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Schrodinger equations on scattering manifolds and
microlocal singularities

By

Kenichi ITo* and Shu NAKAMURA™**

8§1. Scattering theory on scattering manifold

We take a two-space approach to the scattering theory on a noncompact manifold
called scattering manifold. Let M be a noncompact manifold with cylindrical ends with
base manifold N;

M=MyUMy: My€M, My=(0,00)xN, ((0,1)x N < My).

In what follows we denote N = OM, since N gives the topological boundary of M at
infinity. We assume OM is a closed manifold. We put an asymptotically Euclidean
metric on M. Let (r,0) be local coordinates on My, = (0,00) x OM.

Definition 1.1.  The Riemannian manifold (M, ¢%) with M as above is called
scattering manifold if there exists a Riemannian metric ¢ on OM such that

m = g* — (dr® + r?g5.do7 do*)
satisfies for some p > 0

m =mO(r,0)dr® + rmj (r,0)(drd¢? + ddr) + r*m3(r,0)d6’ d6",
|8£89°‘ml(r, 0)| <rH I, (r,0) € (1,00) x OM, 1=0,1,2.

Set

M, =R x OM,
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and we develop the two-space scattering theory for
Hy = —0?
on He = L*(Mg, /Gadrdd), G = det (g?k), and
H=-Asg+V

on H = L*(M,\/Gy.dz), Gs. = det (95%), where Ay is the Laplace-Beltrami operator
on M. Note that Hy is not derived from any Riemannian structure on M. As in the
scattering theory on the Euclidean space, we have to put a short-range type assumption
on H. For the potential V' it would be natural to assume V € C*°(M;R) and

10905V (r,0)] < r~17F79  (subcoulomb).

This is exactly what the condition |09V (z)| < (z)~1#~lol 2 € R™ implies for the polar
coordinates on the Euclidean space. For the metric ¢°¢ it automatically follows from
the definition that the dual metric gsc on T*M is of the form

gl =0,20, + Tigg;?}k@m ® O
+ ap0r ® O, + %a{(ar ® Ops + O0pi ® Or) + %aékagj ® Ok
on 1™ M., with
(1.1) 0205 a;(r,0)] Sr#7, 1=0,1,2.
We assume that ¢°¢ is radially short-range in the sense that it satisfies, in addition,
(1.2) 10208 ag(r,0)| S r—tHd,

In contrast to the potential condition, this radially short-range condition is a little
weaker than the usual short-range condition on the Euclidean space that suggests
10305 a;(r,0)] < r~17#77 for | = 0,1,2. The reason why we can weaken the assumption
is that the conservation of angular momentum is available.

Define the smooth cutoff J: Hg — H by

[ i0r(@)[Go(0(2))/ Guc @)/ u(r(), 6(2)), if « € M.,
(Ju)(x) = {07 o

where j € C°°((0,00)) is chosen to satisfy j(r) = 1 for » > 2 and j(r) = 0 for r < 1.
Note that the factor [Ga(0(z))/Gse(2)]*/* makes J unitary on (2,00) x M.
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Theorem 1.2 ([3]).  Let (M, g°°) be a scattering manifold of radially short-range
type, and V' a smooth subcoulomb potential. Then the wave operators

Wy = s-lim e Je= e 1, o H
t—*to0 ’

exists, and they are partial isometries with initial spaces
Hie+ = {u € Hp; suppFru C RL x OM}, Ry ={peR; £p >0},

respectively, where Fg is the Fourier transform in the radial direction:

(Feeu)(p, 0) = /e_”pu(r, 0)dr.

Moreover, Wi are complete, i.e., RanWy = H,.(H). Hence the scattering operator
S = WiW_ is unitary as He,— — Her 4.

