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Abstract

We give some estimates for the asymptotic orders of degenerating Eisenstein series for

certain families of degenerating punctured Riemann surfaces, motivated by the question of

identifying L_{2} ‐cohomology of the Takhtajan‐Zograf metric that is originally asked by To and

Weng.

§1. Introduction

We consider the Teichmüller space T_{g,n} and the associated Teichmüller curve \mathcal{T}_{g,n}
of Riemann surfaces of type (g, n) (i.e., Riemann surfaces of genus g and with n>0

punctures). We will assume that 2g-2+n>0 ,
so that each fiber of the holomor‐

phic projection map  $\pi$ : \mathcal{T}_{g,n}\rightarrow T_{g,n} is stable or equivalently, it admits the complete

hyperbolic metric of constant sectional curvature -1 . The kernel of the differential

T\mathcal{T}_{g,n}\rightarrow TT_{g,n} forms the so‐called vertical tangent bundle over \mathcal{T}_{g,n} ,
which is denoted

by T^{V}\mathcal{T}_{g,n} . The hyperbolic metrics on the fibers induce naturally a Hermitian metric

on T^{V}\mathcal{T}_{g,n}.
In the study of the family of \overline{\partial}_{k} ‐operators acting on the k‐differentials on Riemann

surfaces (i.e., cross‐sections of (T^{V}\mathcal{T}_{g,n})^{-k}|_{$\pi$^{-1}(s)}\rightarrow$\pi$^{-1}(s), s\in T_{g,n} ), Takhtajan and

Zograf introduced in [11] a Kähler metric on T_{g,n} ,
which is known as the Takhtajan‐

Zograf metric. In [11], they showed that the Takhtajan‐Zograf metric is invariant under

the natural action of the Teichmüller modular group \mathrm{M}\mathrm{o}\mathrm{d}_{g,n} and it satisfies the following
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remarkable identity on T_{g,n} :

c_{1}($\lambda$_{k}, \displaystyle \Vert\cdot\Vert_{Q,k})=\frac{6k^{2}-6k+1}{12$\pi$^{2}}$\omega$_{\mathrm{W}\mathrm{P}}-\frac{1}{9}$\omega$_{\mathrm{T}\mathrm{Z}}.
Here $\lambda$_{k}=\det(\mathrm{i}\mathrm{n}\mathrm{d}\overline{\partial}_{k})=\wedge^{\max}\mathrm{K}\mathrm{e}\mathrm{r}\overline{\partial}_{k}\otimes(\wedge^{\max} Coker \overline{\partial}_{k})^{-1} denotes the determinant

line bundle on T_{g,n}, \Vert\cdot\Vert_{Q,k} denotes the Quillen metric on $\lambda$_{k} ,
and $\omega$_{\mathrm{W}\mathrm{P}}, $\omega$_{\mathrm{T}\mathrm{Z}} denote

the Kähler form of the Weil‐Petersson metric, the Takhtajan‐Zograf metric on T_{g,n} re‐

spectively. In [13], Weng studied the Takhtajan‐Zograf metric in terms of Arakelov

intersection, and he proved that \displaystyle \frac{4}{3}$\omega$_{\mathrm{T}\mathrm{Z}} coincides with the first Chern form of an associ‐

ated metrized Takhtajan‐Zograf line bundle over the moduli space \mathcal{M}_{g,n}=T_{g,n}/\mathrm{M}\mathrm{o}\mathrm{d}_{g,n}.
Recently, Wolpert [16] gave a natural definition of a Hermitian metric on the Takhtajan‐

Zograf line bundle whose first Chern form gives \displaystyle \frac{4}{3}$\omega$_{\mathrm{T}\mathrm{Z}} . Furthermore, we can observe

that in the second term of the asymptotic expansion of the Weil‐Petersson metric near

the boundary of \mathcal{M}_{g,n} ,
the Takhtajan‐Zograf metrics on the boundary moduli spaces

could appear (see [7]).
We propose a program of identifying L_{2} ‐cohomology of \mathcal{M}_{g,n} with respect to the

