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asymptotic Teichmüller spaces
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Abstract

We consider the actions of Teichmüller modular groups on infinite dimensional Teichmüller

spaces. In particular, we focus our attention on elliptic Teichmüller modular transformations

which have fixed points in the Teichmüller space, and observe periodicity and discreteness of the

orbits. We also consider the actions of asymptotic Teichmüller modular groups on asymptotic
Teichmüller spaces, and investigate elliptic elements which have fixed points in the asymptotic
Teichmüller space.

§1. Introduction

The Teichmüller space is a deformation space of the complex structure of a Rie‐

mann surface. The quasiconformal mapping class group acts on the Teichmüller space

biholomorphically, which induces the Teichmüller modular group. If a Riemann surface

is analytically finite, then the Teichmüller space is finite‐dimensional and the action of

the Teichmüller modular group is well investigated. Indeed, the action is always properly
discontinuous and a topological classification of the quasiconformal mapping classes by
Thurston completely corresponds to an analytic classification of the Teichmüller mod‐

ular transformations by Bers. On the other hand, for an analytically infinite Riemann

surface, the Teichmüller space is infinite‐dimensional and the orbits in the Teichmüller

space under the actions of Teichmüller modular transformations are complicated and

could have accumulation points. Thus it is difficult to classify all those elements. We

focus our attention on elliptic Teichmüller modular transformations which have fixed

points in the Teichmüller space. In the first half of this paper, we review recent results
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on elliptic Teichmüller modular transformations. In particular, we give a condition

for an elliptic Teichmüller modular transformation to be of finite order. Moreover, we

classify quasiconformal mapping classes by their orbits in the Teichmüller space, and

explain that a quasiconformal mapping class that is of bounded type induces an elliptic
Teichmüller modular transformation.

The asymptotic Teichmüller space is a certain quotient space of the Teichmüller

space. The quasiconformal mapping class group also acts on the asymptotic Teichmüller

space biholomorphically, which induces the asymptotic Teichmüller modular group. We

consider elliptic elements of the asymptotic Teichmüller modular group which have fixed

points in the asymptotic Teichmüller space. Note that a non‐trivial quasiconformal

mapping class can induce a trivial asymptotic Teichmüller modular transformation.

Moreover there is an elliptic element of the asymptotic Teichmüller modular group that

is not induced by an elliptic Teichmüller modular transformation. In the second half

of this paper, we observe properties of elliptic elements of the asymptotic Teichmüller

modular group on the basis of properties of elliptic Teichmüller modular transformations

on the Teichmüller space, and propose several problems.

§2. Action of Teichmüller modular groups on Teichmüller spaces

In this section, we consider the action of the Teichmüller modular group on the

Teichmüller space, which is induced by the quasiconformal mapping class group of a

Riemann surface.

§2.1. Teichmüller spaces and Teichmüller modular groups

Throughout this paper, we assume that a Riemann surface R admits a hyperbolic
structure. Furthermore, we also assume that R has a non‐abelian fundamental group.

Let d denote the hyperbolic distance on a Riemann surface R and let \ell(c) denote the

hyperbolic length of a curve c on R . For a non‐trivial and non‐cuspidal simple closed

curve c on R ,
let c_{*} be the unique simple closed geodesic that is freely homotopic to c.

The Te ichmüller space T(R) of R is the set of all equivalence classes [f] of qua‐

siconformal homeomorphisms f of R . Here we say that two quasiconformal homeo‐

morphisms f_{1} and f_{2} of R are equivalent if there exists a conformal homeomorphism

h:f_{1}(R)\rightarrow f(R) such that f_{2}^{-1}\circ h\circ f_{1} is homotopic to the identity. The homotopy
is considered to be relative to the ideal boundary at infinity. A distance between two

points [f] and [f] in T(R) is defined by d_{T}([f_{1}], [f_{2}])=(1/2)\log K(f) ,
where f is an

extremal quasiconformal homeomorphism in the sense that its maximal dilatation K(f)
is minimal in the homotopy class of f_{2}\circ f_{1}^{-1} . Then d_{T} is a complete distance on T(R)
which is called the Teichmüller distance. The Teichmüller space T(R) can be embedded
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in the complex Banach space of all bounded holomorphic quadratic differentials on R',
where R' is the complex conjugate of R . In this way, T(R) is endowed with the complex
structure. For details, see [26] and [34].

A quasiconfO rmal mapping class is the homotopy equivalence class [g] of quasicon‐
formal automorphisms g of a Riemann surface, and the quasiconfO rmal mapping class

group \mathrm{M}\mathrm{C}\mathrm{G}(R) of R is the group of all quasiconformal mapping classes of R . Here

the homotopy is again considered to be relative to the ideal boundary at infinity. Ev‐

ery element [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) induces a biholomorphic automorphism [g]_{*} of T(R) by

[f]\mapsto[f\circ g^{-1}] ,
which is also isometric with respect to the Teichmüller distance. Let

Aut (T(R)) be the group of all biholomorphic automorphisms of T(R) . Then we have a

homomorphism

$\iota$_{T}:\mathrm{M}\mathrm{C}\mathrm{G}(R)\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(T(R))

given by [g]\mapsto[g]_{*} ,
and we define the Teichmüller modular group of R by

Mod (R)=$\iota$_{T}(\mathrm{M}\mathrm{C}\mathrm{G}(R)) .

We call an element of Mod (R) a Teichmüller modular transfO rmation. It is proved in

[4] that the homomorphism $\iota$_{T} is injective (faithful) for all Riemann surfaces R of non‐

exceptional type. See also [8] and [29] for other proofs. Here we say that a Riemann

surface R is of exceptional type if R has finite hyperbolic area and satisfies 2g+n\leq 4,
where g is the genus of R and n is the number of punctures of R . The homomorphism

$\iota$_{T} is also surjective for every Riemann surface R of non‐exceptional type. In this case,

Mod (R)=\mathrm{A}\mathrm{u}\mathrm{t}(T(R)) . The proof is a combination of the results of [3] and [27]. See

[13] for a survey of the proof.
We define a condition on hyperbolic geometry of Riemann surfaces.

Definition 2.1. We say that a Riemann surface R satisfies the bounded geometry
condition if R satisfies the following two conditions:

(i) (m‐) lower bound condition: there exists a constant m>0 such that, for every point
x\in R^{\mathrm{o}} , every homotopically non‐trivial curve that starts from x and terminates at

x has hyperbolic length greater than or equal to m . Here R^{\mathrm{o}} is the non‐cuspidal

part of R obtained by removing all horocyclic cusp neighborhoods whose areas are

1:

(ii) (M‐) upper bound condition: there exists a constant M>0 such that, for every

point x\in R ,
there exists a homotopically non‐trivial simple closed curve that starts

from x and terminates at x and whose hyperbolic length is less than or equal to M.

