is no resonance of H(c)-mc^{2}
in \mathcal{O}_{ $\epsilon$} and there are 2m_{j} resonances of H(c)-mc^{2} in B_{ $\epsilon$}($\lambda$_{j})\cap\overline{\mathcal{O}}^{+}for each j=1 ,

. . .

, N,

if c is sufficiently large.
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The following theorem implies that if the Dirac operator has no eigenvalue then

there exist nonreal resonances.

Theorem 5.8. Suppose  $\sigma$_{\mathrm{p}}(H(c))= $\phi$ for all large  c . Then for any small  $\epsilon$>0

there exists a constant c_{ $\epsilon$}>0 such that there is no resonance of H(c)-mc^{2} in \mathcal{O}_{ $\epsilon$} and

there exist 2m_{j} nonreal resonances of H(c)-mc^{2} in B_{ $\epsilon$}($\lambda$_{j})\cap \mathcal{O}^{+}for each j=1 ,
. . .

,
N

if c>c_{ $\epsilon$}.

Finally, we state a result on the nonrelativistic limit of the spectral projection of

the Dirac operator.

Proposition 5.9. Let I=[ $\alpha$,  $\beta$] be an interval such that I\cap $\sigma$(S)=\{$\lambda$_{0}\} with

 $\alpha$<$\lambda$_{0}< $\beta$ or  I\cap $\sigma$(S)= $\phi$ . Then we have

(5.3)  s-\displaystyle \lim_{c\rightarrow\infty}\mathrm{P}_{H(c)-mc^{2}}(I)f=\mathrm{P}f,

for each f\in L^{2}(R^{3})^{4} ,
where

(5.4) \mathrm{P}=\left(\begin{array}{l}
\mathrm{P}_{S}(\{$\lambda$_{0}\})I_{2}0\\
00
\end{array}\right)
if I\cap $\sigma$(S)=\{$\lambda$_{0}\} and \mathrm{P}=0 if  I\cap $\sigma$(S)= $\phi$ ,

where \mathrm{P}() denotes the spectral

projection of a self‐ adjoint operator A.

Remark. A similar result for a wide class of electromagnetic potentials has already
been proved in [11], in which f is replaced by

\left(\begin{array}{l}
I_{2}0\\
00
\end{array}\right)f.
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