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An application of Penner�s coordinates of

Teichmüller space of punctured surfaces

By

Toshihiro NAKANISHI *

Abstract

We apply R. C. Penner�s coordinates for the Teichmüller space of once punctured surfaces

and also his rational representation of the mapping class group to obtain certain Diophantine
equations which have infinitely many integer solutions. The family of these equations can be

thought as a generalization of the classical Markoff equation.

§1. Introduction

The Markoff equation

(1.1) m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=3m_{1}m_{2}m_{3}

is preserved by the Markoff maps, which are iterative composites of

(1.2) (m_{1}, m_{2}, m_{3})\rightarrow(m_{1}, m_{3},3m_{1}m_{3}-m_{2}) ,

(1.3) (m_{1}, m_{2}, m_{3})\rightarrow(m_{3}, m_{2},3m_{2}m_{3}-m_{1})

and their inverses. Since a Markoff map is a polynomial map with positive integer

coefficients, it sends the solution (1, 1, 1) to a positive integer solution. It is known that

all positive integer solutions of (1.1) are found in the orbits of (1, 1, 1) under the group

generated by Markoff maps.

Let \{A, B\} be a canonical generator system of a once punctured torus subgroup of

SL(2, \mathbb{R}) . Since \mathrm{t}\mathrm{r}ABA^{-1}B^{-1}=-2, (\displaystyle \frac{\mathrm{t}\mathrm{r}A}{3}, \frac{trB}{3}, \frac{\mathrm{t}\mathrm{r}AB}{3}) is a solution of (1.1). The changes
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of canonical generators \{A, B\}\rightarrow\{A, BA\} and \{A, B\}\rightarrow\{AB, B\} induce the maps

(1.2) and (1.3), respectively. Hence the group of Markoff maps acting on the solutions

of the Markoff equation (1.1) can be understood to be the mapping class group \mathcal{M}_{1,1}
acting on the Teichmüller space \mathcal{T}_{1,1} of once punctured torus. In [4, §7], R. C. Penner

treated Markoff maps as mapping classes in \mathcal{M}_{1,1} acting on the  $\lambda$ length coordinates of

\mathcal{T}_{1,1}.
In this paper we pursue an analogy of the Markoff equation and present some Dio‐

phantine equations which admit infinitely many positive integer solutions. Each of these

Diophantine equations is a model of the Teichmüller space of a once punctured surface

represented in Penner�s  $\lambda$ length coordinate space. We will show that the images of a

special positive integer solution under the mapping class group acting on the Teichmüller

space are infinitely many positive integer solutions of the Diophantine equation.
The author would like to thank the refree for her or his careful reading of the

manuscript and for many suggestions. He also thanks Ege Fujikawa for valuable com‐

ments.

§2. Distance between horocycles

Let \mathbb{H}=\{z:{\rm Im}[z]>0\} denote the hyperbolic plane equipped with the metric

(2.1) \displaystyle \frac{dx^{2}+dy^{2}}{y^{2}}.
The distance defined by (2.1) is denoted by d ). The circle at infinity \partial \mathbb{H} is the

boundary of \mathbb{H} in the Riemann sphere \mathbb{C}\cup\{\infty\} . For two distinct points p, q of \partial \mathbb{H},

l(p, q) denotes the hyperbolic geodesic line between p and q.

Let p be a point of \partial \mathbb{H} . A horocycle h at p is a Euclidean circle in \mathbb{H} tangent at p

to \partial \mathbb{H} if  p\neq\infty or a horizontal line in \mathbb{H} if  p=\infty . The point  p is called the base point
of h . Let h_{1} and h_{2} be horocycles based at distinct points p_{1} and p_{2} . Let

(2.2)  $\lambda$(h_{1}, h_{2})=e^{ $\delta$/2}

where  $\delta$ is the signed length of the portion of the geodesic  l(p_{1},p_{2}) intercepted between

the two horocycles h_{1} and h_{2},  $\delta$>0 if h_{1} and h_{2} are disjoint and  $\delta$<0 otherwise.
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Figure 2.1

We quote two important lemmas from [4]. For the sake of completeness we also give

proofs of the lemmas. But our proofs do not involve calculus in the three dimensional

Minkowski space as in employed in the first two sections of [4].