If R satisfies the lower bound condition for a constant m and the upper bound condition

for a constant M
,

we say that R satisfies (m, M) ‐bounded geometry condition.
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Every normal cover of a compact Riemann surface that is not the universal cover

satisfies the bounded geometry condition. See [9, Proposition 3]. Moreover, if a Riemann

surface R admits such pants decomposition that the diameter of each pair of pants is

uniformly bounded, then R satisfies the bounded geometry condition. However, we note

that a Riemann surface that admits a uniform pants decomposition does not necessarily

satisfy the bounded geometry condition. See [15, Proposition 2.6].

§2.2. Elliptic elements of Teichmüller modular groups

2.2.1. Analytically finite Riemann surfaces First we give an analytic classifica‐

tion of the Teichmüller modular transformations for general Riemann surfaces.

Definition 2.2. We say that a Teichmüller modular transformation of Mod (R)
is elliptic if it has a fixed point in the Teichmüller space T(R) .

Moreover, we say that a Teichmüller modular transformation [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is

parabolic if \displaystyle \inf_{p\in T(R)}d_{T}([g]_{*}(p), p)=0 but if [g]_{*} has no fixed point in T(R) ,
and

[g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is hyperbolic if \displaystyle \inf_{p\in T(R)}d_{T}([g]_{*}(p), p)>0 . See [1]. There is also a

topological classification of the quasiconformal mapping classes due to Thurston such

as periodic, reducible and pseudo‐Anosov.
We focus our attention on elliptic Teichmüller modular transformations. Every

elliptic Teichmüller modular transformation [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is realized as a conformal

automorphism of the Riemann surface f(R) corresponding to its fixed point  p=[f]\in
 T(R) ,

that is f ogo f^{-1} is homotopic to a conformal automorphism of f(R) relative to

the ideal boundary at infinity. Such a mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is called a conformal

mapping class.

Now we assume that a Riemann surface R is analytically finite. It is known that

a Teichmüller modular transformation [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is elliptic if and only if [g]\in
\mathrm{M}\mathrm{C}\mathrm{G}(R) is periodic. The sufficiency follows from the fact that the order of a conformal

automorphism of an analytically finite Riemann surface R is finite. In fact, if R is a

compact Riemann surface of genus g\geq 2 ,
then the order of a conformal automorphism

of R is not greater than 2(2g+1) . See [24]. The necessity is a consequence of the

theorem due to Nielsen. In fact, Kerckhoff [25] extended his result to the statement

that every finite subgroup of Mod (R) has a common fixed point in T(R) ,
which is the

answer to the Nielsen realization problem. Note that, since the homomorphism $\iota$_{T} is

bijective, [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is periodic if and only if [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is of finite order.

We also know that parabolic and hyperbolic Teichmüller modular transformations

are induced by reducible and pseudo‐Anosov mapping classes, respectively.
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2.2.2. Analytically infinite Riemann surfaces We consider the case where a

Riemann surface is analytically infinite. Then the variety of Teichmüller modular trans‐

formations become vast and the behavior of the orbit becomes complicated. First of

all, there exists an elliptic Teichmüller modular transformation of infinite order, which

is induced by a conformal automorphism of a Riemann surface of infinite order. Thus

the periodicity of the orbit in the Teichmüller space does not necessarily imply the

periodicity of a quasiconformal mapping class.

The following proposition gives a necessary and sufficient condition for an elliptic
Teichmüller modular transformation to be of finite order.

Proposition 2.3 ([10]). A conformal automorphism of a Riemann surfa ce R is

of finite order if and only if it fixes either a simple closed geodesic, a puncture, or a

point on R.

Sketch of proof. First we suppose that a conformal automorphism g fixes either

a simple closed geodesic, a puncture, or a point on R . Since the group of conformal

automorphisms of R acts properly discontinuously on R (see [38]), we conclude that g

is of finite order.

Conversely, suppose that a conformal automorphism g of R has a finite order n.

Let  R=\mathbb{H}/ $\Gamma$ for a Fuchsian group  $\Gamma$ . We take a lift \tilde{g} of g to \mathbb{H} which is an element

of PSL() . Then \tilde{g}^{n} belongs to  $\Gamma$ and \tilde{g}^{m}(1\leq m<n) does not belong to  $\Gamma$ . If \tilde{g}^{n} is

parabolic, then \tilde{g} is parabolic. Hence g fixes a puncture of R . If \tilde{g}^{n} is the identity, then

\tilde{g} is elliptic with a fixed point p\in \mathbb{H} . Hence g fixes the point on R that is the projection
of p . Moreover, if \tilde{g}^{n} is hyperbolic, then \tilde{g} is hyperbolic. Hence g fixes a closed geodesic
on R . In this case, we see that g fixes either a simple closed geodesic, a puncture or a

point on R. \square 

In each case in Proposition 2.3, we have an estimate of the order of g concretely

by the injectivity radius. The injectivity radius at a point p\in R is the supremum of

radii of embedded hyperbolic discs centered at p . For a compact Riemann surface R of

genus g\geq 2 ,
the hyperbolic area of R is 4 $\pi$(g-1) . Thus the injectivity radius at any

point in R is not greater than a constant depending only on g . Since the order of a

conformal automorphism is not greater than 2(2g+1) ,
this means that the order of a

conformal automorphism is estimated by the injectivity radius. We extend this result

to conformal automorphisms of general Riemann surfaces. It is clear that if a Riemann

surface R satisfies the M‐upper bound condition, then the injectivity radius at every

point in R is less than or equal to M/2.

Proposition 2.4 ([10]). Let R be a Riemann surfa ce satisfy ing M ‐upper bound

condition, g a conformal automorphism of R ,
and n the order of g. (i) If g(c)=c for a

simple closed geodesic c on R whose hyperbolic length is \ell
,

then  n\leq(e^{M}-1)\cosh(P/2) .
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(ii) If g(p)=p for a puncture p of R ,
then n\leq e^{M}-1 . (iii) If g(p)=p for a point p

in R at which the injectivity radius is M>0 ,
then n<2 $\pi$\cosh M.

