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Quasiarcs and the outside of the asymptotic
Teichmüller space

By

Hideki MIYACHI *

Abstract

In this paper, we give a version of the Cricket theorem due to K. Astala and F. Gehring
for the asymptotic Teichmüller space. Using this, we show that for the complement  $\Omega$ of some

quasiarc  $\alpha$
,

the asymptotic class of the Schwarzian derivative of the Riemann mapping for  $\Omega$ is

not in the closure of the asymptotic Teichmüller space of the unit disk. The quasiarc  $\alpha$ we give
here is known to be a simple zipper in the sense of Thurston. This deduces that the image of

the asymptotic Bers map is not dense in the set of asymptotic classes of Schwarzian derivatives

of univalent functions, which was already observed by the author in a different method.

§1. Introduction

Let AT (D) be the asymptotic Teichmüller space of unit disk D. It is known that

the asymptotic Teichmüller space is canonically embedded in the quotient space  B(1)
of the space B(1) of bounded quadratic differentials on D. The equivalence class of the

differential is called its asymptotic class and the canonical embedding is said to be the

asymptotic Bers map (cf. §2.1).
Let  $\Omega$ be a simply connected domain in \hat{\mathbb{C}} . Let f_{ $\Omega$} : \mathrm{D}^{*} :=\{|z|>1\}\cup\{\infty\}\rightarrow $\Omega$ be

the Riemann mapping and  $\varphi$_{ $\Omega$}\in B(1) is the Schwarzian derivative of f_{ $\Omega$} . In this paper,

we focus on the following problem.

Problem. When is the asymptotic class [$\varphi$_{ $\Omega$}] of $\varphi$_{ $\Omega$} contained in the closure of the

image \mathcal{A}\mathcal{T}_{1} of AT (D) under the asymptotic Bers map /?
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This problem is closely related to the density problem (or the density conjecture)
posed by L. Bers for Teichmüller spaces. In fact, we will solve the density problem in

the negative for the case of the asymptotic Teichmüller space of unit disk. In §4.2.3, we

discuss briefly the density problem for (asymptotic) Teichmüller spaces.

We will study our problem stated above for simply connected domains which are

complements of quasiarcs, where by a quasiarc, we mean the image of a closed interval

in \mathbb{R}\cup\{\infty\} under a quasiconformal mapping on the Riemann sphere.
These kinds of domains were deeply studied by K. Astala and F. Gehring [4].

Indeed, they obtained a necessary and sufficient condition for quasiarcs, so called the

Cricket theorem, which decides whether the Schwarzian derivatives of the Riemann

mappings of their complements are in the closure of the universal Teichmüller space or

not (cf. Theorem 3.1). In §3 we will obtain a version of the Cricket theorem for the

asymptotic Teichmüller space (cf. Theorem 3.2). To show this, we will apply necessary

and sufficient conditions for the Schwarzian derivative of a local univalent function that

determine whether its asymptotic class is in the image \mathcal{A}\mathcal{T}_{1} or in the closure of the

image. These conditions are obtained in [14], and will be recalled in §2.2.
In §4, we will give three properties for quasiarcs. The asymptotic classes of the

Schwarzian derivatives with the first two properties are in the Bers boundary, and

the asymptotic classes of derivatives with the third property are not. Using the third

property, we observe that when for the complement  $\Omega$ of some simple zipper  $\alpha$ in the

sense of Thurston, the asymptotic class [$\varphi$_{ $\Omega$}] for  $\Omega$ is not in the closure of \mathcal{A}\mathcal{T}_{1} (cf.
Corollary 4.4).
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moduli space� and for her hospitality. He also thanks the referee for his/her valuable

comments.

§2. Notation

Throughout of this paper, we let D(z_{0}, r)=\{|z-z_{0}|<r\} for z_{0}\in \mathbb{C} and r>0.

For a round disk B=D(z_{0}, r) and b>0 ,
we set bB=D ( z_{0} , br). Let \mathrm{D}=D(0,1) ,

\mathrm{D}^{*}=\{|z|>1\}\cup\{\infty\} and \partial \mathrm{D}=\partial \mathrm{D}^{*}=\mathrm{S}^{1} . For a set X
, by cl(X) we mean the closure

of X in the ambient space. For a quasiarc  $\alpha$ in \hat{\mathbb{C}} , we denote by \partial $\alpha$ the endpoints of  $\alpha$.

§2.1. Teichmüller spaces of \mathrm{D}

The reader may consult [8],[9] and [10] for references and further details.

Let \mathcal{Q}C be the set of quasiconformal mappings on \mathrm{D} which fixes -i
,

1 and i . Let \mathcal{A}C

be the subset of \mathcal{Q}C consisting of asymptotically conformal mappings, where h\in \mathcal{Q}C is
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called asymptotically conformal if for any  $\epsilon$>0 there is a compact set C such that the

Beltrami differential  $\mu$[h] of h satisfies | $\mu$[h](z)|< $\epsilon$ a.e. on \mathrm{D}\backslash C . Two f_{1} and f_{2} in

\mathcal{Q}C are said to be T‐equivalent if f_{1}=f_{2} on \mathrm{S}^{1}
,

and to be AT‐equivalent if ho f_{1}=f_{2}
on \mathrm{S}^{1} for some h\in \mathcal{A}C . The set of \mathrm{T}‐equivalence classes and AT‐equivalence classes of

\mathcal{Q}C are called the universal Te ichmüller space and the asymptotic Teichmüller space of

unit disk \mathrm{D} which are denoted by T(\mathrm{D}) and AT (D) , respectively. By [f]_{T} and [f]_{AT},
we mean the \mathrm{T}‐equivalence class and the AT‐equivalence class of f\in \mathcal{Q}C , respectively.
From the definition there is a canonical projection

T(\mathrm{D})\ni[f]_{T}\mapsto[f]_{AT}\in AT(\mathrm{D}) .

Let E be an open set in \hat{\mathbb{C}} whose complement contains at least two points. Let

$\lambda$_{E}=$\lambda$_{E}(z)|dz| be the hyperbolic metric on E with curvature -4 . For a holomorphic
function  $\varphi$ on  E

,
we denote by

\displaystyle \Vert $\varphi$\Vert_{E}=\sup_{z\in E}$\lambda$_{E}(z)^{-2}| $\varphi$(z)|.
Let B(1) be a complex Banach space of holomorphic mappings  $\varphi$ on \mathrm{D}^{*} satisfying

\Vert $\varphi$\Vert_{\mathrm{D}^{*}}<\infty . Occasionally, elements of  B(1) are recognized as holomorphic quadratic
differentials on \mathrm{D}^{*}

,
because of the transformation rule of Schwarzian derivatives under

the pre‐composition with Möbius transformations.

We say that  $\varphi$\in B(1) vanishes at infinity if for any  $\epsilon$>0 there is a compact set C

in \mathrm{D}^{*} such that

(|z|^{2}-1)^{2}| $\varphi$(z)|< $\epsilon$
for all  z\in \mathrm{D}^{*}\backslash C . We denote by B(1) a subspace of B(1) consisting of holomorphic

quadratic differentials vanishing at infinity. Then, B(1) is a closed subspace, and hence

the quotient space \hat{B}(1)=B(1)/B_{0}(1) is also a complex Banach space. Let \Vert \Vert_{\mathrm{D}^{*}}^{\wedge} be

the quotient norm on \hat{B}(1) . We call the equivalence class [ $\varphi$]\in B(1) of  $\varphi$\in B(1) the

asymptotic class of  $\varphi$.

