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An averaging operator and non‐separability of certain

Banach spaces of holomorphic automorphic forms

By

Katsuhiko Matsuzaki *

Abstract

In this paper, we consider a problem on non‐separability of certain Banach spaces of holo‐

morphic automorphic forms which appear in the recent development of theories of asymptotic
Teichmüller spaces.

§1. Introduction

The Teichmüller space of a Riemann surface  R=\triangle/ $\Gamma$ is embedded (via the Bers

embedding) in a certain Banach space  B( $\Gamma$) of holomorphic automorphic forms of weight
-4 on the unit disk \triangle invariant under the action of the Fuchsian group  $\Gamma$ . For Fuchsian

groups  $\Gamma$ and  G ,
if  $\Gamma$\subset G ,

then the corresponding Banach spaces have the inclusion

relation B( $\Gamma$)\supset B(G) . On the other hand, since any Möbius transformation of \triangle acts

on  B=B(1) as an isometric linear automorphism, we can define a bounded linear

operator on B( $\Gamma$)\subset B by averaging a finite number of isometric linear automorphisms
induced by Möbius transformations. In particular, when  $\Gamma$ is a finite index subgroup of

 G ,
the average taken over all representatives of the coset of G modulo  $\Gamma$ gives a bounded

linear operator from  B( $\Gamma$) to B(G) . This can be defined independent of the choice of

the representatives.
We extend this averaging operator to a larger Banach space containing B( $\Gamma$) . Two

holomorphic functions on \triangle are defined to be asymptotically equivalent if their difference

vanishes at the unit circle \partial\triangle with respect to the hyperbolic supremum norm. We

consider a Banach subspace \overline{AB}( $\Gamma$) of B consisting of all holomorphic automorphic
forms that are invariant under  $\Gamma$ modulo asymptotic equivalence. Then the averaging
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operator \overline{L} maps \overline{AB}( $\Gamma$) to \overline{AB}(G) ,
but this depends on the choice of the representatives

of the coset G/ $\Gamma$.
We are interested in a problem whether non‐separability of \overline{AB}( $\Gamma$) implies that

of B(G) when  $\Gamma$ is a Fuchsian group of cofinite hyperbolic area. Consider the kernel

\mathrm{K}\mathrm{e}\mathrm{r}\overline{L} of the averaging operator \overline{L} . If \mathrm{K}\mathrm{e}\mathrm{r}\overline{L} is separable, then the quotient Banach space

\overline{AB}( $\Gamma$)/\mathrm{K}\mathrm{e}\mathrm{r}\overline{L} is non‐separable, and it is mapped injectively into B(G) by a bounded

linear operator induced by \overline{L} . However, we encounter two problems here. The first

problem is that this kernel also depends on the representatives defining \overline{L} and we can

only verify that the intersection of the kernels taken over various \overline{L} is separable. The

second problem is that the image of \overline{AB}( $\Gamma$)/\mathrm{K}\mathrm{e}\mathrm{r}\overline{L} in B(G) is not known to be closed

and without this fact we cannot see that B(G) is non‐separable even if \overline{AB}( $\Gamma$)/\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}
is non‐separable. In this paper, we investigate these problems from a viewpoint of

functional analysis.
A motivation of this work lies in a study of symmetric structures introduced in

[3]. This concept has been extended to the asymptotic Teichmüller space of a Riemann

surface \triangle/ $\Gamma$ and it has been realized in a certain quotient Banach space of  B( $\Gamma$) as the

asymptotic Bers embedding. See [1] and [2]. In his previous paper [6], the author had

an idea of the problem concerning averaging operators, and in his forthcoming paper,

it will be proved that, for almost every Fuchsian group  $\Gamma$ of cofinite hyperbolic area,

the Banach space \overline{AB}( $\Gamma$) and hence its quotient AB (  $\Gamma$ ) by asymptotic equivalence is

non‐separable. Then, one may ask how about the rest is. The present paper records

the author�s attempt at this question.