Sketch of proof. We prove only statement (i). We consider the quotient surface

\hat{R}=R/\langle g\rangle by the cyclic group \langle g\rangle . Then \hat{c}=c/\langle g\rangle is a simple closed geodesic on

\hat{R} whose hyperbolic length is \ell/n . By the collar lemma (see [2]), we take a collar

\{\hat{x}\in\hat{R}|d(\hat{c},\hat{x})< $\omega$(\ell/n)\} of \hat{c}
,

where \sinh $\omega$(\ell/n)=(2\sinh(P/(2n)))^{-1} . Then we can

take a tubular neighborhood C(c)=\{x\in R|d(c, x)< $\omega$(\ell/n)\} of c.

Let \partial C(c) be the boundary of C(c) . We may assume that d(c, \partial C(c))= $\omega$(\ell/n)>
M/2 . Indeed, if d(c, \partial C(c))= $\omega$(\ell/n)\leq M/2 ,

then this inequality easily yields the

conclusion. We take a point p\in C(c) satisfying d(p, \partial C(c))=M/2 . By M‐upper

bound condition, the hyperbolic length \ell( $\alpha$) of the shortest non‐trivial simple closed

curve  $\alpha$ that starts from  p and terminates at p is less than or equal to M . Since

d(p, \partial C(c))=M/2 ,
the curve  $\alpha$ is in  C(c) . By calculations on hyperbolic geometry, we

see that

\displaystyle \sinh(P( $\alpha$)/2)\geq\frac{n}{2e^{M/2}\cosh(l/2)}.
Since \ell( $\alpha$)\leq M ,

this implies that

n\leq 2e^{M/2}\sinh(M/2)\cosh(P/2)=(e^{M}-1)\cosh(P/2) ,

and we have the desired estimate. \square 

We mention an extension of Proposition 2.4 to a quasiconformal automorphism f.
In this case, the Teichmüller modular transformation [f]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) induced by f need

not have a fixed point in T(R) . However, if the maximal dilatation of f is smaller than

some constant, then [f]_{*} is of finite order.

Proposition 2.5 ([11]). Let R be a Riemann surfa ce satisfy ing (m, M) ‐bounded

geometry condition. Then, for a given constant \ell>0 ,
there exists a constant K_{0}=

K_{0}(m, M, \ell)\geq 1 depending only on m, M and \ell that satisfies the following: Let  g be a

quasiconfO rmal automorphism of R such that g(c) is freely homotopic to cfor a simple
closed geodesic c on R with \ell(c)\leq\ell . Suppose that  K(g)\leq K_{0} . Then [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is

periodic, and the order of [g] depends only on M and \ell.

§2.3. Classification of orbits in Teichmüller spaces

We observe the orbit in the Teichmüller space under the action of an elliptic Teich‐

müller modular transformation of infinite order.
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2.3.1. Bounded and divergent type We classify quasiconformal mapping classes

according to orbits in the Teichmüller space.

Definition 2.6. We say that a quasiconformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is

of bounded type if the orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} of each point p\in T(R) is bounded.

Note that, for an analytically finite Riemann surface R ,
a quasiconformal mapping

class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is of bounded type if and only if the Teichmüller modular transfor‐

mation [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is elliptic. Indeed, T(R) is locally compact and Mod (R) acts on

T(R) discontinuously. Thus a quasiconformal mapping class [g] is bounded type if and

only if the orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is a finite set for each point p\in T(R) . This is equivalent
to saying that [g] is periodic, namely it is elliptic as we have seen in Section 2.2.1.

Also for an analytically infinite Riemann surface, we have the following character‐

ization of elliptic Teichmüller modular transformations.

Theorem 2.7. Let R be a Riemann surfa ce in general. A quasiconfO rmal map‐

ping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is of bounded type if and only if the Teichmüller modular

transfO rmation [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is elliptic. In particular, if [g] is periodic, then [g]_{*} is

elliptic.

This is an extension of the Nielsen realization theorem to analytically infinite Rie‐

mann surfaces. The proof is based on quasisymmetric conjugacy of a uniformly qua‐

sisymmetric group as follows. Let \mathrm{D}\rightarrow R be the universal cover of a Riemann surface

R and let H be the corresponding Fuchsian group acting on the unit disk model \mathrm{D}

of the hyperbolic plane. Let G be a subgroup of Mod (R) and assume that the orbit

G(p) is bounded for every p\in T(R) . We lift a quasiconformal automorphism g of R

representing each [g]_{*}\in G to \mathrm{D} as a quasiconformal automorphism and extend it to

a quasisymmetric automorphism of the boundary \partial \mathrm{D} . In this way, we have a group

H_{*} of quasisymmetric automorphisms that contains the Fuchsian group H as a normal

subgroup. Since the orbit G(p) is bounded, we see that there exists a uniform bound

for the quasisymmetric constants of all elements of H_{*} , namely H_{*} is a quasisymmetric

group. Then Theorem 2.7 is a consequence of the following proposition.

Proposition 2.8 ([28]). For a quasisymmetric group H_{*} acting on the unit cir‐

cle \partial \mathrm{D} , there exists a quasisymmetric automorphism f of \partial \mathrm{D} such that fH_{*}f^{-1} is the

restriction of a Fuchsian group.

We note a remarkable property on the orbit under an elliptic Teichmüller modular

transformation.

Theorem 2.9 ([31]). For every elliptic Te ichmüller modular transfO rmation [g]_{*}
of Mod (R) of infinite order, there exists a point p\in T(R) whose orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is

not a discrete set.



8 E. Fujikawa

Remark. In [21, Example 5], we constructed a point p\in T(R) concretely whose

orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is not discrete for a Riemann surface R that is a normal cover of a

compact Riemann surface of genus 2 with a covering transformation group generated

by a conformal automorphism g of R of infinite order. See also Proposition 3.10 in this

paper.

We define another property of quasiconformal mapping classes.

Definition 2.10. We say that a quasiconformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is

of divergent type if the orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} of each point p\in T(R) diverges to the point
at infinity of T(R) as n\rightarrow\pm\infty.

For an analytically finite Riemann surface R ,
a quasiconformal mapping class

[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is of divergent type if and only if the Teichmüller modular transfor‐

mation [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is either of hyperbolic type or of parabolic type. However, it

was pointed out in [31] that there is an analytically infinite Riemann surface R and

a quasiconformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) of non‐divergent type such that [g]_{*}
is non‐elliptic. Moreover, a sufficient condition for a non‐elliptic Teichmüller modular

transformation to be induced by a quasiconformal mapping class of divergent type was

given.