The proof of Theorem 1.2 is similar to the standard one on the Euclidean space
except for small modifications; The existence of the wave operator follows from the
Cook-Kuroda method; Apply the Mourre theory, using the conjugation operator

1/, 0 0 . . 1 0log Gy
A= g (irg + g +irg=5)
and we obtain the limiting absorption principle; Then the abstract stationary theory
ensures the completeness of the wave operators. In applying the abstract stationary
theory, we encounter a difficulty that comes from the Hp.-unboundedness of the operator
H, but it can be eluded by taking a smaller subspace than weighted L? space. We omit
the detail here.
The restrictions

Fire = Fielre o : Hiox — L*(Re, Ho,dp), Ho = L*(OM,\/Gadd), dp= ;l—fr
are unitary, and they give the spectral representations for Hy |y, |
(Fir,+ Huu)(p) = p*(Fiezu)(p),  u € D(Hi) N Mt
Thus, from the general theory, we have the S-matriz:
Theorem 1.3.  For a.e.p € Ry there exists a unitary operator, so-called S-
matriz,
S(p): Ho — Hg
satisfying

(Feet SFh_f)(p) = S(p)f(—=p), [ € L*(R_,Hp,dp).
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§ 2. Classical trajectories on scattering manifold

§2.1. Classical wave operators without potential term

Define the (inverse of the) classical wave operators of finite time by

wl,, = exp(—tHx, ) o Ji o exptHy

sc?

where K¢ and K. are the classical Hamiltonians:

Kfr(ra paeaw) = p27 Ky x €)= Z g 5351:;

k=1
for (r,p,0,w) € T* Mg and (z,€&) € T*M, respectively, and
Ja: T* Mg D T*((0,00) x OM) = T* Moo C T*M, J% = (Ja) ™.
Then the limits

2T M\,];C:I: — T Mfr\,]'fr:l:
exist and are diffeomorphisms, where

Toe.r = {(x,€) € T*M; {exptHg, (z,£); £t >0} € T*M},
Tiex = {(r,p,0,w) € T" Mg; £p < 0}.

We note that 7g. + and 7T + are closed sets.
Since the Hamiltonians are homogeneous of degree 2 in the fiber variable, we have,
A~! denoting the multiplication in fibers,

w:c,)\t(xag) = A" 1 sc t(x )‘5) A> 07

as long as they are well-defined. Thus we note that the classical wave operators coincide
with the high energy limit of the classical wave operators of finite time:

Wge, :I:(x 5) = lim A~ wsc t($,>\£), +t > 0.

A—00

In particular the wg. 1 is homogeneous in &, and the canonical relations

CSC,:I: = {(xaé-;h paeaw) € (T*M\IZ'SC,:I:) X (T*Mfr\,]}r,:i:); (T, p707w) = w:c,j:(xaé-)}7

are conic.
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§2.2. High energy limit of classical wave operators with sublinear
potentials

We consider

w; = exp(—tHg,) o Jy o exptH, = Y btV
7,k=1

here allowing the potential V' to grow sublinearly:
(2.1) 10108V (r, )] < rtmH,

Since V may grow at infinity in every direction, lim; 1., w; might not exist on any
subset of T* M except for the zero section 0. But the high energy limit exists:

Theorem 2.1.  Let (M, g°°) be a scattering manifold of radially short-range type,
and V a smooth sublinear potential. For any (xo,éo) € T*M \ e+ and £t > 0 the
following limits in the right-hand side converges in C'°°-topology, and the equalities hold:

(2'2) w:c’i(a'}o,fo) = ll}IjI:l AT wt (Cl?o,)\f )

Moreover, if £t > 0 is fived, then

sc,t 0

sc,=+
s Use,+, W )7

w:c,:i: = (TSC,:lUp ’w: = (Ttapt70t7wt)

satisfy locally in (x,£°/1€0|) € T*M \ Tee + and for large |€°]

[2 Z0 gO(Tsc +—1)| < C<50>_M_|ala
s, _ 0| <« C 0 1—,u—|o¢|,
(2.3) 10200 (p Pl < C(E)
| o gO( sc, £ 0t)| < C<50>_M_|ala
| o 50(wsc,:l: _wt)| < C<€0>1—u—|a|