For any [f]_{T}\in T(\mathrm{D}) ,
there is a quasiconformal mapping W_{f} on \hat{\mathbb{C}} such that  $\mu$[W_{f}]=

 $\mu$[f] on \mathrm{D} and W_{f} is conformal on \mathrm{D}^{*} . Then, the mapping

 $\beta$ :  T(\mathrm{D})\ni[f]_{T}\mapsto S(W_{f}|_{\mathrm{D}^{*}})\in B(1)

is a well‐defined embedding, so called the Bers embedding, where S denotes the

Schwarzian derivative. We denote by \mathcal{T}_{1} the image of  $\beta$.

Correspondingly, in the case of the asymptotic Teichmüller space, there is also an

embedding \hat{ $\beta$} : AT (\mathrm{D})\rightarrow B(1) satisfying the following commutative diagram

T(\mathrm{D})\rightarrow^{ $\beta$}B(1)
(2.1) \downarrow \downarrow

AT (\mathrm{D})\rightarrow^{$\beta$^{\hat{}}}\hat{B}(1) ,
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where the vertical directions are the canonical projections. The embedding \hat{ $\beta$} is called

the asymptotic Bers map. We denote by \mathcal{A}\mathcal{T}_{1} the image of AT (D) under the asymptotic
Bers map.

§2.2. Characterizations for the interior and the closure

Let E be a domain in \hat{\mathbb{C}} . A mapping g:E\rightarrow\hat{\mathbb{C}} is called a locally univalent K‐

quasiregular mapping if any z_{0}\in E has a neighborhood U in E where the restriction

g|_{U} is K‐quasiconformal. A quasiloop is the image of a mapping  $\gamma$ : \mathrm{S}^{1}\rightarrow\hat{\mathbb{C}} such

that for any z_{0}\in \mathrm{S}^{1} ,
there is a neighborhood U_{0} of z_{0} in \mathbb{C} such that  $\gamma$|_{\mathrm{S}^{1}\cap U_{0}} is the

restriction of a quasiconformal mapping on U_{0} . By definition, the image of \mathrm{S}^{1} under a

locally univalent quasiregular mapping is a quasiloop.
It is known that for  $\varphi$\in B(1) ,

there is a locally univalent mapping f_{ $\varphi$} : \mathrm{D}^{*}\rightarrow\hat{\mathbb{C}},
called the developing mapping associated to  $\varphi$ , satisfying  S(f_{ $\varphi$})= $\varphi$.

Theorem 2.1 (cf. Theorem 1 in [14]). For  $\varphi$\in B(1) ,
the following conditions

are equivalent.

(a) The asymptotic class [ $\varphi$]\in\hat{B}(1) is contained in the image \mathcal{A}\mathcal{T}_{1} of AT (D) under

the asymptotic Bers map.

(b) The developing mapping f_{ $\varphi$} associated to  $\varphi$ is extended as a locally univalent quasireg‐
ular mapping on a neighborhood of \mathrm{c}1(\mathrm{D}^{*}) .

(c) f_{ $\varphi$} has a continuous extension on \mathrm{c}1() with the property that f_{ $\varphi$} is locally injective
on \mathrm{c}1() and the image f_{ $\varphi$}() is a quasiloop.

We next give a characterization for the closure of \mathcal{A}\mathcal{T}_{1} . Though we have already
obtained a characterization for locally univalent functions whose Schwarzian derivative

is in B(1) ,
we need here the following version.

Theorem 2.2 (cf. Theorem 3 in [14]). Let  $\Omega$ be a simply connected domain and

 $\varphi$_{ $\Omega$} the Schwarzian derivative of the Riemann mapping f_{ $\Omega$} : \mathrm{D}^{*}\rightarrow $\Omega$ . Then, the asymp‐

totic class [$\varphi$_{ $\Omega$}] of $\varphi$_{ $\Omega$} is in the closure \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) of \mathcal{A}\mathcal{T}_{1} in \hat{B}(1) if and only if for any

K>1 and L>1 ,
there are a K ‐quasiconfO rmal mapping g on  $\Omega$ onto a quasidisk and a

compact set  C in  $\Omega$ such that for any round disk  B in  $\Omega$-C ,
the restriction g|_{B}:B\rightarrow\hat{\mathbb{C}}

admits an L ‐quasiconfO rmal extension on \hat{\mathbb{C}}.

§3. Cricket theorem for asymptotic classes

Let  $\alpha$ be a quasiarc and  $\Omega$=\hat{\mathbb{C}}\backslash  $\alpha$ . We first recall the (original) Cricket theorem

due to K. Astala and F. Gehring to compare with our theorem.
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\downarrow

Figure 1. Schematic illustrations representing �openable at an endpoint� (the left) and

�globally openable� (the right). The dashed lines stand for the remaining arc  $\gamma$\backslash  $\alpha$.

Theorem 3.1 (Cricket theorem in [4]). Let  $\gamma$ be a quasicircle which contains  $\alpha$

as a subarc. Then the Schwarzian derivative  $\varphi$_{ $\Omega$} of the Riemann mapping of  $\Omega$ is in

the closure of \mathcal{T}_{1} if and only if for each K>1 ,
there exists a sense preserving K‐

quasiconfO rmal self‐ mapping h of \hat{\mathbb{C}} such that h(z)=z in  $\gamma$\backslash  $\alpha$ and  h( $\alpha$)\cup $\alpha$ is a

quasicircle.

§3.1. Cricket theorem for asymptotic classes

Notice from Theorem 2.1 that the asymptotic class of the Schwarzian derivative

of the Riemann mapping  f_{ $\Omega$} of  $\Omega$ is not contained in \mathcal{A}\mathcal{T}_{1} ,
since f_{ $\Omega$} can not extend

injectively around the preimage of \partial $\alpha$ . Our main theorem in this paper is as follows.

Theorem 3.2 (Cricket theorem for asymptotic classes). Let  $\alpha$ be a quasiarc and

set  $\Omega$=\hat{\mathbb{C}}\backslash  $\alpha$ . Let  $\gamma$ be a quasicircle which contains  $\alpha$ as a subarc and  D_{1} and D_{2} com‐

ponents of \hat{\mathbb{C}}\backslash  $\gamma$ . Then, the asymptotic class [] is in the Bers boundary \partial_{b}\mathcal{A}\mathcal{T}_{1} of
\mathcal{A}\mathcal{T}_{1} if and only if for any K>1 ,

there is a locally univalent K ‐quasiregular mapping
h on  $\Omega$ with the following three properties.

(1)  h fixes D_{1} pointwise.

(2) h|_{D_{2}} has a K ‐quasiconfO rmal extension on \hat{\mathbb{C}}.

(3) ho f_{ $\Omega$} is locally injective near \mathrm{S}^{1} and the image ho f_{ $\Omega$}() is a quasiloop.