§2. A problem on averaging operators

Let  B be the Banach space of all bounded holomorphic functions  $\varphi$ on the unit

disk \triangle with respect to the hyperbolic supremum norm $\rho$^{-2}(z)| $\varphi$(z)| ,
where  $\rho$(z) is the

hyperbolic density on \triangle . Let  B_{0} be a Banach subspace of B consisting of all elements

 $\varphi$ that vanish at the boundary \partial\triangle ,
that is, $\rho$^{-2}(z)| $\varphi$(z)|\rightarrow 0 as |z|\rightarrow 1 . The quotient

Banach space is denoted by AB=B/B_{0} and the projection by  $\alpha$ :  B\rightarrow AB . An

equivalence class represented by  $\varphi$\in B is denoted by [ $\varphi$] ,
that is, [ $\varphi$]= $\alpha$( $\varphi$)\in AB.

The Banach space B_{0} is separable. Indeed, its dual space B_{0}^{*} is isometric to the Banach

space Q consisting of all integrable holomorphic functions on \triangle . Since polynomials are

dense in  Q ,
it is separable and hence so is B_{0} (p.71 in [7]).

For a holomorphic function  $\varphi$ on \triangle
,

which is regarded as an automorphic form

of weight -4
,

we define the pull‐back  g^{*} $\varphi$ of  $\varphi$ by a Möbius transformation  g of \triangle as

 g^{*} $\varphi$(z) := $\varphi$(g(z))g'(z)^{2} . Then every Möbius transformation g of \triangle acts on  B and AB

by  $\varphi$\mapsto g^{*} $\varphi$ and [ $\varphi$]\mapsto[g^{*} $\varphi$] respectively, which define isometric linear operators on B
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and AB . For a Fuchsian group G ,
we define subspaces of B and AB consisting of all

automorphic forms that are fixed by every element of G as follows:

B(G)= {  $\varphi$\in B|g^{*} $\varphi$= $\varphi$ for \forall g\in G };
AB (G)= { [ $\varphi$]\in AB|[g^{*} $\varphi$]=[ $\varphi$] for \forall g\in G}.

We also define the inverse image of AB (G) under the projection  $\alpha$ :  B\rightarrow AB
,
that is,

\overline{AB}(G)=$\alpha$^{-1} (AB (G)) = {  $\varphi$\in B|[g^{*} $\varphi$]=[ $\varphi$] for \forall g\in G}.

Our problem is to consider non‐separability of AB (G)=\overline{AB}(G)/B_{0} . Since B_{0} is

separable, this is equivalent to non‐separability of \overline{AB}(G) . Let G contain a Fuchsian

group  $\Gamma$ of cofinite hyperbolic area as a finite index subgroup, and assume that AB (  $\Gamma$ )
is non‐separable. Note that such a Fuchsian group  $\Gamma$ actually exists though we will not

show this fact here. Under these circumstances, we want to know that AB (G) is also

non‐separable. A claim we can obtain so far is the following.

Theorem 2.1. Let  $\Gamma$ be a Fuchsian group of cofinite hyperbolic area and  G a

Fuchsian group that contains  $\Gamma$ . Assume that AB (  $\Gamma$ ) is non‐separable. Then AB (G)
is non‐separable, or otherwise, there exists an averaging operator \overline{L} on \overline{AB}( $\Gamma$) whose

image is not closed.

We define an averaging operator precisely here. For a system of the representatives

\{g_{1}, g_{2}, . . . , g_{m}\} of the coset of G modulo  $\Gamma$
,

we consider a bounded linear operator

\displaystyle \overline{L}( $\varphi$)=\frac{1}{m}\sum_{k=1}^{m}g_{k}^{*} $\varphi$
for  $\varphi$\in B . It is clear that \overline{L}(B_{0})\subset B_{0} . We call \overline{L} an averaging operator by restricting
it to \overline{AB}( $\Gamma$) . Note that this depends on the choice of the representatives.

Proposition 2.2. For any averaging operator \overline{L}
,

the image \overline{L}(\overline{AB}( $\Gamma$)) is con‐

tained in \overline{AB}(G) .

Proof. An element  $\psi$\in\overline{L}(\overline{AB}( $\Gamma$)) is written as  $\psi$=\displaystyle \frac{1}{m}\sum_{k=1}^{m}g_{k}^{*} $\varphi$ for some  $\varphi$\in

\overline{AB}( $\Gamma$) . We will show that [g^{*} $\psi$]=[ $\psi$] for every g\in G . Fix g\in G . Then there is a

permutation  $\sigma$ on \{ 1, 2, . . .