Lemma 2.1 (the half horocyclic length [4]). Let (p_{1}, p_{2},p_{3}) be a sequence of three

distinct points of \partial \mathbb{H} which agrees with the positive orientation with respect to \mathbb{H} . Let h_{i},
i=1

, 2, 3, be a horocycle based at p_{i} . If a= $\lambda$(h_{1}, h_{2}) , b= $\lambda$(h_{2}, h_{3}) and c= $\lambda$(h_{3}, h_{1}) ,

then the length of the portion of h_{1} intercepted between the two geodesic lines l(p_{1},p_{2})
and l(p_{1},p_{3}) is b/(ac) .

Proof. We may assume that p_{1}=\infty, p_{2}=0 and h_{1}=\{z:{\rm Im}[z]=1\} . Let

t=p_{3}>0 . Then we need to show that t=b/(ac) . The horocycles h_{2} and h_{3} are the

circles

x^{2}+(y-\displaystyle \frac{1}{2a^{2}})^{2}=\frac{1}{4a^{4}}, (x-t)^{2}+(y-\frac{1}{2c^{2}})^{2}=\frac{1}{4c^{4}},
and meet l(p_{2},p_{3}) ,

the upper semicircle defined by x^{2}-tx+y^{2}=0 ,
at

P=\displaystyle \frac{t}{1+a^{4}t^{2}}+i\frac{a^{2}t^{2}}{1+a^{4}t^{2}}, Q=\frac{t^{3}c^{4}}{1+c^{4}t^{2}}+i\frac{c^{2}t^{2}}{1+c^{4}t^{2}},
respectively. By definition b=\exp(d(P, Q)/2) if {\rm Re}[P]\leq{\rm Re}[\mathrm{Q}] or b=\exp(-d(P, Q)/2)
if {\rm Re}[P]>{\rm Re}[Q] . Note that {\rm Re}[P]\leq{\rm Re}[\mathrm{Q}] if and only if act\geq 1 . If b=\exp(d(P, Q)/2) ,

then by [1, Theorem 7.2.1]

b=\displaystyle \sinh(d(P, Q)/2)+\cosh(d(P, Q)/2)=\frac{|P-Q|+|P-\overline{Q}|}{2({\rm Im}[P]{\rm Im}[Q])^{1/2}}=act.
We obtain the same result for the case where b=\exp(-d(P, Q)/2) . \square 

We remark that the quantity  $\lambda$(h_{3}, h_{1}) $\lambda$(h_{1}, h_{2})^{-1} $\lambda$(h_{2}, h_{3})^{-1} is twice the h‐length de‐

fined in [4, p.313].

Lemma 2.2 (Proposition 2.6 in [4]). Let (p_{1}, p_{2}, p_{3},p_{4}) be a sequence of four dis‐

tinct points of \partial \mathbb{H} which agrees with the positive orientation with respect to \mathbb{H} . Let h_{i},
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i=1
, 2, 3, 4, be a horocycle based at p_{i} . If $\lambda$_{a}= $\lambda$(h_{1}, h_{2}) , $\lambda$_{b}= $\lambda$(h_{2}, h_{3}) , $\lambda$_{c}= $\lambda$(h_{3}, h_{4}) ,

$\lambda$_{d}= $\lambda$(h_{4}, h_{1}) , $\lambda$_{e}= $\lambda$(h_{1}, h_{3}) and $\lambda$_{f}= $\lambda$(h_{2}, h_{4}) ,
then

(2.3) $\lambda$_{e}$\lambda$_{f}=$\lambda$_{a}$\lambda$_{c}+$\lambda$_{b}$\lambda$_{d}.