We give a comment on the comparizon between Theorem 3.1 and our theorem

above. In our theorem, we deeply care about the structure around points of \partial $\alpha$ ,
which

is a local structure of  $\alpha$
,

while K. Astala and F. Gehring care about the global structure

of the quasiarc. Actually, our conditions imply that when the asymptotic class [$\varphi$_{ $\Omega$}]
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Figure 2. Gehring�s spiral.

is in the Bers boundary \partial_{b}\mathcal{A}\mathcal{T}_{1} ,
the endpoints are ((openable� by a locally univalent

quasiregular mapping with arbitrary small dilatation (cf. the left figure in Figure 1).
From Theorem 3.1, when $\varphi$_{ $\Omega$} is in the Bers boundary,  h( $\alpha$)\cup $\alpha$ is a quasicircle. In other

words, Astala and Gehring�s condition means, from our viewpoint, that when  $\varphi$_{ $\Omega$}\in\partial_{b}\mathcal{T}_{1},
the quasiarc  $\alpha$ itself needs a kind of globally openable condition by a quasiconformal

mapping with arbitrary small dilatation (cf. the right figure in Figure 1).
For the simplicity, let us suppose that  $\alpha$ is the Gehring�s spiral (cf. Figure 2). In

[12], F. Gehring observed that  $\varphi$_{ $\Omega$} is not in the closure of \mathcal{T}_{1} . However, its asymp‐

totic class is in the Bers boundary \partial_{b}\mathcal{A}\mathcal{T}_{1} (cf. §.4.1.2 or [14]). One reason why the

difference occurs is that the Gehring�s spiral is real analytic except for the origin, and

its complement has two mutually intricately‐intertwining (spiraling) ends around the

origin.

Indeed, Theorem 3.1 and Gehring�s observation in [12] tell us that these two ends

can not be unwreathed (or  $\alpha$ is not globally openable) by quasiconformal mappings with

arbitrary small dilatation.

On the other hand, according to Theorem 2.1, \mathcal{A}\mathcal{T}_{1} consists of the asymptotic
classes of Schwarzian derivatives such that the associated developing mappings admit

locally univalent quasiregular extensions. It is natural to consider that any locally uni‐

valent function on \mathrm{D}^{*} whose Schwarzian derivative is near $\varphi$_{ $\Omega$} are realized by composing
a locally univalent function on  $\Omega$ with the Riemann mapping  f_{ $\Omega$} of  $\Omega$ . By definition, \mathrm{a}

locally univalent quasiregular mapping need not be injective. Furthermore, since  $\alpha$ is a

quasiarc, the Riemann mapping  f_{ $\Omega$} extends quasiconformally along open circular arcs

\mathrm{S}^{1}\backslash f_{ $\Omega$}^{-1}(\partial $\alpha$) ,
and any locally univalent function on  $\Omega$ with small Schwarzian derivative

can extend quasiconformally at neighborhoods of points in  $\alpha$\backslash \partial $\alpha$ . Hence, to find an
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interior point in \mathcal{A}\mathcal{T}_{1} near the asymptotic class of $\varphi$_{ $\Omega$} ,
we need not pay attention to

unwreathing these spiral ends of  $\alpha$ . This situation concerns that  h in Theorem 3.2 is a

((locally� univalent quasiregular mapping.
As noted above, we should care about the (analytic and geometric) structure of

endpoints. In the case of the Gehring�s spiral, it is real analytic around endpoints. Such

endpoints can be openable by locally univalent quasiregular mappings with arbitrary
small dilatation, and hence we can find a locally univalent function on \mathrm{D}^{*} with locally
univalent quasiregular extensions whose Schwarizian derivative is near $\varphi$_{ $\Omega$} . (See §4.1.2.
See also the proof of Proposition 7.1 of [14].)

§3.2. Proof of Theorem 3.2

In this section, we shall give the proof of Theorem 3.2.

Proof of the necessity in Theorem 3.2. Suppose that the asymptotic class [$\varphi$_{ $\Omega$}] is

in the closure \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) . By Theorem 2.1 for any  $\dagger$>0 ,
there is a locally univalent

mapping g on \mathrm{D}^{*} such that g_{ $\epsilon$} admits a locally univalent quasiregular extension on the

closure \mathrm{c}1() and satisfies

(3.1) \Vert S(g_{ $\epsilon$})-$\varphi$_{ $\Omega$}\Vert_{\mathrm{D}^{*}}< $\epsilon$.

Let K>1 . Let h_{ $\epsilon$,i}=g_{ $\epsilon$}\circ(f_{ $\Omega$})^{-1}|_{D_{i}} for i=1
,
2. Notice from the Schwarz lemma that

\Vert S(h_{ $\epsilon$,i})\Vert_{D_{i}}\leq\Vert S(g_{ $\epsilon$})-$\varphi$_{ $\Omega$}\Vert_{\mathrm{D}^{*}}< $\epsilon$.

Since D_{i} is a quasidisk, when we take  $\dagger$ to be sufficiently small, each  h_{ $\epsilon$,i} admits a K‐

quasiconformal extension H_{i} on whole \hat{\mathbb{C}} from Gehring�s theorem [11]. We can easily
check that h=H_{1}^{-1}\circ g_{ $\epsilon$}\circ(f_{ $\Omega$})^{-1} has the desired properties. \square 

Proof of the sufficiency in Theorem 3.2. We may assume that  $\alpha$ connects  0 and

\infty . We here recall the following two lemmas, the first is due to K. Astala and F. Gehring
in [4] and the second is obtained by combining a result in [4] and results due to P. Tukia

and J. Väisälä in [17] (see also the last paragraph of the proof of the sufficiency in

Theorem 3.1 of [4]).

Lemma 3.3 (Lemma 3.4 in [4]). For each  0<a<\infty ,
there exists  0<b=

 b(a)<\infty with the following property: If  g is M_{1} ‐quasiconfO rmal in \hat{\mathbb{C}} with  1\leq M_{1}\leq

 e^{a/b} and fixes z_{1}, z_{2} and \infty
,

then

|g(z)-z|\leq b|z_{1}-z_{2}|\log M_{1}

foor z\in D(z_{1}, a|z_{1}-z_{2}|) .
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Lemma 3.4 (Lemma 3.6 in [4] and Theorems 5.23 and 2.6 in [17]). For M_{2}>

1
,

there exist constants t>0 and M_{3}>1 with the following property: If g is M_{3^{-}}

quasiconfO rmal and satisfies |g(z)-z|\leq tr in D(z_{0},2r) ,
then the restriction of g to

D(z_{0}, r) admits M_{2} ‐quasiconfO rmal extension on \hat{\mathbb{C}}.

For any K>1 and L>1 ,
we take K_{1}>1 in temporary such that  K_{1}\leq

\displaystyle \min\{\sqrt{K}, \sqrt{L}\} . We will modify K_{1} to be more smaller later, however, the modification

will depend only on K, L and  $\gamma$ (cf. (3.4)). We take a locally univalent quasiregular

mapping  h with the properties in Theorem 3.2 for K_{1}.