, m\} and some  $\gamma$_{ $\sigma$(k)}\in $\Gamma$ for each  k such that gg_{k}=g_{ $\sigma$(k)}$\gamma$_{ $\sigma$(k)}

(1\leq k\leq m) . Hence

g^{*} $\psi$=g^{*}\displaystyle \{\frac{1}{m}\sum_{k=1}^{m}g_{k}^{*} $\varphi$\}=\frac{1}{m}\sum_{k=1}^{m}g_{ $\sigma$(k)}^{*}$\gamma$_{ $\sigma$(k)}^{*} $\varphi$=\frac{1}{m}\sum_{k=1}^{m}g_{k}^{*}$\gamma$_{k}^{*} $\varphi$.
Since $\gamma$_{k}^{*} $\varphi$- $\varphi$\in B_{0} for every k

,
we conclude that g^{*} $\psi$- $\psi$\in B_{0} , namely, [g^{*} $\psi$]=[ $\psi$]. \square 
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The averaging operator \overline{L} induces a bounded linear operator L:AB( $\Gamma$)\rightarrow AB(G)
via the projection  $\alpha$ :  B\rightarrow AB . Indeed, since \overline{L}(B_{0})\subset B_{0} ,

the map L is well‐defined for

\hat{ $\varphi$}\in AB( $\Gamma$) independent of the choice of an element in $\alpha$^{-1}(\hat{ $\varphi$}) . Also the restriction of \overline{L}
to B( $\Gamma$) gives \overline{L}|_{B( $\Gamma$)} : B( $\Gamma$)\rightarrow B(G) . Summing up, we have the following commutative

diagram:

B( $\Gamma$) \rightarrow^{L\overline{}|_{B( $\Gamma$)}} B(G)
 $\iota$\downarrow \downarrow $\iota$

\overline{AB}( $\Gamma$)\rightarrow^{L\overline{}}\overline{AB}(G)

 $\alpha$\downarrow \downarrow $\alpha$
AB ( $\Gamma$)\rightarrow^{L} AB(G)

Here we remark that both \overline{L}|_{B( $\Gamma$)} and L are determined independently of the choice

of representative of the coset  G/ $\Gamma$ . Moreover, both \overline{L}|_{B( $\Gamma$)} and L are surjective. In fact,
each element of B(G) is fixed by \overline{L} and each element of AB(G) is fixed by L . However,
we do not know the surjectivity of \overline{L} . Since  $\alpha$ 0\overline{L}=L\circ $\alpha$ is surjective, the surjectivity
of \overline{L} is equivalent to saying that B_{0}=$\alpha$^{-1}(0) is contained in the image of \overline{L}.

Since the averaging operator \overline{L} depends on the representatives of  G/ $\Gamma$ ,
we should

denote it by taking the dependence into account. Assume that  g_{1} represents  $\Gamma$ and fix

the other representatives \{g_{2}, . . . , g_{m}\} . Let \{h_{1}, h_{2}, . . . , h_{n}\} be a system of generators
of  $\Gamma$ and set  h_{0}=\mathrm{i}\mathrm{d} . For each i(0\leq i\leq n) ,

we consider an averaging operator

\displaystyle \overline{L}_{i}( $\varphi$)=\frac{1}{m}\{h_{i}^{*} $\varphi$+\sum_{k=2}^{m}g_{k}^{*} $\varphi$\}
for  $\varphi$\in\overline{AB}( $\Gamma$) . Concerning the kernels of the operators \overline{L}_{i} ,

we have the following.

Proposition 2.3. The intersection \displaystyle \bigcap_{i=0}^{n}\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{i} is contained in the finite dimen‐

sional Banach space B( $\Gamma$) .

Proof. Let  $\varphi$ be an element of \displaystyle \bigcap_{i=0}^{n}\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{i} . Then

h_{i}^{*} $\varphi$+\displaystyle \sum g_{k}^{*} $\varphi$=m0=h_{0}^{*} $\varphi$+\sum g_{k}^{*} $\varphi$ m
k=2 k=2

for every i(1\leq i\leq n) . This in particular implies that  h_{i}^{*} $\varphi$= $\varphi$ . Since \{h_{1}, h_{2}, . . . , h_{n}\}
generates  $\Gamma$

,
we see that  $\gamma$^{*} $\varphi$= $\varphi$ for every  $\gamma$\in $\Gamma$ . This shows that  $\varphi$ belongs to

 B( $\Gamma$) . \square 

Proof of Theorem 2.1. For the averaging operator \overline{L}_{0} ,
consider the composition