Definition 2.11. We say that a quasiconformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)
is stationary if there exists a compact subsurface W of R such that  g_{n}(W)\cap W\neq\emptyset for

every representative  g_{n} of [g] and for every n\in \mathbb{Z}.

The stationary property is a generalization of the property that the quasiconformal

mapping class group \mathrm{M}\mathrm{C}\mathrm{G}(R) of an analytically finite Riemann surface R has.

Theorem 2.12 ([31]). Let [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) be a stationary quasiconfO rmal map‐

ping class. If it is not of divergent type, then [g]_{*} is of finite order.

By combining Theorems 2.7 and 2.12, we immediately have the following.

Corollary 2.13. Let [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) be a stationary quasiconfO rmal mapping
class. If it is not of divergent type, then [g]_{*} is elliptic.

2.3.2. Pure and essentially trivial mapping classes We define pure mapping
classes and essentially trivial mapping classes and see that they are stationary.

Let R^{*} be the compactification of a Riemann surface R by topological ends. For

the definition of topological ends, see [36, Chapter IV, 5\mathrm{D} ]. Every homeomorphic auto‐

morphism of R extends to R^{*} and moreover every mapping class determines a map on

the ends R^{*}-R . We say that a quasiconformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is pure
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if g fixes all non‐cuspidal ends of R . We know that [g] is pure if and only if, for all

dividing simple closed oriented curves c on \dot{R} , the image g(c) is homologous to c in \dot{R}.
Here \dot{R} is the Riemann surface obtained by filling all the punctures of R . See [14].

Proposition 2.14 ([14]). Let R be a Riemann surfa ce having more than two

non‐cuspidal ends. Then every pure mapping class of \mathrm{M}\mathrm{C}\mathrm{G}(R) is stationary.

Proof. Since a Riemann surface R has more than two non‐cuspidal ends, there

exists a pair of pants Y in R with geodesic boundary such that R-Y has three connected

components and that each of the connected components has a distinct non‐cuspidal end

of R . Since g fixes all non‐cuspidal ends, g^{n} also fixes all non‐cuspidal ends for all n.

Then  g^{n}(Y)\cap Y\neq\emptyset for all  n. \square 

In Proposition 2.3, we have given a condition for an elliptic Teichmüller modular

transformation to be of finite order. By using the two results above, we have another

condition.

Theorem 2.15 ([18]). Let R be a Riemann surfa ce having more than two non‐

cuspidal ends, and [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) a pure conformal mapping class. Then [g] is of finite
order.

Proof. Since the mapping class [g] is pure, it is stationary by Proposition 2.14.

Since [g] is a conformal mapping class, the Teichmüller modular transformation [g]_{*}\in
\mathrm{M}\mathrm{o}\mathrm{d}(R) is elliptic and thus it is not of divergent type. Hence by Theorem 2.12, it is of

finite order. \square 

In Theorem 2.15, we cannot replace the conclusion with the statement that [g] is

the identity. On the other hand, for an essentially trivial mapping class defined below,
we have a strong conclusion.

Definition 2.16. A quasiconformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is said to be

essentially trivial if there exists a topologically finite geodesic subsurface V_{g} of R such

that, for each connected component W of R—Vg, the restriction g|_{W} : W\rightarrow R is

homotopic to the inclusion map \mathrm{i}\mathrm{d}|_{W} : W\mapsto R relative to the ideal boundary at

infinity.

It is clear that every essentially trivial mapping class is pure.

Proposition 2.17 ([18]). Let R be an analytically infinite Riemann surfa ce.

Then every essentially trivial conformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is the identity.

Proof. Since [g] is essentially trivial, there exists a topologically finite geodesic
subsurface V_{g} of R such that, for each connected component W of R‐Vg, the restriction
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g|_{W} : W\rightarrow R is homotopic to the inclusion map \mathrm{i}\mathrm{d}|_{W} : W\mapsto R relative to the ideal

boundary at infinity. We take such a connected component W that is not relatively

compact. If W is doubly connected, then the statement is easily proved. Thus we may

assume that W is not doubly connected. Let  $\Gamma$ be a Fuchsian group such that  R=\mathbb{H}/ $\Gamma$,
and let \tilde{g} be a lift of g to \mathbb{H} . Let $\Gamma$_{W} be a subgroup of  $\Gamma$ such that it corresponds to

 W . Then we may assume that \tilde{g} is the identity on the limit set  $\Lambda$($\Gamma$_{W}) of the Fuchsian

group $\Gamma$_{W} . Since  $\Lambda$($\Gamma$_{W}) contains more than two points and \tilde{g} is conformal, we conclude

that \tilde{g} is the identity. Thus we have the assertion. \square 

§3. Action of asymptotic Teichmüller modular groups on asymptotic
Teichmüller spaces

In this section, we consider the action of asymptotic Teichmüller modular groups

on asymptotic Teichmüller spaces. First, we investigate conditions for quasiconformal

mapping classes to induce non‐trivial actions on asymptotic Teichmüller spaces. Then

we see that non‐trivial conformal mapping classes act on the asymptotic Teichmüller

space non‐trivially. Furthermore, we consider elliptic elements of the asymptotic Teich‐

müller modular group and observe discreteness of the orbits of elliptic elements. Finally,
we give a necessary and sufficient condition for elliptic elements to be of finite order.

§3.1. Asymptotic Teichmüller spaces and asymptotic Teichmüller

modular groups

The asymptotic Teichmüller space has been introduced in [23] for the hyperbolic

plane and in [5] and [6] for an arbitrary Riemann surface. We say that a quasiconformal

homeomorphism f of R is asymptotically conformal if, for every  $\dagger$>0 ,
there exists a

compact subset V of R such that the maximal dilatation K(f|_{R-V}) of the restriction

of f to R-V is less than 1 + $\dagger$ . We say that two quasiconformal homeomorphisms  f_{1}
and f_{2} of R are asymptotically equivalent if there exists an asymptotically conformal

homeomorphism h : f_{1}(R)\rightarrow f(R) such that f_{2}^{-1}\circ h\circ f_{1} is homotopic to the identity on

R relative to the ideal boundary at infinity. The asymptotic Teichmüller space AT (R)
of R is the set of all asymptotic equivalence classes [[f]] of quasiconformal homeomor‐

phisms f of R . The asymptotic Teichmüller space AT (R) is of interest only when R is

analytically infinite. Otherwise AT (R) is trivial, that is, it consists of just one point.