Proof. We assume again that p_{1}=\infty, p_{2}=0 and h_{1}=\{z:{\rm Im}[z]=1\} . Then

the segment s in h_{1} between l(p_{1}, p_{2}) and l(p_{1}, p_{4}) is divided into the subsegment s_{1}

between l(p_{1},p_{2}) and l(p_{1},p_{3}) and the one s_{2} between l(p_{1},p_{3}) and l(p_{1},p_{4}) . The length
of s is the sum of the lengths of s_{1} and s_{2} . This is by Lemma 2.1

\displaystyle \frac{$\lambda$_{f}}{$\lambda$_{a}$\lambda$_{d}}=\frac{$\lambda$_{b}}{$\lambda$_{a}$\lambda$_{e}}+\frac{$\lambda$_{c}}{$\lambda$_{e}$\lambda$_{d}},
which is (2.3). \square 

A collection of pairwise disjoint geodesic lines in \mathbb{H} is called a geodesic ideal trian‐

gulation if they divide \mathbb{H} into ideal triangles. Let \triangle\sim be a geodesic ideal triangulation
and \mathcal{P} the set of end points of geodesic lines in \triangle\sim . Suppose that for each point  p of \mathcal{P}\mathrm{a}

horocycle h_{p} based at p is given. For a geodesic line c such that both of its end points

p and q are in \mathcal{P} , we define  $\lambda$(c)= $\lambda$(h_{p}, h_{q}) .

Lemma 2.3. Let e be a geodesic line with both end points in \mathcal{P} . Suppose that e

meets the arcs a_{1}, a_{2} ,
\cdots

,  a_{n} of \triangle\sim . Then

 $\lambda$(e)=\displaystyle \frac{P_{e}}{ $\lambda$(a_{1}) $\lambda$(a_{2})\cdots $\lambda$(a_{n})},
where P_{e} is a homogeneous polynomial of degree n+1 in \{ $\lambda$(a) : a\in\triangle\}\sim with positive

integer coefficients.

Proof. We prove the lemma by the induction on  n . Let p and q be the end points
of c . We regard e as a directed line from p to q and suppose that e meets a_{1}, a_{2},

a_{n} in this order. See Figure 2.2. Let q_{L} and q_{R} be the end points of a_{n} ,
chosen so that

q_{L} lies on the left of e . Since a_{n} is the last arc in \triangle\sim which meets  e, b=l(q_{R}, q) and

c=l(q_{L}, q) are arcs of \triangle\sim.

If n=1
,

then a=l(p, q_{R}) and d=l(p, q_{L}) are arcs of \triangle\sim
,
too. Then by Lemma 2.2

 $\lambda$(e)=\displaystyle \frac{ $\lambda$(a) $\lambda$(c)+ $\lambda$(b) $\lambda$(d)}{ $\lambda$(a_{1})}.
So the lemma is true for this case.

If n>1 ,
then there exists an m<n-1 such that a_{m+1} a_{n} have q_{L} or q_{R} as a

common end point. Without loss of generality we assume that the common end point



An application 0f Penner�s coordinates 0f Teichmüller space 0f punctured surfaces 109

is q_{L} . See Figure 2.2. Then a=l(p, q_{R}) meets a_{1}, a_{n-1} and d=l(p, q_{L}) meets a_{1},

a_{m} . Therefore, assuming that

 $\lambda$(a)=\displaystyle \frac{P_{a}}{ $\lambda$(a_{1}) $\lambda$(a_{2})\cdots $\lambda$(a_{n-1})} and  $\lambda$(d)=\displaystyle \frac{P_{d}}{ $\lambda$(a_{1}) $\lambda$(a_{2})\cdots $\lambda$(a_{m})}
with homogeneous polynomials P_{a} of degree n and P_{d} of degree m+1 ,