Assume that  $\gamma$ is a  K_{2} ‐quasicircle. From the condition (2) in Theorem 3.2, the

restriction h|_{D_{2}} extends to a K_{1} ‐quasiconformal mapping \hat{H}_{2} on \hat{\mathbb{C}} which fixes  $\gamma$\backslash  $\alpha$
pointwise. Since \hat{H}_{2}( $\gamma$) is a K_{1}K_{2} ‐quasicircle passing through \infty and  K_{1}\leq\sqrt{K} ,

Ahlfors�

three points principle tells us that there is a constant C_{1}>0 depending only on K and

K_{2} such that every three points $\zeta$_{1}, $\zeta$_{2}, $\zeta$_{3}\in\hat{H}_{2}( $\gamma$) which follow each other in this order

satisfy

(3.2) |$\zeta$_{1}-$\zeta$_{2}|\leq C_{1}|$\zeta$_{1}-$\zeta$_{3}|

(cf. [1]). We take a_{1}>0 satisfying a_{1}<1 and 2a_{1}(1-a_{1})^{-1}C_{1}<1 . Let L'>1 be a

constant satisfying

(3.3) L\displaystyle \geq\min\{\sqrt{K}, \sqrt{L}\}\{2\{1-\frac{108}{a_{1}^{2}}\frac{L^{\prime 2}-1}{L^{2}+1}\}^{-1}-1\}
Indeed, since the right‐hand side tends to \displaystyle \min\{\sqrt{K}, \sqrt{L}\}<L as L'\rightarrow 1

,
a constant

L'>1 satisfying (3.3) exists. We take an absolute constant b>0 for a=3 by Lemma

3.3, and constants M_{3}>1 and t>0 for M_{2}=L' by Lemma 3.4.

We redefine K_{1}>1 satisfying

(3.4) 1<K_{1}\displaystyle \leq\min\{L', M_{3}, e^{3/b}, e^{t/b}, \sqrt{K}, \sqrt{L}\}.

Since h is locally univalent K_{1} ‐quasiregular on  $\Omega$
,

there is a  K_{1} ‐quasiconformal

self‐mapping h_{1} of \mathrm{D}^{*} such that ho f_{ $\Omega$}\circ h_{1} is locally univalent. Furthermore, by the

condition (3) above, h\circ f_{ $\Omega$}\circ h_{1} is locally injective near \mathrm{S}^{1} and h\circ f_{ $\Omega$}\circ h_{1}|_{\mathrm{S}^{1}} is a quasiloop.

Hence, by Theorem 2.1 the asymptotic class of the Schwarzian derivative of ho f_{ $\Omega$}\circ h_{1}
is in \mathcal{A}\mathcal{T}_{1} . Therefore, from the commutative diagram (2.1), we find a quasidisk E and

a conformal mapping f_{1} : \mathrm{D}^{*}\rightarrow E such that f_{2}:= (hof_{ $\Omega$}\circ h_{1})\circ f_{1}^{-1} is locally univalent

on E and its Schwarzian derivative vanishes at infinity.
Let h_{2}=f_{1}\circ h_{1}^{-1}\mathrm{o}(f_{ $\Omega$})^{-1}=(f_{ $\Omega$}\circ h_{1}\mathrm{o}f_{1}^{-1})^{-1} :  $\Omega$\rightarrow E . Since h_{1} is K_{1^{-}}

quasiconformal, so is h_{2} . For  $\epsilon$>0 ,
there is a compact set C_{ $\epsilon$}' in E such that

(3.5) \displaystyle \sup_{z\in E\backslash C_{ $\epsilon$}'}$\lambda$_{E}(z)^{-2}|S(f_{2})(z)|< $\dagger$.
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Figure 3. Mappings in the proof of the sufficiency in Theorem 3.2

Let  C_{ $\epsilon$}=h_{2}^{-1}(C_{ $\epsilon$}')\subset $\Omega$ . Let  B :=D(w_{0}, r) be a round disk in  $\Omega$ with center

 w_{0} and radius r . We will show that h_{2} and C_{ $\epsilon$} with sufficiently small  $\dagger$ satisfy the

sufficient condition for being [$\varphi$_{ $\Omega$}]\in \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) in Theorem 2.2. To check this, we claim

the following lemma.

Lemma 3.5. There is an $\epsilon$_{0}>0 such that for  $\dagger$\leq $\dagger$,  3r/a_{1}\leq dist (  w_{0},  $\alpha$) and

B\subset $\Omega$\backslash C_{ $\epsilon$} , the restriction h_{2}|_{B} extends to an L^{\prime 2} ‐quasiconfO rmal mapping on \hat{\mathbb{C}}.

Proof of Lemma 3.5. Notice from the definition that ho h_{2}^{-1}=f_{2} on E.

Case 1 : B\subset D_{1} . Since h is the identity on D_{1}, f_{2}=h_{2}^{-1} on h_{2}(B) ,
and hence h_{2}

is holomorphic on B whose Schwarzian derivative satisfies

\displaystyle \sup_{w\in B}$\lambda$_{B}(w)^{-2}|S(h_{2})(w)|=\sup_{z\in h_{2}(B)}$\lambda$_{h_{2}(B)}(z)^{-2}|S(f_{2})(z)|
\displaystyle \leq\sup_{z\in E\backslash C_{ $\epsilon$}'}$\lambda$_{E}(z)^{-2}|S(f_{2})(z)|< $\epsilon$

by (3.5). Therefore, when  $\dagger$\leq$\epsilon$_{1}:=2(L^{\prime 2}-1)/(L^{\prime 2}+1) , h_{2}|_{B} extends to an L^{\prime 2}-

quasiconformal mapping on \hat{\mathbb{C}} by Ahlfors‐Weill�s theorem in [2].

Case 2 : B\subset D_{2} . Recall that the restriction h|_{D_{2}} admits a K_{1} ‐quasiconformal
extension \hat{H}_{2} on \hat{\mathbb{C}} , and hence h(B) is a K_{1} ‐quasidisk. Since f_{2}= (hof_{ $\Omega$}\circ h_{1})^{-1}\circ f_{1}^{-1},
the restriction f_{2}^{-1}|_{h(B)} of the inverse of f_{2} to h(B) is a well‐defined univalent function

on h(B) satisfying f_{2}^{-1}(h(B))=h_{2}(B) . Therefore, by (3.5) we have

\displaystyle \sup$\lambda$_{h(B)}( $\zeta$)^{-2}|S(f_{2}^{-1}|_{h(B)})( $\zeta$)|= \sup $\lambda$_{h_{2}(B)}(z)^{-2}|S(f_{2})(z)|
 $\zeta$\in h(B) z\in h_{2}(B)

\displaystyle \leq\sup_{z\in E}$\lambda$_{E}(z)^{-2}|S(f_{2})(z)|< $\dagger$.
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Since h(B) is a K_{1} ‐quasidisk and K_{1}\leq L' , by Gehring�s theorem [11], there is an

$\epsilon$_{2}=$\epsilon$_{2}(L') such that when  $\dagger$\leq $\dagger$, f_{2}^{-1}|_{h(B)} admits a L'‐quasiconformal extension on

\hat{\mathbb{C}} , and hence h_{2}|_{B}=(f_{2}^{-1}|_{h(B)})\circ h extends to an L^{\prime 2} ‐quasiconformal mapping on \hat{\mathbb{C}}.

Case 3 :  B\cap( $\gamma$\backslash  $\alpha$)\neq\emptyset . This is the most interesting case. Let  B=D(w_{0}, r) with

 3r/a_{1}\leq dist (  w_{0},  $\alpha$) as above. Fix w_{1}\in B\cap( $\gamma$\backslash  $\alpha$) . Let B'=3B=D(w_{0},3r)\subset $\Omega$.
Notice from the definition that

3r\leq a_{1} dist ( w_{0},  $\alpha$)\leq a_{1}|w_{0}|.

Let z\in\hat{H}_{2}( $\alpha$) and w\in B' . Notice that |w-w_{0}|\leq a_{1}|w_{0}|, |w_{1}-w_{0}|\leq r<a_{1}|w_{0}| and

|w_{1}|\geq|w_{0}|-|w_{1}-w_{0}|\geq(1-a_{1})|w_{0}|.