 $\alpha$ 0\overline{L}_{0} : \overline{AB}( $\Gamma$)\rightarrow AB(G) ,
which is coincident with Lo  $\alpha$

,
and thus surjective. Set
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 K_{\#}=\mathrm{K}\mathrm{e}\mathrm{r}( $\alpha$\circ\overline{L}_{0}) ,
which is a Banach subspace \overline{L}_{0}^{-1}(B) of \overline{AB}( $\Gamma$) . The operator

 $\alpha$\circ\overline{L}_{0} induces a bijective linear map between the quotient Banach space \overline{AB}( $\Gamma$)/K_{\#}
and AB (G) . By the open mapping theorem (p.78 in [7], p.75 in [8]), this bijection
is actually an isomorphism between the Banach spaces, that is, both directions are

bounded linear maps. Hence, in order to show that AB (G) is non‐separable, we have

only to see that K_{\#} is separable. Assuming on the contrary that K_{\#} is non‐separable,
we will derive a contradiction.

Set K_{0}:=\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{0}|_{K_{\#}}=K_{\#}\cap \mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{0} . We restrict \overline{L}_{1} to K_{0} and set K_{1}:=\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{1}|_{K_{0}},
which is coincident with K_{\#}\cap \mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{0}\cap \mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{1} . Inductively, after K_{j-1} has been defined,
we set K_{j}:=\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{j}|_{K_{j-1}} ,

which is coincident with K_{\#}\displaystyle \cap\bigcap_{i=0}^{j}\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{i}.
By assumption, K_{\#} is non‐separable, whereas K_{n}=K_{\#}\displaystyle \cap\bigcap_{i=0}^{n}\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}_{i} is separable

by Proposition 2.3. Hence there is some j(0\leq j\leq n) such that K_{j-1} is non‐separable
but K_{j} is separable, where we regard K_{-1}=K_{\#} . Then, setting K:=K_{j-1} and \overline{L}:=\overline{L}_{j},
we consider the operator \overline{L}|_{K} restricted to K . By construction, K is non‐separable but

\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}|_{K} is separable. Moreover, the image L(K) is contained in B_{0} . Indeed, since

 $\alpha$\circ\overline{L}= $\alpha$\circ\overline{L}_{0} and K\subset K_{\#} ,
we have  $\alpha$\circ\overline{L}(K)=\{0\} and hence \overline{L}(K)\subset$\alpha$^{-1}(0)=B_{0}.

We are assuming that an arbitrary averaging operator \overline{L} has a closed range. By
the open mapping theorem again, this assumption implies that the image of every

closed subspace of \overline{AB}( $\Gamma$) under \overline{L} is also closed. Hence the operator \overline{L}|_{K} induces an

isomorphism between the quotient Banach space K/\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}|_{K} and the Banach subspace

\overline{L}(K) . Since K is non‐separable whereas \mathrm{K}\mathrm{e}\mathrm{r}\overline{L}|_{K} is separable, L(K) should be non‐

separable. However, since L(K) is contained in the separable Banach space B_{0} ,
this is

impossible. \square 

Remark. The last line of the above proof is based on a fact that every subspace
of a separable Banach space is separable. In general, every subset of a separable metric

space is separable in the induced metric. See p.9 in [4] for instance.

§3. Non‐separable Banach spaces mapped into separable Banach spaces

In this section, we exhibit examples of injective bounded linear operators that map

non‐separable Banach spaces into separable Banach spaces. This means that, without

some extra properties of the Banach spaces B and B_{0} of the holomorphic automorphic

forms, we cannot remove the second alternative conclusion in the statement of Theorem

2.1, that is to say, we will fail to obtain the desired result.

Let \ell^{\infty}(\mathbb{Z}) be the Banach space of all bounded bilateral sequences  $\xi$=\{x_{n}\}_{n\in \mathbb{Z}} of

real numbers equipped with the supremum norm and c() the subspace consisting of

all elements  $\xi$\in\ell^{\infty}(\mathbb{Z}) vanishing at \pm\infty
, namely  $\xi$(n) :=x_{n}\rightarrow 0 as  n\rightarrow\pm\infty . Note

that \ell^{\infty}(\mathbb{Z}) is non‐separable whereas c() is separable (p.34 in [7]).
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We consider the shift operator  $\sigma$ : \ell\infty(\mathbb{Z})\rightarrow p\infty(\mathbb{Z}) that sends \{x_{n}\} to \{x_{n+1}\}.
More precisely, this is defined by ( $\sigma$( $\xi$))(n)= $\xi$(n+1) . Set  L_{-}= $\sigma$ —id, that is,