we have

 $\lambda$(e)=\displaystyle \frac{ $\lambda$(a) $\lambda$(c)+ $\lambda$(b) $\lambda$(d)}{ $\lambda$(a_{n})}=\frac{P_{a} $\lambda$(c)+P_{d} $\lambda$(b) $\lambda$(.a_{m+1})\cdots $\lambda$(a_{n})}{ $\lambda$(a_{1}) $\lambda$(a_{2})\cdot\cdot $\lambda$(a_{n-1})}.
The numerator of the last expression is a homogeneous polynomial of degree n+1 with

positive integer coefficients. \square 

Figure 2.2

§3. Coordinates for the Teichmüller space of a once punctured surface

§3.1. Teichmüller space of a once punctured surface

Let F_{g} denote the oriented closed surface of genus g\geq 1 and p a point of F_{g} . Let

\dot{F} denote the punctured surface F_{g}-\{p\} . The fundamental group G_{g,1} of \dot{F} has the

following presentation:

G_{g,1}=\displaystyle \langle a_{1}, b_{1}, a_{g}, b_{g}, d:(\prod_{k=1}^{g}a_{k}b_{k}a_{k}^{-1}b_{k}^{-1})d=1\rangle.
A point of the Teichmüller space \mathcal{T}=\mathcal{T}_{g,1} is a class of faithful and finite covolume

Fuchsian representations of G_{g,1} into SL(2, \mathbb{R}) . Points of \mathcal{T} are represented by marked

groups $\Gamma$_{m} ,
where  $\Gamma$ is a Fuchsian group and  m:G_{g,1}\rightarrow $\Gamma$ is an isomorphism. Let \mathcal{P}( $\Gamma$)

denote the set of all parabolic fixed points of  $\Gamma$ . Then (\mathbb{H}\cup \mathcal{P}( $\Gamma$))/ $\Gamma$ is a closed surface.

We denote this surface by \mathbb{H}/ $\Gamma$.
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§3.2.  $\lambda$‐length of an ideal arc

An ideal arc  c of the pointed surface (F,p) is a homotopically nontrivial pathjoining

p to itself in \dot{F} . An ideal arc c is simple if c\cap\dot{F} is a simple arc.

We fix a positive number  $\alpha$ . For each point  $\Gamma$_{m} of \mathcal{T}_{g,1}, D=m(d) is a parabolic
transformation in  $\Gamma$ . Let  p be the fixed point of D . We choose a horocycle h based at

p so that D acts on h by the translation of distance  $\alpha$ . Let \mathcal{H}( $\Gamma$)=\{ $\gamma$(h) :  $\gamma$\in $\Gamma$\}, \mathrm{a}

 $\Gamma$‐invariant set of horocycles.

By Nielsen�s theorem [5, Satz V.9], the marking  m of $\Gamma$_{m} is induced by an orienta‐

tion preserving homeomorphism

f_{m}:\dot{F}\rightarrow \mathbb{H}/ $\Gamma$,

which extends to a homeomorphism of F onto \overline{\mathbb{H}/ $\Gamma$} . We denote this map again by f_{m}.
Let c be an ideal arc of (F,p) and send it by f_{m} to an arc connecting the puncture

on \mathbb{H}/ $\Gamma$ to itself. A lift of this arc to \mathbb{H} connects two parabolic fixed points p_{1} and p_{2}

of  $\Gamma$ . Let  h_{1}, h_{2} be horocycles of \mathcal{H}( $\Gamma$) based at p_{1} and p_{2} . We define

 $\lambda$(c, $\Gamma$_{m})= $\lambda$(h_{1}, h_{2})

and call it the  $\lambda$ length of  c with respect to $\Gamma$_{m} . The value  $\lambda$(c, $\Gamma$_{m}) does not depend on

the choice of a lift of f(c) .