Since \hat{H}_{2}( $\alpha$) and w_{1} are divided at  0\in $\gamma$ , by applying Ahlfors� three points principle

(3.2) for  w_{1},0 and z
,

we obtain

|w-w_{1}|\leq|w-w_{0}|+|w_{1}-w_{0}|

\leq 2a_{1}|w_{0}|\leq 2a_{1}(1-a_{1})^{-1}|w_{1}|

\leq 2a_{1}(1-a_{1})^{-1}C_{1}|z-w_{1}|<|z-w_{1}|,

and hence

(3.6) B'\cap h|_{\mathrm{c}1(D_{2})}( $\alpha$)=\emptyset,

where h|_{\mathrm{c}1(D_{2})} is the continuous extension of h|_{D_{2}} to the closure cl(D). We claim

Claim. h is injective on B'

Proof of Cl aim. Let z_{1}, z_{2}\in B' with h(z_{1})=h(z_{2}) . When both z_{1} and z_{2} are

in B'\cap D_{i} for some i=1
, 2, z_{1}=z_{2} since h|_{D_{i}} extends to a quasiconformal mapping

on \hat{\mathbb{C}} . Suppose to the contrary that z_{1}\neq z_{2} and z_{i}\subset B'\cap D_{i} for i=1
,
2. Then

z_{1}=h(z_{1})=h(Z) since h fixes D_{1} pointwise. Therefore, h(D_{2})\cap(B'\cap D_{1})\neq\emptyset.
Let Bí be a component of B'\cap D_{1} with Bí \cap h(D) \neq\emptyset . Since

\partial h(D_{2})=\hat{H}_{2}( $\gamma$)=( $\gamma$\backslash  $\alpha$)\cup h|_{\mathrm{c}1(D_{2})}( $\alpha$) ,

from (3.6), we have Bí \cap\partialh(D) =\emptyset . Hence,  B\'{i}\subset h(D_{2}) .

Let $\gamma$_{1} be a component of  $\gamma$\cap B'=( $\gamma$\backslash  $\alpha$)\cap B' contained in \partialBí. Since  $\gamma$ is a

Jordan curve dividing  D_{1} and D_{2} ,
there is a component B_{2}' of D_{2}\cap B' which shares $\gamma$_{1}

with Bí in their boundaries. Since h fixes  $\gamma$\backslash  $\alpha$ pointwise,  h(D) contains the B_{2}' ‐side of

$\gamma$_{1} . On the other hand, as discussed above, Bí is contained in h(D_{2}) . Therefore, h(D)
also contains the Bí‐side of $\gamma$_{1} . Thus, a Jordan domain h(D) contains both sides of a

subarc $\gamma$_{1}(\subset( $\gamma$\backslash  $\alpha$)) of its boundary \partial h(D_{2}) . This is a contradiction. \square 
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We now continue the proof of Case 3 in Lemma 3.5. Since  $\gamma$\backslash  $\alpha$ is unbounded and

 B\cap( $\gamma$\backslash  $\alpha$)\neq\emptyset ,
there is  w_{2}\in $\gamma$\backslash  $\alpha$ with |w_{1}-w_{2}|=r . Since w_{1}, w_{2}\in B(w_{0},2r)\cap( $\gamma$\backslash  $\alpha$)

and h fixes  $\gamma$\backslash  $\alpha$ pointwise, by Lemma 3.3 and (3.4),

(3.7) |h(w)-w|=|\hat{H}_{2}(w)-w|\leq b|w_{1}-w_{2}|\log K_{1}\leq tr

for w\in D(w_{0},2r)\cap D_{2} . Since h also fixes D_{1} pointwise, the inequality (3.7) also holds

on whole D(w_{0},2r) . From (3.4), h is M_{3}‐quasiconformal on D(w_{0},2r)=2B . Hence,

by Lemma 3.4, the restriction of h to B has an L'‐quasiconformal extension on \hat{\mathbb{C}}.

Therefore, by applying the same argument as that in the proof of Case 2 above, we

conclude that h_{2}|_{B}=(f_{2}^{-1}|_{h(B)})\circ h extends to an L^{\prime 2} ‐quasiconformal mapping on \hat{\mathbb{C}},
when  $\dagger$ is less than an appropriate constant  $\epsilon$_{3}=$\epsilon$_{3}(L') depending only on L' . Thus,
we complete the proof of Lemma 3.5. \square 

Let us return to proving the sufficiency in Theorem 3.2. Let B be a round disk

in  $\Omega$\backslash C_{ $\epsilon$} for  $\dagger$\leq $\dagger$, where $\epsilon$_{0} is the constant in the claim above. We have already
checked that the restriction of h to (a_{1}/3)B has an L^{\prime 2} ‐quasiconformal extension on

\hat{\mathbb{C}} . Notice from (3.4) that K_{1}\displaystyle \leq\min\{\sqrt{K}, \sqrt{L}\} ,
and hence, h_{2} is a K‐quasiconformal

mapping onto a quasidisk E . Thus, from (3.3) and Lemma 3.6 below, for any round disk

B\subset $\Omega$\backslash C_{ $\epsilon$} ,
the restriction h_{2}|_{B} admits an L‐quasiconformal extension. This implies

that the asymptotic class [$\varphi$_{ $\Omega$}] is in the closure \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) by Theorem 2.2. \square 

To accomplish the proof of Theorem 3.2, we need to check the following lemma.

(We apply the lemma for $\Omega$_{0}= $\Omega$\backslash C_{ $\epsilon$}. )

Lemma 3.6. Let $\Omega$_{0} be a domain in \mathbb{C} and g a K ‐quasiconfO rmal mapping on

$\Omega$_{0} onto a domain in \hat{\mathbb{C}} . Suppose that there is a constant 0<b<1 such that for any

round disk B\subset$\Omega$_{0} ,
the restriction of g to bB extends to an L' ‐quasiconfO rmal mapping

on \hat{\mathbb{C}} . Then, for any round disk B\subset$\Omega$_{0} ,
the restriction ofg to B also admits an

L ‐quasiconfO rmal extension on \hat{\mathbb{C}} , where

(3.8) L=K\displaystyle \{2\{1-\frac{12}{b^{2}}\frac{L'-1}{L+1}\}^{-1}-1\}
Proof. This lemma might be well‐known. However, we give the proof for the

completeness.
Since g is K‐quasiconformal, there is a K‐quasiconformal mapping W on \hat{\mathbb{C}} such

that Wog is conformal on $\Omega$_{0} . Let B be a round disk in $\Omega$_{0} . By applying the similarity
on \mathbb{C} , we may assume that B is the unit disk D.