From the estimates 2.3 it follows that the canonical relation

Ct = {(xvga Ta P> 9,6()) € (T*M \ ,ch,i) X (T*Mfl‘ \ %r,i); (7", p,@,w) - wr(%f)}
is not necessarily conic but asymptotically conic with asymptotes Csc + for £t > 0,
respectively.
§2.3. Classical wave operators at infinity

We study the asymptotics of the classical wave operator wse,+ (without potential
term) at spatial infinity, that is,

(2.4) lim A 'wl, . (Ar, p, 0, dw),

A—00
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where the multiplication A~! here acts on the (r,w)-variables. Since the scattering
metric approaches the underlying conic metric ¢** = dr? 4 2 g?kdej d6*, the limits (2.4)

would approach
w:n,:l: = tlgl:noo eXp(_tHKfr) o :1 o exp tHKcn, Cn il'} 5 Zg 6]5’6’7
respectively. Precisely,

Theorem 2.2.  Let (M, g°°) be a scattering manifold of radially short-range type.

For any
(ro,p°,00,0°) € Uy = {(r,p, 0,w) € T*Moo; 7> 0, w# 0},

the following limits in the right-hand side converge in C'°°-topology, and the equalities
hold:

wgn,i(rmpO?eO?w ) - h—{go)\ wsc i()\TOaP 907)‘(") )
Moreover, if one denotes

£ ,x _ £ ,+
w:n’j: — (Tcn,:bpcn ,ecn’:bwcn )7 w:c,:l: - (TSC,iapSC 7080,:l:7wsc )7

then, locally in (ro/|(ro,w®)|, p%, 0o, w®/|(ro,w?)|) € Uy,

|a1€¥oaf 37 wo(?“cn + —Tset)| < C’|(7~0,w0)|1—u—lal—lél’
106,00003, 08 (6% — %) < C (o, )71,
|3$33§ g, 36 (Ben,t — Ose.+)| < C|(ro,w)|~#lol=l0l,
05,030,000 (™ — W™ )| < C(ro, )| 11717

T0 p
hold for large |(rg,w?)|.
Note that w?, , is explicitly computed and is a diffeomorphism as

Uy = {(Tvpaeaw) € T*Moo, > 0, w ;é O}
— Uz ={(r,p,0,w) € T"My; £p >0, w# 0}

We define the classical scattering operators analogously to the scattering operator S =
WiIW_ by

) _ —1
Sgec = w:C,—l— 0 Wse,—: T*" My \ Ty, — T My, \ Tte 4, Wse,— = (w:c,—) )

. i _ * —1
Sen = Wep, 4 © Wen,— - Z/{fr,— - ufr,-l—: Wen,— = (wcn»_) ’
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Since we have the explicit formula:

n—1
Scn(ra p,@,w) = (_Ta =P expwH\/K—a(H,w)), Ka(@,w) = Z g(]'ik(e)ijk7
jk=1

the canonical relation

A

DCH = {(pv 7",9,&); p/7 Tla 0l7w/) € (T*Mfl",-i- \ O) X (T*Mfl",— \0)7
(Tv p,@,w) - Scn(rlaplv elvw/)a w 7é 07 W’ 75 0}7

where Mfr’i = {+p >0} x OM, is (r,w)-conic. Theorem 2.2 implies that the canonical
relation

A

Dee = {(p,,0,w; 0,7, 0, ') € (T* Mg 4 \ 0) x (T* Mg, \ 0);
(r,p,0,w) = ssc(r', 0,0, 0", w#0, W' #0},

A

is asymptotically (7, w)-conic with asymptote Dy,.

8§3. Microlocal structure of the wave operators

In this and the following section we state the theorems concerning the microlocal
structure of the wave operators and the S-matrix. The wave front set of v € S'(R") is
characterized as follows: Let (zo,£&%) € T*R™\ 0 = R™ x (R™\ {0}). Then (z0,£°) ¢
WF (u) is equivalent to that for some a € C§°(T*R") we have

a(x, %) #£0,  ||a¥(x,hDy)ul|r2 = O(h*™)(= O(hY) for any N > 0) as h | 0,

where

@ hDule) = o [ @ 5T Ju(w) dyde.