§3.3. Penner�s coordinates for the Teichmüller space

An ideal triangulation \triangle= (c_{1}, c_{2}, c_{q}) of \dot{F} is a maximal system of simple ideal

arcs of (F,p) such that

(1) c_{i} and c_{j} are not homotopic in F relative to p ,
and

(2) c_{i} and c_{j} do not intersect in \dot{F},
if i\neq j . Since \triangle is a maximal system, each complementary component of arcs in \triangle is

bounded by three ideal arcs. We call the component a triangle in \triangle . The number  q of

ideal arcs in \triangle necessarily equals  6g-3 and the number of ideal triangles is 4g-2.

Let $\Gamma$_{m}\in \mathcal{T}_{g,1} . Then f_{m}()=(f_{m}(c_{1}), f(C)) is an ideal triangulation of

(\mathbb{H}/ $\Gamma$, f_{m}(p)) . We deform f(c_{i}\cap\dot{F}) in its homotopy class into a geodesic arc in \mathbb{H}/ $\Gamma$.
Then we obtain a geodesic ideal triangulation \triangle($\Gamma$_{m}) of \dot{F}.

We define a map $\lambda$_{\triangle} : \mathcal{T}_{g,1}\rightarrow \mathbb{R}_{+}^{q} by

($\lambda$_{1}, $\lambda$_{q})=$\lambda$_{\triangle}($\Gamma$_{m})=( $\lambda$(c_{1}, $\Gamma$_{m}),  $\lambda$(c_{q}, $\Gamma$_{m})) .
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Let \{T_{1}, T_{2}, T_{4g-2}\} be the set of ideal triangles in \triangle and (c_{i1}, c_{i2}, c_{i3}) be the sides of

T_{i}, i=1, 4g-2 . Then \{c_{i1}, c_{i2}, c_{i3}\} is a subset of \triangle . Let $\lambda$_{ik}= $\lambda$(c_{ik}, $\Gamma$_{m}) ,
k=1

, 2, 3.

The following theorem is an immediate consequence of Lemma 2.1 and it shows that

the image of $\lambda$_{\triangle} is a real algebraic variety determined by a zero locus of an algebraic

equation. See also [3, Section 5.1], where the equation (3.1) in the theorem is obtained

as a limit of real algebraic representations for Teichmüller spaces of surfaces with cone

points.

Theorem 3.1. For all $\Gamma$_{m}\in \mathcal{T}_{g,1},

(3.1) \displaystyle \sum_{i=1}^{4g-2}(\frac{$\lambda$_{i1}}{$\lambda$_{i2}$\lambda$_{i3}}+\frac{$\lambda$_{i2}}{$\lambda$_{i1}$\lambda$_{i3}}+\frac{$\lambda$_{i3}}{$\lambda$_{i1}$\lambda$_{i2}})= $\alpha$.
Proof. To simplify the notation, we identify \dot{F} with \mathbb{H}/ $\Gamma$ and \triangle with \triangle($\Gamma$_{m}) . We

consider a small circle  $\beta$ around the puncture, positively directed with respect to the

orientation of  F_{g} ,
and let S_{1}, S_{2}, S_{r}, r=3(4g-2) ,

be the triangles in \triangle which  $\beta$
meets in this order. We may assume that  $\Gamma$ contains the matrix

 P=\left(\begin{array}{ll}
1 &  $\alpha$\\
 01 & 
\end{array}\right)
P acts on the horocycle h=\{z:{\rm Im}[z]=1\} as the translation  z\rightarrow z+ $\alpha$ . Let \tilde{S}_{i} be a

lift of S_{i} ,
chosen so that \tilde{S}_{i} has vertices \infty, p_{i-1} and p_{i} with

0=p_{0}<p_{1}<p_{2}<. . . <p_{r}=P(0) .