Conversely, if R is analytically infinite, then AT (R) is not trivial. Since a conformal

homeomorphism is asymptotically conformal, there is a projection  $\pi$ :  T(R)\rightarrow AT(R)
that maps each Teichmüller equivalence class [f]\in T(R) to the asymptotic Teichmül‐

ler equivalence class [[f]]\in AT(R) . The asymptotic Teichmüller space AT (R) has a

complex structure such that  $\pi$ is holomorphic. See also [7] and [22].
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For a quasiconformal homeomorphism  f of R ,
the boundary dilatation of f is

defined by H^{*}(f)=\displaystyle \inf K(f|_{R-V}) ,
where the infimum is taken over all compact subsets

V of R . Furthermore, for a Teichmüller equivalence class [f]\in T(R) ,
the boundary

dilatation of [f] is defined by H([f])=\displaystyle \inf H^{*}(f') ,
where the infimum is taken over

all elements f'\in[f] . A distance between two points [[f]] and [[f]] in AT (R) is

defined by d_{AT}([[f_{1}]], [[f_{2}]])=(1/2)\log H([f_{2}\circ f_{1}^{-1}]) ,
where [f_{2}\circ f_{1}^{-1}] is the Teichmüller

equivalence class of f_{2}\circ f_{1}^{-1} in T(f_{1}(R)) . Then d_{AT} is a complete distance on AT (R) ,

which is called the asymptotic Teichmüller distance. For every point [[f]]\in AT(R) ,

there exists an asymptotically extremal element f_{0}\in[[f]] satisfying H([f])=H^{*}(f_{0}) .

Every element [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) induces a biholomorphic automorphism [g]_{**} of

AT (R) by [[f]]\mapsto[[f\circ g^{-1}]] ,
which is also isometric with respect to d_{AT} . See [6].

Let Aut(AT (R)) be the group of all biholomorphic automorphisms of AT (R) . Then we

have a homomorphism

$\iota$_{AT}:\mathrm{M}\mathrm{C}\mathrm{G}(R)\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(AT(R))

given by [g]\mapsto[g]_{**} ,
and we define the asymptotic Te ichmüller modular group for R

(the geometric automorphism group of AT (R)) by

\mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R)=$\iota$_{AT}(\mathrm{M}\mathrm{C}\mathrm{G}(R)) .

We call an element of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) an asymptotic Teichmüller modular transformation.

It is different from the case of the representation $\iota$_{T} : MCG (R)\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(T(R)) that the

homomorphism $\iota$_{AT} is not injective, namely \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT}\neq\{[\mathrm{i}\mathrm{d}]\} unless R is either the unit

disc or the once‐punctured disc (see [4]). We call an element of \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT} asymptotically
trivial and call \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT} the asymptotically trivial mapping class group.

§3.2. Asymptotically trivial mapping class groups

We give conditions of quasiconformal mapping classes to induce non‐trivial actions

on the asymptotic Teichmüller space AT (R) . First we note the following lemma, which

gives an estimate of the ratio of the hyperbolic length of a simple closed geodesic to

that of the image under a quasiconformal homeomorphism. This is an improvement of

the well‐known result given in [37] and [39].

Lemma 3.1 ([12]). Let c be a simple closed geodesic on a Riemann surfa ce R.

For a subset V of R ,
let d=d(c, V) be the hyperbolic distance between c and V. If f is

a K ‐quasiconfO rmal homeomorphism of R onto another Riemann surfa ce such that the

restriction of f to R-V is (1+ $\epsilon$) ‐quasiconfO rmal for some  $\epsilon$\geq 0 ,
then an inequality

\displaystyle \frac{1}{ $\alpha$} . P(c)\leq P(f(c)_{*})\leq $\alpha$\cdot P(c)
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is satisfied for a constant

 $\alpha$= $\alpha$(K,  $\epsilon$, d)=K+(1+ $\epsilon$-K)\displaystyle \frac{2\arctan(\sinh d)}{ $\pi$}
with 1\leq $\alpha$\leq K and \displaystyle \lim_{d\rightarrow\infty} $\alpha$=1+ $\epsilon$.

By using this lemma, we have the following condition for a quasiconformal auto‐

morphism of a Riemann surface R to induce a non‐trivial action on AT (R) .

Lemma 3.2 ([12]). Let g be a quasiconfO rmal automorphism of a Riemann sur‐

face R. Suppose there exists a constant  $\delta$>1 such that, for every compact subset V of
R ,

there is a simple closed geodesic c on R outside of V satisfy ing either

\displaystyle \frac{l(g(c)_{*})}{l(c)}\leq\frac{1}{ $\delta$} or \displaystyle \frac{l(g(c)_{*})}{l(c)}\geq $\delta$.
Then g is not homotopic to any asymptotically conformal automorphism of R. In par‐

ticular, the action of [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) on AT (R) is non‐trivial, namely [g]\not\in \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT}.

Proof. We take a constant $\epsilon$_{0}>0 so that  1+$\epsilon$_{0}< $\delta$ . Suppose to the contrary
that  g is homotopic to an asymptotically conformal automorphism h of R . Then there

exists a compact subset V of R such that the restriction of h to R-V is (1+$\epsilon$_{0})-
quasiconformal. Let  $\alpha$= $\alpha$(K,  $\epsilon$, d) be the constant obtained in Lemma 3.1, which

tends to  1+ $\epsilon$ as  d\rightarrow\infty . We take a constant  d_{0}>0 so that $\alpha$_{0}= $\alpha$(K(h), $\epsilon$_{0}, d_{0})< $\delta$.
By the assumption, we can take a simple closed geodesic c on R so that d(c, V)\geq d_{0}
and that either \ell(h(c)_{*})/\ell(c)\leq 1/ $\delta$ or \ell(h(c)_{*})/\ell(c)\geq $\delta$ . On the other hand, we have

(1/$\alpha$_{0})\cdot\ell(c)\leq\ell(h(c)_{*})\leq$\alpha$_{0}\cdot\ell(c) by Lemma 3.1. This is a contradiction. \square 

By Lemma 3.2, we have another condition for a quasiconformal mapping class to

induce a non‐trivial action on AT (R) .

Lemma 3.3 ([19]). Let R be a Riemann surfa ce satisfy ing the lower bound con‐

dition, and [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) a quasiconfO rmal mapping class of R. Suppose that there

exists a sequence of mutually disjoint simple closed geodesics \{c_{n}\}_{n=1}^{\infty} such that the hy‐

perbolic lengths of c_{n} are uniformly bounded and g(c_{n})_{*}\neq c_{n'} for any n and n' . Then

[g] is not asymptotically trivial, namely [g]\not\in \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT}.