(L_{-}( $\xi$))(n)= $\xi$(n+1)- $\xi$(n) . The kernel of the bounded linear operator L_{-} is clearly
the subspace const() consisting of all elements  $\xi$\in\ell^{\infty}() such that  $\xi$(n)\equiv c for every

n\in \mathbb{Z} ,
which is isometric to \mathbb{R} . Consider the inverse image L_{-}^{-1}(C and denote this

Banach subspace by D_{-} . We restrict the bounded linear operator L_{-} to D_{-} and denote

this by the same notation

L_{-}:D_{-}\rightarrow c_{0}(\mathbb{Z}) .

It is clear that \mathrm{K}\mathrm{e}\mathrm{r}L_{-}= const ( \mathbb{Z}) . Set the quotient Banach space D/const() by \check{D}_{-}.

Then L_{-} induces an injective bounded linear operator

\check{L}_{-}:\check{D}_{-}\rightarrow c_{0}(\mathbb{Z}) .

We will see that D_{-} and hence \check{D}_{-} is non‐separable. Note that, from this fact, we

also see that the image of L_{-} is not closed.

Lemma 3.1. The Banach subspace D_{-}=L_{-}^{-1}(C of \ell\infty(\mathbb{Z}) is non‐separable.

Proof. We will find a set of uncountably many elements in D_{-} any two of which

are uniformly separated. For every integer n\in \mathbb{Z} ,
we can choose a pair of integers (m, k)

(m\geq 1, k\geq 0) uniquely satisfying

|n|=\displaystyle \sum_{i=1}^{m-1}2^{i}+k (0\leq k\leq 2^{m}-1) .

For an arbitrary subset I of \mathbb{N} , we define an element $\xi$_{I}\in\ell^{\infty}(\mathbb{Z}) so that

$\xi$_{I}(n)=1_{I}(m) \displaystyle \frac{\min\{k,2^{m}-k\}}{2^{m-1}},
where m and k are uniquely determined integers by n and 1(m) is the characteristic

function of I for the variable m . Then (L_{-}($\xi$_{I}))(n)\leq 1/2^{m-1} ,
which implies that

$\xi$_{I}\in D_{-} . On the other hand, for distinct subsets I and I' of \mathbb{N} , we have \Vert$\xi$_{I}-$\xi$_{I'}\Vert_{\infty}=1.
Since there are uncountably many subsets I of \mathbb{N} , we see that D_{-} is non‐separable. \square 

In a similar way, we define L_{+}= $\sigma$+\mathrm{i}\mathrm{d} . Then \mathrm{K}\mathrm{e}\mathrm{r}L_{+} consists of all elements

 $\xi$\in P^{\infty}(\mathbb{Z}) such that  $\xi$(n)=(1)c for every n\in \mathbb{Z} ,
which is again isometric to \mathbb{R}.

Let D_{+} be the inverse image L_{+}^{-1}(c and the restriction of L+\mathrm{t}\mathrm{o}D+\mathrm{i}\mathrm{s} denoted by

L_{+}:D_{+}\rightarrow c_{0}(\mathbb{Z}) . It induces an injective bounded linear operator

\check{L}_{+}:\check{D}_{+}\rightarrow c_{0}(\mathbb{Z})
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for the quotient Banach space \check{D}_{+}=D_{+}/\mathrm{K}\mathrm{e}\mathrm{r}L_{+} . We can also prove that D_{+} is non‐

separable and so is \check{D}_{+} as before.

Finally, we remark that non‐separability of D_{+} implies non‐separability of D_{-} . For

the self‐composition $\sigma$^{2} of the shift operator, we consider L_{2,-}=$\sigma$^{2}-\mathrm{i}\mathrm{d} and D_{2,-}=

L_{2,-}^{-1}(c_{0} If we divide a sequence \{x_{n}\}_{n\in \mathbb{Z}} into the even subsequence \{x_{2m}\}_{m\in \mathbb{Z}} and

the odd subsequence \{x_{2m+1}\}_{m\in \mathbb{Z}} ,
then we have an identification of \ell^{\infty}(\mathbb{Z}) with the

direct product \ell^{\infty}(\mathbb{Z})\times p\infty(\mathbb{Z}) of the Banach spaces. Under this correspondence, L_{2,-}
is conjugate to the product of the linear operators