Let z_{0}\in B . Since B'=D(z_{0},1-|z_{0}|)\subset B\subset$\Omega$_{0} ,
from the assumption, the

restriction of Wog on bB' admits an L'‐quasiconformal extension on \hat{\mathbb{C}} . Therefore,

(b(1-|z_{0}|))^{2}|S(W\circ g)(z_{0})|\leq\Vert S(W\circ g)\Vert_{bB'}\leq 6(L'-1)/(L'+1) .
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Thus, if L'' is at least the right hand side of (3.8), then

(1-|z_{0}|^{2})^{2}|S(W\circ g)(z_{0})|\leq 4(1-|z_{0}|)^{2}|S(W\circ g)(z_{0})|

\leq 24b^{-2}(L'-1)/(L'+1)

\leq 2(L''-1)/(L''+1)

for all z_{0}\in B . Hence, by Ahlfors‐Weill�s theorem ([2]), the restriction (Wog) |_{B} admits

an L''‐quasiconformal extension on \hat{\mathbb{C}} , which implies what we desired. \square 

§4. Examples

This section is devoted to discuss three properties for quasiarcs  $\alpha$ . In §4.1, we

introduce two properties which imply the asymptotic class [] for  $\Omega$=\hat{\mathbb{C}}\backslash  $\alpha$ is in the

closure \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) . The second property seems to be more comprehensible than the first

one, though a quasiarc with the second property satisfies the first (Corollary 4.2). In

§4.2, following [4], we recall a notion of interlocking sequences, and prove that when

\infty\in\partial $\alpha$ and  $\alpha$ contains an interlocking sequence converges to \infty
,

the asymptotic class

[$\varphi$_{ $\Omega$}] for  $\Omega$ is not in the closure \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) .

§4.1. Quasiarcs associated to points in the Bers boundary

4.1.1. Asymptotically conformal quasiarcs at endpoints A quasiarc  $\alpha$ is said

to be asymptotically conformal at endpoints if for any  L>1 ,
there is a quasiconformal

mapping g on \hat{\mathbb{C}} such that g is L‐quasiconformal on neighborhoods of 0 and 1 and

 $\alpha$=g([0,1]) .

Then, we have the following theorem.

Theorem 4.1. When a quasiarc  $\alpha$ is asymptotically conformal at endpoints, the

asymptotic class [] for  $\Omega$=\hat{\mathbb{C}}\backslash  $\alpha$ is in the Bers boundary \partial_{b}\mathcal{A}\mathcal{T}_{1}.

Proof. We may assume that \partial $\alpha$\subset C. Fix  K>1 . Let g be a quasiconformal

mapping on \hat{\mathbb{C}} such that  $\alpha$=g([0,1]) and g is L‐quasiconformal on neighborhoods
V_{1} and V_{2} of 0 and 1, respectively. Take 0<r_{0}<1/2 such that D(0, r_{0})\subset V_{1} and

D(1, r_{0})\subset V_{2} . We will construct a locally univalent K‐quasiregular mapping h with

the conditions in Theorem 3.2 for appropriately small L.

Fix a sufficiently small constant l>0 . For t\in[0 ,
1 ] ,

let v(t, y) be a function on

[2, 2] defined by

v(t, y)=\left\{\begin{array}{l}
lt+\frac{lt+2}{2}y (-2\leq y\leq 0)\\
lt+\frac{2-lt}{2}y (0\leq y\leq 2) .
\end{array}\right.
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21 2+2\mathrm{i} 21 \mathrm{Z}+2\mathrm{i}

 $\phi$(1)=1+|\mathrm{i}

0 2 \rightarrow^{ $\phi$\tilde{}}0 2

‐Zi 2‐2i ‐2i 2‐2i

Figure 4. The mapping \tilde{ $\phi$} on the rectangle

Then, we define a quasiconformal mapping \tilde{ $\phi$} on the rectangle [0 ,
2 ] \times[-2, 2] by

\tilde{ $\phi$}(x+iy)=\left\{\begin{array}{ll}
x+iv(x, y) & (0\leq x\leq 1)\\
x+iv(2-x, y) & (1\leq x\leq 2) .
\end{array}\right.
By definition, \tilde{ $\phi$} extends to a quasiconformal mapping on \hat{\mathbb{C}} by putting the identity

mapping outside the rectangle (see Figure 4). It is easy to check that the maximal

dilatation of \tilde{ $\phi$} is 1+O(l) as l\rightarrow 0.

Let  $\phi$ be the restriction of \tilde{ $\phi$} to the square [0 ,
2 ] \times[0 ,

2 ] . Then,  $\phi$ also admits

an extension by setting  $\phi$(z)=z on the outside of square (but the extension is not

continuous along the lower edge of the square). Define

(4.1) fi(z)=\left\{\begin{array}{ll}
T_{1}^{-1}\circ $\phi$\circ T_{1}(z) & \mathrm{o}\mathrm{n} D(0, r_{0})\\
T_{2}^{-1}\circ $\phi$\circ T_{2}(z) & \mathrm{o}\mathrm{n} D(1, r_{0})\\
z & 
\end{array}\right.otherwise,

where T_{1} : D(0, r_{0})\rightarrow D(0,2\sqrt{2}) and T_{2} : D(1, r_{0})\rightarrow D(2,2\sqrt{2}) are affine mappings
defined by T_{1}(z)=(2\sqrt{2}/r)z and T_{2}(z)=(2\sqrt{2}/r_{0})(z-1)+2 . Then f_{l} is a quasi‐
conformal mapping on \hat{\mathbb{C}}\backslash [0 ,

1 ] with the same maximal dilatation as that of  $\phi$ . Notice

from the definition that  f_{l}(z)=z on the lower‐half plane \mathbb{H}_{-} and f_{l}(\mathbb{H}_{+})\subset \mathbb{H}_{+} where

\mathbb{H}_{+} is the upper‐half plane. Hence f_{l}(\hat{\mathbb{C}}\backslash [0,1])\subset\hat{\mathbb{C}}\backslash [0 ,
1 ] . By a simple calculation,

we can check that the maximal dilatation f_{l} tends to 1 as l\rightarrow 0 . Therefore, we may

choose l>0 such that f_{l} is L‐quasiconformal.
Set h=g\circ f_{l}\circ g^{-1} . Then, h is an L^{3} ‐quasiconformal mapping on  $\Omega$

,
and hence it

is in particular a locally univalent  L^{3}‐quasiregular mapping on  $\Omega$ . Let  $\gamma$=g(\mathbb{R}\cup \mathrm{f}\mathrm{i}\}) ,
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D_{1}=g() and D_{2}=g(\mathbb{H}_{+}) . We shall check that h satisfies the three conditions in

Theorem 3.2 for K when L is sufficiently small.

(1) It follows from the definition of f_{l} that h fixes D_{1} pointwise.

(2) Since the maximal dilatation of \tilde{ $\phi$} tends to 1 as l\rightarrow 0 ,
we can choose l to be

sufficiently small such that f_{l}|_{\mathbb{H}_{+}} admits an L‐quasiconformal extension \tilde{f_{l}} on \hat{\mathbb{C}} , which

defined by the same equations in (4.1) for f_{l} except for exchanging  $\phi$ for \tilde{ $\phi$} . Since \tilde{f_{l}}
coincides with the identity outside disks D(0, r_{0}) and D(1, r_{0}) ,

the conjugation go \tilde{f_{l}}\mathrm{o}g^{-1}
is an L^{3}‐quasiconformal extension of h|_{D_{2}} on the Riemann sphere.