Let h_{i} be the horocycle of \mathcal{H}( $\Gamma$) based at p_{i}, i=0 , 1, r . Then by Lemma 2.2,

(3.2)  $\alpha$=\displaystyle \sum_{i=1}^{r}(p_{i}-p_{i-1})=\sum_{i=1}^{r}\frac{ $\lambda$(h_{i-1},h_{i})}{ $\lambda$(h,h_{i-1}) $\lambda$(h,h_{i})}.
Since each triangle T_{i} meets the circle  $\beta$ at three different ends,  T_{i} appears three times

in the sequence S_{1}, S_{r} ,
and then contributes the term

\displaystyle \frac{$\lambda$_{i1}}{$\lambda$_{i2}$\lambda$_{i3}}+\frac{$\lambda$_{i2}}{$\lambda$_{i1}$\lambda$_{i3}}+\frac{$\lambda$_{i3}}{$\lambda$_{i1}$\lambda$_{i2}}
to the right‐hand side of (3.2). Therefore we obtain (3.1). \square 

The equation (3.1) can be written as

(3.3) P_{\triangle}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{q})- $\alpha \lambda$_{1}$\lambda$_{2}\cdots$\lambda$_{q}=0,
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where P_{\triangle}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{q}) is a sum of 12g-6 monomials of degree q-1 . We define

\mathcal{A}_{\triangle}=\{($\lambda$_{1}, $\lambda$_{q})\in \mathbb{R}_{+}^{q}:P_{\triangle}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{q})- $\alpha \lambda$_{1}, $\lambda$_{2}\cdots$\lambda$_{q}=0\}.

The map $\lambda$_{\triangle} above is the restriction to \mathcal{T}_{g,1} of the real analytic diffeomorphism from

the decorated Teichmüller space \tilde{\mathcal{T}}_{g,1} to \mathbb{R}_{+}^{q} in [4, Theorem 3.1]. Hence

(3.4) $\lambda$_{\triangle}:\mathcal{T}_{g,1}\rightarrow \mathcal{A}_{\triangle}

is also a real analytic diffeomorphism.

Theorem 3.2. Let \triangle= (c_{1}, c_{2}, c_{q}) be an ideal triangulation of (F,p) . Let $\Gamma$_{m}
be an arbitrary point of \mathcal{T}_{g,1} and define $\lambda$_{i}= $\lambda$(c_{i}, $\Gamma$_{m}) , i=1, q . Then for any ideal

arc c in \dot{F},

(3.5)  $\lambda$(c, $\Gamma$_{m})=\displaystyle \frac{P_{c}($\lambda$_{1},$\lambda$_{2}.'.\cdot\cdot.\cdot,$\lambda$_{q})}{$\lambda$_{1}^{m_{1}}$\lambda$_{2}^{m_{2}}$\lambda$_{q}^{m_{q}}},
where m_{i} is the geometric intersection number of c and c_{i} in \dot{F}. P_{c} is a homogeneous

polynomial of degree m_{1}+m_{2}+\cdots+m_{q}+1 with positive integer coefficients.

Proof. Let \triangle($\Gamma$_{m})\sim be the lift of \triangle($\Gamma$_{m}) . Take a lift of f(c) and let e be the geodesic
line which connects the end points of the lift. Then Lemma 2.3 applied to e and \triangle\sim shows

that  $\lambda$(c, $\Gamma$_{m}) has the form (3.5). \square 

§4. Integer solutions of a Diophantine equation

Let \mathcal{M}_{g,1} denote the mapping class group of \dot{F} . Each element  $\varphi$ of \mathcal{M}_{g,1} acts on

\mathcal{T}_{g,1} by changing the marking m to m\circ$\varphi$_{*}^{-1} ,
where $\varphi$_{*} is the automorphism of the surface

group G_{g,1} induced by  $\varphi$.

We fix an ideal triangulation \triangle= (c_{1}, c_{2}, c_{q}) of (F, p) and consider Penner�s

coordinate‐system $\lambda$_{\triangle} : \mathcal{T}_{g,1}\rightarrow \mathbb{R}_{+}^{q} . Then, by definition,

$\lambda$_{\triangle}( $\varphi$($\Gamma$_{m}))=( $\lambda$($\varphi$^{-1}(c_{1}), $\Gamma$_{m}),  $\lambda$($\varphi$^{-1}(cq), $\Gamma$_{m})) .