L_{-}\times L_{-}:l^{\infty}(\mathbb{Z})\times l^{\infty}(\mathbb{Z})\rightarrow l^{\infty}(\mathbb{Z})\times l^{\infty}(\mathbb{Z}) ,

and D_{2} ,‐is equivalent to D_{-}\times D_{-} . On the other hand, D_{2,-} contains the subspace

D_{+} . Indeed, for every  $\xi$\in D_{+} ,
we have  $\sigma \xi$+ $\xi$\in c() and hence $\sigma$^{2} $\xi$+ $\sigma \xi$\in c_{0}(\mathbb{Z}) .

Subtracting the first from the second, we see that L_{2,-}( $\xi$)=$\sigma$^{2} $\xi$- $\xi$\in c_{0}(\mathbb{Z}) ,
which

means that  $\xi$\in D_{2,-} . Hence, non‐separability of D_{+} implies non‐separability of D_{-}

through D_{2,-}\cong D_{-}\times D_{-}.

§4. Dual spaces and dual operators

At this point, we have recognized that additional properties of B and B_{0} should

be necessary if the desired consequence is able to be obtained in our methods. In this

section, we consider dual spaces and dual operators. The dual space Q of B_{0} is also

separable, which might give us a chance that a stronger condition can be merged in our

arguments. For instance, the closed range theorem asserts that, if the range of the dual

operator is closed, then so is the range of the original operator, and vice versa (p.169 in

[7], p.205 in [8]).
First we introduce a general fact from functional analysis. Let S : X\rightarrow Y be an

injective bounded linear operator such that the range \mathcal{R}(S)=S(X) is dense in Y . We

consider the inverse operator T:Y\rightarrow X of S . The domain \mathcal{D}(T) of T is the range \mathcal{R}(S)
of S ,

which is dense in Y . It is clear that T is an injective closed operator because the

graph of S is closed. The dual operator S^{*} : Y^{*}\rightarrow X^{*} between the dual spaces Y^{*} and

X^{*} is defined, which is a bounded linear operator. Also the dual operator T^{*} : X^{*}\rightarrow Y^{*}

is defined with a domain \mathcal{D}(T^{*}) that is coincident with \mathcal{R}(S^{*})=S^{*}(Y^{*}) . It is known

that T^{*} is an injective closed operator and the inverse (T^{*})^{-1} is equal to S^{*} (Th.5.30
in [5]).

Proposition 4.1. In circumstances as above, suppose that Y^{*} is separable. If
the domain \mathcal{D}(T^{*}) is dense in X^{*}

,
then X is separable. In particular, if X is reflexive,

then X is separable.
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Proof. If X^{*} is separable then so is X (p.71 in [7]). Hence we show that X^{*} is

separable. Since \mathcal{D}(T^{*}) is dense in X^{*}
,

we have only to show that \mathcal{D}(T^{*}) has a countable

dense subset. But, since (T^{*})^{-1} : Y^{*}\rightarrow X^{*} is a bounded linear operator and Y^{*} is

separable by assumption, we have done. The latter assertion follows from a claim that,
if X is reflexive and T : Y\rightarrow X is a closed operator with \mathcal{D}(T) dense in Y

,
then \mathcal{D}(T^{*})

is dense in X^{*} . (See Th.5.29 in [5]; the assumption that Y is reflexive is not necessary

for this claim. Also cf. p.196 in [8] though the claim is stated for Hilbert spaces.) \square 

Note that, for any subspace Y of a Banach space \overline{Y} whose dual space \overline{Y}^{*} is sepa‐

rable, the dual space Y^{*} is also separable. Indeed, the Hahn‐Banach extension theorem

(p.68 in [7], p.108 in [8]) implies that the bounded linear operator \overline{Y}^{*}\rightarrow Y^{*} that is dual

to the inclusion map Y\rightarrow Y is surjective.
In the situation of Theorem 2.1, we set \overline{Y}=B_{0} and let Y be the closure of L(K) in

B_{0} . Then Proposition 4.1 might be applicable to see that X=K/\mathrm{K}\mathrm{e}\mathrm{r}\overline{L}|_{K} is separable.
If this were the case, by the same argument as in the proof of Theorem 2.1 but without

the assumption that L has closed range, we could obtain the desired conclusion that

AB (G) is non‐separable.
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