(3) Recall that f_{ $\Omega$} is the Riemann mapping on \mathrm{D}^{*} onto  $\Omega$ . Note that  $\phi$ is defined by
the angle‐opening procedure at  z=0 and 2 and g^{-1}\circ f_{ $\Omega$} is a quasiconformal mapping
on \mathrm{D}^{*} onto \hat{\mathbb{C}}\backslash [0 ,

1 ] . Thus, the image of \mathrm{S}^{1} under f_{l}\circ g^{-1}\circ f_{ $\Omega$} is a polygonal curve

in \mathbb{C} . Hence, we can check that for any z_{0}\in \mathrm{S}^{1}, f_{l}\circ g^{-1}\circ f_{ $\Omega$} admits a quasiconformal
extension on a neighborhood of z_{0} . Therefore, f_{l}\circ g^{-1}\circ f_{ $\Omega$} is locally injective near \mathrm{S}^{1}

and the image f_{l}\circ g^{-1}\circ f_{ $\Omega$}() is a quasiloop. Since g is quasiconformal on the Riemann

sphere, ho f_{ $\Omega$}=g\circ f_{l}\circ g^{-1}\circ f_{ $\Omega$} satisfies the desired properties. \square 

Remark. Asymptotically conformal quasiarcs at endpoints in this section are

comparable objects to asymptotically conformal quasiarcs in [4], where a quasiarc  $\alpha$

is, by definition, asymptotically conformal if for any  K>1 ,
there is a quasiconformal

mapping g on \hat{\mathbb{C}} such that  g([0, \infty])= $\alpha$ and  g is K‐quasiconformal on a neighborhood
of the interval [0, \infty] . K. Astala and F. Gehring showed that for the complement  $\Omega$ of

asymptotically conformal quasiarc, the corresponding Schwarzian derivative  $\varphi$_{ $\Omega$} is in the

closure of the universal Teichmüller space (cf. Theorem 4.1 in [4]). Clearly, asymptoti‐

cally conformal quasiarc is asymptotically conformal at endpoints, but the converse does

not hold in general. For instance, the Gehring�s spiral is not asymptotically conformal,
but is asymptotically conformal at endpoints.

4.1.2. Real analytic quasiarcs at endpoints Let us introduce a typical asymp‐

totically conformal quasiarc at endpoints. Suppose that \partial $\alpha$\subset \mathbb{C} . We say that  $\alpha$ is real

analytic at endpoints if for each point  w_{1}\in\partial $\alpha$ ,
there is a real analytic mapping  g on

(-1,1) and a neighborhood V at w_{1} such that g(0)=w_{1}, g'(0)\neq 0 ,
and g([0,1))= $\alpha$\cap V.

The following corollary implies that the asymptotic class of the Schwarzian deriva‐

tive of the Riemann mapping for the complement of the Gehring spiral is in the Bers

boundary of \mathcal{A}\mathcal{T}_{1}.

Corollary 4.2. When a quasiarc  $\alpha$ is real analytic at endpoints, the asymptotic
class [$\varphi$_{ $\Omega$}] of the Schwarzian derivative for  $\Omega$=\mathbb{C}\backslash  $\alpha$ is in the Bers boundary of \mathcal{A}\mathcal{T}_{1}.
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Proof. By virtue of Theorem 3.2, it suffices to show that  $\alpha$ is asymptotically
conformal at endpoints.

Let \partial $\alpha$=\{w_{1}, w_{2}\}\subset C. Since every real analytic function on an interval admits

a holomorphic extension on a neighborhood of the interval, from the assumption, there

is a  $\delta$>0 such that for each point  w_{i}\in\partial $\alpha$ ,
there is a conformal mapping  g_{i} on D(0,  $\delta$)

satisfying g_{i}(0)=w_{i} and g_{i}([0,  $\delta$))= $\alpha$\cap V_{i} for some neighborhood V_{i} of w_{i} . We may

assume that  $\delta$<1/2.
Consider a mapping g on D(0,  $\delta$)\cup D(1,  $\delta$) defined by g(z)=g(z) on D(0,  $\delta$) and

g(z)=g_{2}(1-z) on D(1,  $\delta$) . Since  $\alpha$ is a quasiarc, when we replace  $\delta$ by a sufficiently
small constant if necessary, we can see that  g extends to a quasiconformal mapping on

\hat{\mathbb{C}} with  g([0,1])= $\alpha$ . Since  g is conformal near 0 and 1, we conclude the assertion. \square 

§4.2. Quasiarcs associated to points not in the Bers boundary

4.2.1. Interlocking sequences From now on, let  $\alpha$ be a quasiarc connecting  0 and

\infty . Let  $\gamma$ be a quasicircle which contains  $\alpha$ as a subarc. For consecutive three points

 z_{j-1}, z_{j}, z_{j+1} in a sequence \mathrm{z}=\{z_{j}\}_{j=1}^{\infty} ,
we set r_{j}(\mathrm{z})=(z_{j+1}-z_{j})/(z_{j-1}-z_{j}) . Following

Astala and Gehring [4], a sequence \mathrm{z}=\{z_{j}\}_{j=1}^{\infty} in  $\alpha$ is called interlocking if there is a

constants  0<a,  b<\infty , disjoint neighborhood  V_{j} of z_{j} ,
and a component G of \hat{\mathbb{C}}\backslash  $\gamma$

such that

(1) |r_{j}(\mathrm{z})|\leq a for j\geq 2

(2) Let \mathrm{w}=\{w_{j}\}_{j=1}^{\infty} be a sequence. If w_{j-1}\in V_{j-1}\cap G, w_{j}\in V_{j}\cap G, w_{j+1}\in G and

|r_{j}(\mathrm{w})-r_{j}(\mathrm{z})|\leq b for some j\geq 2 ,
then w_{j+1}\in V_{j+1}.

(3) diam (V_{j})/|z_{j}|\rightarrow 0 as j\rightarrow\infty,

where diam(V) denotes the Euclidean diameter of a set V (see also [3] and [16]).
The following theorem is proved by the similar argument as that of Theorem 4.9

of [4]. However, we give the proof for the completeness.

Theorem 4.3. Let  $\alpha$ be a quasiarc connecting  0 and \infty
,

and set  $\Omega$=\hat{\mathbb{C}}\backslash  $\alpha$ . If
 $\alpha$ contains an interlocking sequence \{z_{j}\}_{j=1}^{\infty} which converges to \infty

,
then the asymptotic

class [$\varphi$_{ $\Omega$}] is not in the Bers boundary \partial_{b}\mathcal{A}\mathcal{T}_{1}.

Proof. Without loss of generality, we may assume that  1\in $\gamma$\backslash  $\alpha$ . Let  D_{2} be the

component of \hat{\mathbb{C}}\backslash  $\gamma$ in the definition of the interlocking sequence \mathrm{z}=\{z_{j}\}_{j=1}^{\infty} . Let

D_{1} be the other component. Let $\alpha$_{i} be the side of  $\alpha$ facing  D_{i} for i=1
,
2. Let f_{ $\Omega$}

is the Riemann mapping of \mathrm{D}^{*}\rightarrow $\Omega$ with  f_{ $\Omega$}(\{-1,1\})=\{0, \infty\} and  f_{ $\Omega$}(1)=\infty . For

the simplicity of the argument, we assume that the lower‐half part of the unit circle \mathrm{S}^{1}
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corresponds to the side $\alpha$_{2} under f_{ $\Omega$} . Let \{x_{j}\}_{j=1}^{\infty} and \{y_{j}\}_{j=1}^{\infty} be the sequences in the

upper and lower‐half parts of the unit circle \mathrm{S}^{1} satisfying f_{ $\Omega$}(x_{j})=f_{ $\Omega$}(y_{j})=z_{j}.
Suppose to the contrary that [$\varphi$_{ $\Omega$}]\in \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) . Fix K>1 and let h be a locally uni‐

valent K‐quasiregular mapping for  $\alpha$ satisfying properties in Theorem 3.2. We suppose

that  h fixes a component D_{1} of \hat{\mathbb{C}}\backslash  $\gamma$ pointwise. Since ho  f_{ $\Omega$} extends locally to a quasi‐
conformal mapping near 1, there is a quasicircle $\gamma$' containing 0 and ho f_{ $\Omega$}(\mathrm{S}^{1}\cap D(1,  $\delta$))
as a subarc for some sufficiently small  $\delta$ . Furthermore, since  h fixes D_{1} pointwise, we

may assume that all w_{j}=h\circ f(y) is contained in D_{2} . Notice that ho f_{ $\Omega$}(x_{j})=z_{j} for

j\geq 1 . Set \mathrm{w}=\{w_{j}\}_{j=1}^{\infty}.
Let \hat{H}_{2} be an K‐quasiconformal extension of the restriction h|_{D_{2}} . Since h fixes