Proof. Since R satisfies the lower bound condition, there exists a quasiconformal

homeomorphism f of R such that 2\ell(f(c_{n})_{*})<\ell(f(c)) for every n and for every simple
closed geodesic c other than \{c_{n}\}_{n=1}^{\infty} . See [19, Lemma 7.1]. Set \tilde{g}=f ogo f^{-1} . By the

assumption g(c_{n})_{*}\neq c_{n'} ,
we see that

\displaystyle \frac{\ell(\tilde{g}(f(c_{n}))_{*})}{\ell(f(c_{n})_{*})}=\frac{\ell(f(g(c_{n}))_{*})}{\ell(f(c_{n})_{*})}>2
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for every n . Since the sequence \{f(c_{n})_{*}\}_{n=1}^{\infty} exits from any compact subsurface in the

Riemann surface f(R) (see [30, Proposition 1]), we can apply Lemma 3.2. Then we

conclude that \tilde{g} is not homotopic to any asymptotically conformal automorphism of

f(R) . This implies that [g]\not\in \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT}. \square 

By using Lemma 3.3, we see that every conformal mapping class acts on AT (R)
non‐trivially under the bounded geometry condition.

Proposition 3.4 ([19]). Let R be a topologically infinite Riemann surfa ce satis‐

fy ing the bounded geometry condition. Then every non‐trivial conformal mapping class

[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is not asymptotically trivial.

Proof. Here we only prove for the case that [g] is of infinite order. We take a

conformal representative g in the mapping class [g] . Let c be a simple closed geodesic
on R and set c_{n}:=g(c) for every n\in \mathbb{Z} . Then all hyperbolic lengths of c_{n} are the

same. By replacing g with g^{k} for some k\in \mathbb{Z} if necessary, we may assume that c_{n} and

c_{n'} are mutually disjoint for every n and n' . We apply Lemma 3.3 for the sequence

\{c_{2n}\}_{n\in \mathbb{Z}} ,
and have a conclusion. \square 

In fact, for a conformal mapping class of infinite order, Proposition 3.4 is true under

no assumption on a Riemann surface as the following theorem says.

Theorem 3.5. Let R be a topologically infinite Riemann surfa ce. Then every

conformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) of infinite order is not asymptotically trivial.

This was proved in [32]. See also [33]. In [18], we gave a simple proof under the

assumption that a Riemann surface has more than two non‐cuspidal ends. Moreover, in

the proof of [12, Proposition 4.3], we constructed concretely a point in AT (R) where the

asymptotic Teichmüller modular transformation induced by a conformal automorphism
of R acts non‐trivially. For detail, see also Proposition 3.10.

On the other hand, we do not know yet whether a non‐trivial conformal mapping
class of finite order is not asymptotically trivial under no assumption on a Riemann

surface.

Next, we consider a condition for a mapping class to be asymptotically trivial. It

is easy to see that every essentially trivial mapping class is asymptotically trivial. The

following theorem gives a complete characterization of asymptotically trivial mapping
classes under the bounded geometry condition of Riemann surfaces.

Theorem 3.6 ([14], [19]). For a topologically infinite Riemann surfa ce, every

asymptotically trivial mapping class is pure. In addition, if a Riemann surfa ce satis‐

fies the bounded geometry condition, then every asymptotically trivial mapping class is

essentially trivial.
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Remark. (i) There exists a quasiconformal mapping class that is pure but is

not asymptotically trivial. Indeed, let \hat{R} be a compact Riemann surface, and R\mathrm{a}

normal covering surface of \hat{R} whose covering transformation group is a cyclic group \langle $\phi$\rangle
generated by a conformal automorphism  $\phi$ of  R of infinite order. Then  $\phi$ is pure. On

the other hand,  $\phi$ is not asymptotically trivial by Proposition 3.4.

(ii) The second statement of Theorem 3.6 is not true if  R does not satisfy the

bounded geometry condition. Indeed, we consider a Riemann surface R that does not

satisfy the lower bound condition. Then there exists a sequence of mutually disjoint

simple closed geodesics \{c_{n}\}_{n=1}^{\infty} on R such that \ell(c_{n})\rightarrow 0 . Let [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) be a

quasiconformal mapping class caused by infinitely many Dehn twists with respect to

each c_{n} . Then [g] is asymptotically trivial mapping classes but is not essentially trivial.

§3.3. Elliptic elements of infinite order of asymptotic Teichmüller

modular groups

We define the ellipticity of asymptotic Teichmüller modular transformations, and

observe the orbits of elliptic elements in the asymptotic Teichmüller space.

Definition 3.7. We say that an asymptotic Teichmüller modular transformation

of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is elliptic if it has a fixed point in AT (R) .

Every elliptic element [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is realized as an asymptotically conformal

automorphism of the Riemann surface f(R) corresponding to its fixed point  p=[[f]]\in
 AT(R) ,

that is fogo f^{-1} is homotopic to an asymptotically conformal automorphism
of f(R) relative to the ideal boundary at infinity. Such a mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)
is called an asymptotically conformal mapping class. It is clear that, if [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R)
is elliptic, then [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is also elliptic. However, the converse is not true. \mathrm{A}

trivial example is a Teichmüller modular transformation caused by a single Dehn twist.

This is not elliptic as a Teichmüller modular transformation, but the quasiconformal

mapping class acts trivially on AT (R) . In particular, it has a fixed point in AT (R) .

In [35], a Riemann surface R and a quasiconformal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) were

constructed so that [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is not elliptic but [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is elliptic and

non‐trivial. We note a remarkable property of the orbit in the Teichmüller space by
such a quasiconformal mapping class.

Proposition 3.8 ([31]). For a quasiconfO rmal mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) ,

suppose that [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is not elliptic but [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is elliptic. Then [g] is

of divergent type.

Moreover, in [32], a Riemann surface R ,
an elliptic Teichmüller modular transfor‐

mation [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) and a point p\in T(R) were constructed so that [g]_{*}(p)\neq p but
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[g]_{**}( $\pi$(p))= $\pi$(p) for the projection  $\pi$(p)\in AT(R) of p . We have another example of

an elliptic element of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) as follows.