Hence the wave front set is the set of directions in the phase space T*R"™ in which the
function u is decaying rapidly. Note that u is a function of only x, but the fact that
the wave front set is well-defined means that we may consider u as a function of x and
¢ modulo small errors for large |£|. The wave front set for a function on a manifold is
characterized similarly by using the local coordinates.

We let I)'(M, N;C) be the set of Fourier integral operators from functions on N

to those on M that have amplitudes in S7* = and a canonical relation C. Note

m

p,l—p
that, in general, Fourier integral operators move the wave front set around according
to the associated canonical relations: If A is a Fourier integral operator and C is the

associated canonical relation, then we have

WF (Au) C C o WF (u) = {(2,€); Iy, n) st (z,£,9,n) €C}
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Theorem 3.1 ([5], cf. [4]).  Suppose (M, g¢) is a scattering manifold of radially
short-range type, and V is a smooth sublinear potential, and let y be as in (1.1), (1.2)
and (2.1). Then for u € Hgy and £t >0

(3.1) WF (Wiu) \ To,x = (wie 1) [WF (u) \ Ty 2],
respectively. In addition, if g° is nontrapping, that is, Tsc + = Tse,— = 0, then the wave
operator Wy of finite time 4+t > 0 belongs to IY(M, Mg;Cy) N IS(M, My Coce,+) with
Co ={(z,&r,p,0,w) € (T*"M\0) x (T*"Mg \0); (r,p,0,w) =wj(x,§)},
CSC,:I: = {(x7£;ra P 9,&)) € (T*M \ 0) X (T*Mfr \ 0)7 (T, P 9,&)) = w:c,j:(xag)}7

Remarks. 1. Theorem 3.1 is an analogue of the result by Hassell-Wunsch [1],
and would actually be a refinement.
2. Since W, is classically described by w; = (w})™!, it should be natural to use the
canonical relation C; to conclude Wy € I (M, My;C;). However, C; is just asymptotically
conic. If we are forced to use the exactly conic canonical relations Cyc +, which are the
asymptotes of C;, then the amplitudes get worse and we have W; € Ig(M s My Coe 1)
for +t > 0, respectively.
3. If the potential V' is subconstant, i.e.,

0105V (r,0)] < Cjar ™77,
then we have W; € I (M, My; Cy) N I) (M, Myy; Coe +) N IP (M, Myy; Cye ), where
Coet = {(z,&5m,p,0,w) € (T"M \ 0) X (T7 My \ 0); (1, p,0,w) = we. 4(x,§)}-

4. Even if ¢°¢ is not nontrapping, W; composed with a microlocal cut off of the trapping
region would belong to IY(M, Mg;C;) N Ig(M, M5 Coc 1)

Combining Theorem 3.1 with the microlocal smoothing property of the Schrodinger
propagator, we can restate the former part of Theorem 3.1 as follows:

Corollary 3.2 ([2]). If ¢°° is radially short-range and V is sublinear, then for
any (20,&%) € T*M \ Tee, 5, £t >0 and u € H

(z0,£%) € WF (e y) «— w:c,:,:(ilﬁo,fo) e WF (e~ Jxy),
respectively.
WF (e~ #Ht J*4) can be computed explicitly from u by using
|a™ (r, hD,, 0, hDg)e™ "t J*ul|. = ||a™ (r 4 2tD,, hD,., 0, hDg)J*u|n,, ,

and hence, Corollary 3.2 gives a characterization of WF (e~#v) in terms of the initial

data wu.
Theorem 3.1 holds also for ¢ = Z00.
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Theorem 3.3 ([5], cf. [4]).  Suppose (M, g°¢) is a scattering manifold of radially
short-range type and V is a smooth subcoulomb potential, and let uw € Hg.. Then

(3.2) WF (Weu) \ Tt = (Wi +) T [WF (u) \ Trr, 2],

respectively. In addition, if ¢g°¢ is nontrapping, then the wave operators W belong to
I9(M, Myy; Cse + ), Tespectively.