By [4, Corollary 7.4] each entry  $\lambda$($\varphi$^{-1}(c_{i}), $\Gamma$_{m}) is a rational function. Moreover, The‐

orem 3.2 shows that it is of degree 1 of the form as is described in (3.5). Therefore we

obtain a rational map R_{ $\varphi$} : \mathbb{R}^{q}\rightarrow \mathbb{R}^{q} . Penner showed in [4] that the correspondence

 $\varphi$\rightarrow R_{ $\varphi$} is a faithful representation of \mathcal{M}_{g,1} to a group of rational transformations in

\mathbb{R}^{q} . Since R_{ $\varphi$}\circ$\lambda$_{\triangle}=$\lambda$_{\triangle}\circ $\varphi$, R_{ $\varphi$} preserves the algebraic equation (3.3).
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If  $\alpha$=12g-6 ,
then ($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{q})=(1,1, 1) is a solution of the equation (3.3).

For all  $\varphi$\in \mathcal{M}_{g,1} ,
the entries of R_{ $\varphi$} are of the form as in (3.5). Therefore R_{ $\varphi$}(1,1, 1)

are positive integer solutions of (3.3).
If  $\Lambda$= ($\lambda$_{1}, $\lambda$_{q}) is fixed by a  $\varphi$\in \mathcal{M}_{g,1} ,

then  $\varphi$ is the class of a conformal

automorphism of the Riemann surface corresponding to  $\Lambda$ . By Wiman�s theorem the

order of the group of conformal automorphisms of a Riemann surface of type (g, 1) ,

g\geq 1 ,
does not exceed 2(2g+1) if g>1 or 3 if g=1[2] . This means that only a

finite number of elements in \mathcal{M}_{g,1} send (1, 1, 1) to itself, and hence the orbit space

\{R_{ $\varphi$}(1, 1, 1) :  $\varphi$\in \mathcal{M}_{g,1}\} contains infinitely many points.

Proposition 4.1. If  $\alpha$=12g-6 ,
then there are infinitely many positive integer

solutions of the equation (3.3)

Since R_{ $\varphi$} with  $\varphi$\in \mathcal{M}_{g,1} is a rational map, an integer solution of (3.3) may not

necessarily be sent to an integer solution by R_{ $\varphi$} . This part is different from the case

of Markoff maps which are polynomial maps of positive integer coefficients and hence

we cannot employ Markoff�s method which concludes that the set of all positive integer
solutions of the Markoff equation coincides with the orbit of (1, 1, 1) under all Markoff

maps. The author does not know whether all positive integer solutions of (3.3) are in

the orbit of (1, 1, 1) under \mathcal{M}_{g,1} . In [3] positive integer solutions of a Diophantine

equation which arises from the Teichmüller space of twice punctured torus are consid‐

ered. For this case there are positive integer solutions such that their orbits under the

mapping class group \mathcal{M}_{1,2} contain non integral points.

Let \triangle_{1} and \triangle_{2} be two ideal triangulations of (F_{g},p) . Then $\lambda$_{\triangle_{2}}\circ$\lambda$_{\triangle_{1}}^{-1} is a rational

map whose entries are of the form (3.5). Let (1, 1, 1) be a solution of

P_{\triangle_{1}}-(12g-6)$\lambda$_{1}$\lambda$_{2}\cdots$\lambda$_{q}=0,

which is the equation (3.3) with \triangle=\triangle_{1} and  $\alpha$=12g-6 . Then $\lambda$_{\triangle_{2}}\circ$\lambda$_{\triangle_{1}}^{-1}(1,1, 1)
is a positive integer solution of

(4.1) P_{\triangle_{2}}-(12g-6)$\lambda$_{1}$\lambda$_{2}\cdots$\lambda$_{q}=0.

The author does not know whether this point belongs to the orbits of (1, 1, 1) as a

solution of (4.1) under \mathcal{M}_{g,1}.
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