Example 3.9. Let R be a Riemann surface constructed in [17, Section 3], which

does not satisfy the lower bound condition. By modifying the construction slightly
as in Remark 3.4 of that paper, we see that R admits an asymptotically conformal

automorphism g of infinite order such that it is not asymptotically trivial. Then [g]_{**}\in
\mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is elliptic. On the other hand, we have proved that the orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}}
on T(R) is discrete for every point p\in T(R) . Thus, by Theorem 2.9, it implies that

[g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is not elliptic.

Now we consider the orbit in the asymptotic Teichmüller space under the action of

an elliptic element of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) . First we observe the following phenomenon.

Proposition 3.10 ([12]). Let R be a normal cover of a compact Riemann sur‐

face of genus 2 whose covering transfO rmation group is a cyclic group \langle g\rangle generated by
a conformal automorphism  g of R of infinite order. Then there exists a point p\in T(R)
such that the orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is not discrete in T(R) ,

and the orbit \{[g^{n}]_{**}(p)\}_{n\in \mathbb{Z}}
is not discrete either in AT (R) for the projection p= $\pi$(p)\in AT(R) .

Sketch of proof. Let L^{\infty}(\mathbb{Z}) be the Banach space of all bounded bilateral infinite

sequence of real numbers, and let ($\xi$_{i})_{i\in \mathbb{Z}}(0<$\xi$_{i}\leq 1) be a point of L^{\infty}(\mathbb{Z}) defined in

[16, Definition 4.3] as follows: set $\xi$_{0}=1 and $\xi$_{1}=$\xi$_{-1}=(1/2)$\xi$_{0}=1/2 . We proceed
as $\xi$_{i}=$\xi$_{i-6}=(2/3)$\xi$_{i-3} for i=2

, 3, 4 and $\xi$_{i}=$\xi$_{i-18}=(3/4)$\xi$_{i-9} for i=5 ,
. . .

, 13.

Inductively, set

$\xi$_{i}=$\xi$_{i-2\cdot 3^{k}}=\displaystyle \frac{k+1}{k+2}\cdot$\xi$_{i-3^{k}}
for \displaystyle \sum_{j=0}^{k-1}3^{j}+1\leq i\leq\sum_{j=0}^{k}3^{j} stratified with the indices k\in \mathbb{N} . This is equivalent
to the following direct definition by using 3‐adic expansion. Every integer i\in \mathbb{Z} is

uniquely written as i=\displaystyle \sum_{j=0}^{\infty}$\epsilon$_{j}(i) 3^{j} ,
where $\epsilon$_{j}(i) is either -1, 0 or 1. Then $\xi$_{i} is

defined by $\xi$_{i}=\displaystyle \prod_{$\epsilon$_{j}(i)\neq 0}(j+1)/(j+2) ,
where the product is taken over all j\in \mathbb{N}

satisfying $\epsilon$_{j}(i)\neq 0 . Then it was proved that the point  $\xi$=($\xi$_{i})_{i\in \mathbb{Z}}\in L^{\infty}(\mathbb{Z}) satisfies

\displaystyle \lim_{\ell\rightarrow\infty}\Vert$\sigma$^{3^{p}}( $\xi$)- $\xi$\Vert_{\infty}=0.
We take a sequence \{c_{n}\}_{n\in \mathbb{Z}} of non‐dividing simple closed geodesics on R such

that g(c_{n})=c_{n+1} . We also take a g‐invariant pants decomposition \mathcal{P} whose boundary
contains \{c_{n}\}_{n\in \mathbb{Z}} . We can choose a quasiconformal homeomorphism f of R such that

\ell(f(c_{n})_{*})=1+$\xi$_{n} and that \ell(f(c)_{*})=\ell(c) for every c other than \{c_{n}\}_{n\in \mathbb{Z}} that is a

boundary component of some pair of pants in the pants decomposition \mathcal{P} . Set  p=[f]\in
 T(R) and p=[[f]]\in AT(R) . Then we see that d_{T}([g^{3^{k}}]_{*}(p),p)\rightarrow 0(k\rightarrow 0) and thus

d_{AT}([g^{3^{k}}]_{**}(p),p)\rightarrow 0(k\rightarrow 0) . Moreover we see that [g^{3^{k}}]_{**}(p)\neq[g^{3^{7n}}]_{**}(p) for every



16 E. Fujikawa

k\neq m by applying Lemma 3.2 to the quasiconformal automorphism f\circ g^{-(3^{7n}-3^{k})}\circ f^{-1}
of f(R) . Hence we have the assertion. \square 

We extend Proposition 3.10 as follows.

Theorem 3.11. Let R be a Riemann surfa ce, and g a quasiconfO rmal automor‐

phism of R of infinite order. Suppose that there exists a point p\in T(R) whose orbit

\{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is not a discrete set. Then [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is also of infinite order.

Moreover the orbit \{[g^{n}]_{**}(p)\}_{n\in \mathbb{Z}} of p= $\pi$(p)\in AT(R) is not a discrete set, either.

Proof. Suppose to the contrary that [g]_{**} has a finite order n
, namely [g^{n}]\in

\mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT} . Since [g^{n}]_{**} has a fixed point in AT (R) in particular, either [g^{n}]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is

elliptic or [g^{n}]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) is of divergent type by Proposition 3.8. By the assumption,
the orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is not a discrete set for a point p\in T(R) ,

and thus [g] is not

of divergent type. Hence [g^{n}]_{*} is elliptic of infinite order. Then we may regard g^{n} as

a conformal automorphism of infinite order. However, since every conformal automor‐

phism of infinite order is not asymptotically trivial by Theorem 3.5, this contradicts

the assumption [g^{n}]\in \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT} . Thus we conclude that [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is of infinite

order.

Next we prove the second statement. Suppose to the contrary that the orbit

\{[g^{n}]_{**}(p)\}_{n\in \mathbb{Z}} is a discrete set. We may assume that [g^{n}]_{**}(p)=p for every n . It

was proved in [32] that, for every elliptic element [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) ,
the orbit \{[g]_{*}(p)\}

of any point p\in T(R) over the fixed point on AT (R) is a discrete set in the fiber in

T(R) containing p . This contradicts the assumption that the orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is not

a discrete set. Hence we conclude that the orbit \{[g^{n}]_{**}(p)\}_{n\in \mathbb{Z}} of p= $\pi$(p)\in AT(R) is

not a discrete set. \square 

In the last of this subsection, we explore the following problem on the orbit in the

asymptotic Teichmüller space by an elliptic element of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) . This corresponds to

Theorem 2.9 for the orbit in the Teichmüller space by an elliptic Teichmüller modular

transformation.