§4. Microlocal structure of the scattering matrix

The S-matrix § (p) is obtained by restricting the scattering operator to the fixed
energy p?. (Such a restriction is possible since we have the conservation of energy.)
Fixing p, we lose freedom in the radial direction, and we can say that the S-matrix is
the scattering operator S at infinity. Thus, instead of studying the wave front set of the
S-matrix directly, we study the scattering wave front set of the scattering operator:

Definition 4.1. Let u € 8'(Mg) be a tempered distribution. The scattering
wave front set WFge g (u) C T*Mg is the complement of the set of (ro, p°,0g,w°) €
T* My, satisfying for some a € C§°(T™* My,)

(4.1) a(rg, p°, 00,w?) # 0, \la¥ (hr, Dy, 0, hDg)u||3,, = O(R™) ash | 0.
Let x € C§°(R) be equal 1 near the origin and set
(4.2) n(r,0,w) = [1— X(r_Qgék(G)ijk)] [1—x(r*+ g%k(e)ijk)}.

The first factor in the right-hand side equals 0 or 1 for g%k(e)ijk <cr?or ggk (O)wjwy >
Cr?, respectively, while the second kills the singularity of the first near (r,w) = 0. Hence
(4.2) is a cutoff function of an (r,w)-conic neighborhood of T My, \ Uy +.

Theorem 4.2 ([6], cf. [4]).  Suppose (M, g*¢) is a scattering manifold of radially
short-range type and V is a smooth subcoulomb potential. Let S = WiW_ be the
scattering operator, and S¢n, = w;‘n’ 4 O Wen,—: U, — Upe  be the classical scattering
operator with respect to the underlying conic structure. Then, for any u € Hy,,

(4.3) WFSC,fr(Su) ﬂZ/{fr,_F = SCH(WFSC,fr(u) ﬂZ/[fr,_).
Moreover, set
S = FeeSFE: ﬂfr,_ — ﬂfr’_i_, Ssc = Wie 4 © Wse,—, Mfr’i ={£p >0} x OM.

Then, for any microlocal cutoff function n € COO(T*Mfr) given by (4.2), the operator
(composed with restrictions)

Son“(D,,0,Dy): CF (Mg ) — C°° (M, )
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belongs to I?(]\;Ifr#, Mg ;Dye) N IS(Mfr’+, Mg, ; Dew) with
= {(p,7,0,w;p 1", 0", ") € (T* Mgy 4 \ 0) x (T* Mg, \ 0);

T, p79 LU) _SSC(T p 9/ )7 w#oa w/?éO},
p.r, 0w p 1 0 W) € (T* Mgy \ 0) X (T* Mg\ 0);
T, pa ) ) Scn(r7p79/aw/)7 w7£07 w/;éO}

Remark.  As in Theorem 3.1, the canonical relation Dy, is just asymptotically

(e,
(
= {(
(

conic, and, if we replace it with the exactly conic asymptote Den, then the class of the
amplitude gets worse. If g€ is short-range in the sense that

(4.4) 10205 ay(r,0)| < Cjor t7F 1 1=0,1,2,
then we obtain S o n“(D,,0,Dy) € I9(Mpy o, My ; Dey).
Corollary 4.3.  The S-matriz S(p) belongs to IS(Mfr’+, Mfr’_;lDa) with
Dy ={(0,w;0',u") € (T*OM \ 0) x (T*OM \ 0); (0,w) =expmH ,z(0',")}
fora.e.peR,.

Remarks. 1. Using the Legendrian distributions, Melrose-Zworski [7] proved
the above corollary.
2. If g° is short-range in the sense of (4.4), then S(p) € IV (Mg 1, Mie—; D).
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