 $\gamma$\backslash  $\alpha$ pointwise, so does \hat{H}_{2} . Hence, \hat{H}_{2} converges to the identity when K\rightarrow 1 . Thus,

by Lemma 3.3, we can choose K>1 such that w_{i}=\hat{H}_{2}(z_{i})\in V_{i} for i=1
, 2, and any

K‐quasiconformal mapping g fixing 0 , 1, \infty satisfies

(4.2) |g(w)-w|\leq b

for w\in D(0, a) . We consider a quasiconformal mapping

g_{j}(w)=\displaystyle \frac{1}{w_{j-1}-w_{j}}(\hat{H}_{2}(z_{j}+(z_{j-1}-z_{j})w)-w_{j})
for j\in \mathbb{N} . Then, each g_{j} is a K‐quasiconformal mapping fixing 0 , 1, \infty and satisfying

 g(r_{j}(\mathrm{z}))=r_{j}(\mathrm{w}) . By definition, |r_{j}(\mathrm{z})|\leq a for j\in \mathbb{N} . Hence, by (4.2) we have

|r_{j}(\mathrm{w})-r_{j}(\mathrm{z})|=|g_{j}(r_{j}(\mathrm{z}))-r_{j}(\mathrm{z})|\leq b.

Thus, since w_{1}\in V_{1} and w_{2}\in V_{2} , by virtue of the condition (2) of the definition of

interlocking sequences, we obtain inductively that w_{j}\in V_{j} for all j\in \mathbb{N} . Therefore, we

conclude

(4.3) |w_{j}-z_{j}|/|z_{j}|\leq \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(V_{j})/|z_{j}|\rightarrow 0

as  j\rightarrow\infty ,
from the condition (3) of the definition of interlocking sequences.

On the other hand, since  z_{j}=h\circ f(X) and w_{j}=h\circ f(y) are in $\gamma$' for sufficiently

large j, z_{j} and w_{j} are divided at 0 and \infty in $\gamma$' . Thus, (4.3) contradicts to Ahlfors�

three points principle and the assumption that $\gamma$' is a quasicircle. \square 

4.2.2. Simple zippers in the sense of Thurston The following example is given
in §4.12 of [4].

Fix  $\theta$ with  $\pi$/3< $\theta$<2 $\pi$/3 . For j\geq 1 ,
let $\alpha$_{j} denote the polygonal arc formed by

joining successively the points 2j-2, 2j-1, 2j-1+e^{i( $\pi$- $\theta$)}, 2j+e^{i $\theta$}, 2j with linear

segments. Next let

 $\alpha$=(\displaystyle \bigcup_{j=1}^{\infty}$\alpha$_{j})\cup\{\infty\}
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Figure 5. A simple zipper in the sense of Thurston

and  $\gamma$= (, 0)\cup $\alpha$ . Then,  $\gamma$ is a quasicircle and hence  $\alpha$ is a quasiarc. K. Astala and

F. Gehring proved that when  $\theta$< $\pi$/2 ,
the points z_{j}=j are interlocking in  $\alpha$ . (Notice

from the definition that  $\alpha$ contains all positive integers.) Such quasiarc  $\alpha$ with  $\theta$< $\pi$/2
is known to be a simple zipper in the sense of Thurston (cf. §3 of [16]).

Corollary 4.4. Let  $\alpha$ be a quasiarc defined as above with  $\theta$< $\pi$/2 . Then, the

asymptotic class [] for  $\Omega$=\hat{\mathbb{C}}\backslash  $\alpha$ is not in the closure \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) .

4.2.3. Density Problem Let \mathcal{U} be the set of differentials  $\varphi$\in B(1) whose developing

mapping f_{ $\varphi$} is univalent. The set \mathcal{U} is closed and contains the universal Teichmüller

space \mathcal{T}_{1} as an open set. L. Bers raised a problem which asked whether \mathcal{T}_{1} is dense in \mathcal{U}

or not (cf. §1.7 of [5]). This problem is recently called the Bers� density problem or the

Bers� density conjecture. As we have already noted in §3.1, F. Gehring showed that the

Schwarzian derivative of the Riemann mapping for the complement of the Gehring spiral
is not in the closure of \mathcal{T}_{1} ,

which solved the Bers density problem in the negative. At

the present time, the Bers� density problem is stated for Teichmüller spaces of arbitrary
Fuchsian groups, and solved in several cases. For instance, see [6], [7], [13] or [15].

Let \mathrm{U} be the set of asymptotic classes of all  $\varphi$\in \mathcal{U} . From the commutative diagram

(2.1), the image \mathcal{A}\mathcal{T}_{1} is contained in \hat{\mathcal{U}} . Hence, we can also formulate the density

problem for asymptotic Teichmüller spaces of Riemann surfaces1 (cf. §9 of [14]). In the

case of asymptotic Teichmüller spaces, Corollary 4.4 tells us that \mathcal{A}\mathcal{T}_{1} is not dense in

\mathrm{U} , and therefore, the density problem for this case is solved in the negative. The author

have already observed this phenomenon by giving a different simply connected domain.

(See §7.2 of [14].) However, to the author�s knowledge, the density problem is open for

arbitrary Riemann surfaces at the moment.

Let us mention the density problem for asymptotic Teichmüller spaces from a dif‐

ferent point of view. As we noted, the Schwarzian derivative, we denote here by $\varphi$_{Ceh},

for the Gehring spiral is not in \mathrm{c}1(\mathcal{T}_{1}) ,
but its asymptotic class is in \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) ,

and the

Schwarzian derivative, denoted by  $\varphi$ sz ,
for a simple zipper and its asymptotic class are

not in \mathrm{c}1() and \mathrm{c}1(\mathcal{A}\mathcal{T}_{1}) , respectively. From these observations, we find a difference

between the locations of both Schwarzian derivatives $\varphi$_{Ceh} and  $\varphi$ sz in B(1) . Namely,
when we look \mathcal{T}_{1} from an appropriate point of B(1) where is very far from the origin,

lThough we define the asymptotic Teichmüller space only for unit disk in this paper, asymptotic
Teichmüller spaces are actually defined for arbitrary Riemann surfaces. See [8] and [9].
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Figure 6. A schematic illustration representing the locations of $\varphi$_{Ceh} and $\varphi$_{SZ}.

the derivative $\varphi$_{Ceh} is behind \mathrm{c}1() like a lunar eclipse, but  $\varphi$ sz is not. (See Figure 6.)
The author expects that the study for the density problem for (asymptotic) Teichmüller

spaces contributes to elucidate how points in \mathcal{U}\backslash \mathcal{T}_{1} encircle \mathcal{T}_{1}.
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