Problem. For every elliptic element [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) of infinite order, there

exists a point p\in AT(R) such that the orbit \{[g^{n}]_{**}(p)\}_{n\in \mathbb{Z}} is not a discrete set.

Note that this problem is true for an elliptic element [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) induced by
a conformal automorphism g of R of infinite order. Indeed, by Theorem 2.9, we have a

point p\in T(R) whose orbit \{[g^{n}]_{*}(p)\}_{n\in \mathbb{Z}} is not a discrete set. Thus by Theorem 3.11,
we have the conclusion.
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§3.4. Elliptic elements of finite order of asymptotic Teichmüller

modular groups

Similar to an elliptic Teichmüller modular transformation of Mod (R) ,
an elliptic

element of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is not necessarily of finite order. In this subsection, we consider

a necessary and sufficient condition for an elliptic element to be of finite order. First we

give the following sufficient condition, which can be regarded as the asymptotic version

of Proposition 2.4.

Theorem 3.12 ([19]). Let R be a Riemann surfa ce satisfy ing the bounded ge‐

ometry condition. Let [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) be an elliptic element. Suppose that, for some

constant \ell>0 and in any topologically infinite neighborhood of each topological end of
R ,

there exists a simple closed geodesic c with \ell(c)\leq\ell such that  g(c) is fr eely homotopic
to c . Then [g]_{**} is of finite order.

We give an example of a Riemann surface R and a quasiconformal automorphism
of R satisfying the assumption in Theorem 3.12.

Example 3.13. Let R be a topologically infinite Riemann surface that is a nor‐

mal cover of a compact Riemann surface of genus 3 and admits a conformal automor‐

phism g_{0} of order 2. We assume that there exists a sequence \{c_{n}\}_{n\in \mathbb{Z}} of disjoint simple
closed geodesics on R such that \{c_{n}\}_{n\in \mathbb{Z}} and \{g_{0}(c_{n})\}_{n\in \mathbb{Z}} are mutually disjoint, and

assume that there exists a sequence \{c_{n}'\}_{n\in \mathbb{Z}} of disjoint simple closed geodesics on R

such that g_{0}(c_{n}')=c_{n}' for every n . Let [g] be a Dehn twist along c_{0} . Set g=g_{1}\circ g_{0}.

Then [g]_{*}\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is not elliptic. Indeed, [g] is the Dehn twist along both c_{0} and

g(c_{0}) ,
and thus it is not elliptic. Since we can take a quasiconformal homeomorphism

g so that it is conformal outside of the collar of c_{0} ,
the mapping class [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)

is asymptotically conformal. Moreover, by Lemma 3.3, [g] is not asymptotically triv‐

ial. Hence [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is elliptic and non‐trivial, and satisfies the assumption in

Theorem 3.12.

Recall that the Nielsen theorem states that every Teichmüller modular transfor‐

mation of finite order is elliptic. We have the corresponding result for asymptotic
Teichmüller modular transformations under the bounded geometry condition.

Theorem 3.14 ([19]). Let R be a Riemann surfa ce satisfy ing the bounded ge‐

ometry condition. If [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is of finite order, then it is elliptic.

Sketch of Proof. Let [g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R) be a quasiconformal mapping class such that

[g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is of finite order n . This means that [g^{n}]\in \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT} . Since every

asymptotically trivial mapping class is essentially trivial by Theorem 3.6, the quasi‐
conformal mapping class [g] is essentially trivial. Then we see that, outside some
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topologically finite geodesic subsurface, the mapping class [g] is periodic. By usual

arguments, there is a conformal structure such that [g] can be realized as a confor‐

mal automorphism off the subsurface, that is, [g] is asymptotically conformal. This is

equivalent to saying that [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) has a fixed point in AT (R) . \square 

By Theorems 3.12 and 3.14, we finally have a necessary and sufficient condition for

an elliptic element to be of finite order.

Theorem 3.15 ([19]). Let R be a Riemann surfa ce satisfy ing the bounded geom‐

etry condition. An asymptotic Te ichmüller modular transfO rmation [g]_{**}\in \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R)
is of finite order if and only if [g]_{**} is elliptic and there exist an integer s\geq 1 and a

constant \ell>0 such that in any topologically infinite neighborhood of each topological
end of R ,

there exists a simple closed geodesic c with \ell(c)\leq\ell such that  g(c) is fr eely

homotopic to c.

Proof. Suppose that [g]_{**} is of finite order. Then [g]_{**} is elliptic by Theorem 3.14

and [g^{s}]\in \mathrm{K}\mathrm{e}\mathrm{r}$\iota$_{AT} for some integer s\geq 1 as well. By Theorem 3.6, this implies that [g]
is essentially trivial, namely there exists a topologically finite geodesic subsurface V of

R such that, for each connected component W of R-V ,
the restriction g^{s}|_{W} : W\rightarrow R

is homotopic to the inclusion map \mathrm{i}\mathrm{d}|_{W} : W\mapsto R relative to the ideal boundary at

infinity. Thus g(c) is freely homotopic to c for every simple closed geodesic c in W.

This shows the sufficiency.

Conversely, suppose that [g]_{**} is elliptic and there exist an integer s\geq 1 and a

constant \ell>0 such that, in any topologically infinite neighborhood of each topological
end of R ,

there exists a simple closed geodesic c with \ell(c)\leq\ell such that  g(c) is freely

homotopic to c . Since [g^{s}]_{**} is also elliptic, we apply Theorem 3.12 to [gs]. Then we

conclude that [g^{s}]_{**} is of finite order, and hence so is [g]_{**} . This shows the necessity. \square 

We explore a problem whether we can extend Theorem 3.12 to an element of

\mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) which need not have a fixed point in AT (R) but is induced by a quasicon‐
formal automorphism of R with sufficiently small boundary dilatation. This problem
can be regarded as an asymptotic version of Proposition 2.5.

In [20], we extend Theorem 3.14 to the following statement, which can be regarded
as an answer to the asymptotically conformal version of the Nielsen realization problem.

Theorem 3.16. Let R be an analytically infinite Riemann surfa ce satisfy ing the

bounded geometry condition. Then every finite subgroup of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) has a common

fixed point in AT (R) .

The proof of Theorem 3.16 is also carried out by a similar argument as above relying
on the fact that every asymptotically trivial mapping class is essentially trivial under
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the bounded geometry condition. In the light of Theorem 2.7, we further propose a

problem of finding a common fixed point in AT (R) when the orbit of a given subgroup
of \mathrm{M}\mathrm{o}\mathrm{d}_{AT}(R) is bounded.
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