Takhtajan‐Zograf metric H^{*}(\mathcal{M}_{g,n}, $\omega$_{TZ}) . Originally, Saper ([8]) applied Masur�s for‐

mula ([4]) to show that L_{2} ‐cohomology of \overline{\mathcal{M}}_{g,0} with respect to the Weil‐Petersson

metric H^{*}(\mathcal{M}_{g,0}, $\omega$_{WP}) is naturally isomorphic to H^{*}(\overline{\mathcal{M}}_{g,0}, \mathrm{R}) . However, it is disap‐

pointing that the results for the asymptotics of the Takhtajan‐Zograf metrics in [6] are

not sufficient for us to determine H^{*}(\mathcal{M}_{g,n}, $\omega$_{TZ}) .

In the present paper, we prove some estimates for the degenerating orders of Eisen‐

stein series for certain families of degenerating punctured Riemann surfaces, which may

be an important step for calculating H^{*}(\mathcal{M}_{g,n}, $\omega$_{TZ}) . It should be noted that there are

already some results for the behaviors of degenerating Eisenstein series ([2], [3], [5], [9]).
The author would like to thank K. Matsuzaki for showing him properties of thick

parts of Riemann surfaces. He would like to thank S. A. Wolpert for showing him

properties for the modified harmonic map. Furthermore, he would like to thank W. ‐K.

To and L. Weng for posing the problem to identify L_{2} ‐cohomology of \mathcal{M}_{g,n} with respect

to the Takhtajan‐Zograf metric. He is grateful to the referee for his careful reading.

§2. Main Theorems

§2.1. Settings and notation

For simplicity of exposition, we consider a degenerating family \{S_{l}\} of Riemann

surfaces of type (g, 1) with two zero‐homologous pinching geodesics $\gamma$_{1} and $\gamma$_{2} which

divide the surface S_{l} into three components S_{l}^{1}, S_{l}^{2}, S_{l}^{3} : the geodesic $\gamma$_{1} divides S_{l}^{1} from

S_{l}^{2} ,
the geodesic $\gamma$_{2} divides S_{l}^{2} from S_{l}^{3} ,

and S_{l}^{1} has the unique puncture. (It should
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be noted that all claims in propositions, theorems, etc. are easily generalized to the

case of any degenerating family of hyperbolic surfaces of finite type with at least one

puncture. In some of the statements, we will give remarks for the general case.) The

vector‐valued parameter l varies around the origin in the Euclidian space \mathrm{R}^{6g-4}
,

where

l=0 represents the unique degenerate surface S_{0} in the family. The limit surface S_{0}
consists of three components S_{0}^{1}, S_{0}^{2}, S_{0}^{3} which are the limits of S_{l}^{1}, S_{l}^{2}, S_{l}^{3} respectively
as l\rightarrow 0 . Let q_{j} be the node shared by S_{0}^{j} and S_{0}^{j+1}(j=1,2) . A puncture the

smooth surface in the degenerate family originally has will be called an old puncture,

for simplicity. It should be noted that the degenerating family can be described by the

modified infinite‐energy harmonic maps f^{l} : S_{0}\rightarrow S_{l}\backslash \{$\gamma$_{1}, $\gamma$_{2}\} ,
which are introduced

by S. Wolpert ([15]).
Let L_{l}( $\gamma$) be the hyperbolic length of a simple closed geodesic  $\gamma$ on  S_{l} . For 0\leq k\leq 1

and j=1 , 2, set

N_{$\gamma$_{j}}(k)=\displaystyle \{p\in S_{l} d_{l}(p, $\gamma$_{j})\leq k\sinh^{-1}(1/\sinh\frac{L_{l}($\gamma$_{j})}{2})\},
the collar neighborhood around $\gamma$_{j} in S_{l} ,

where d_{l} ) denotes the hyperbolic distance

on S_{l} . Here we remark that

(2.1) \displaystyle \sinh^{-1}(1/\sinh\frac{x}{2})=-\log x+2\log 2+O(x^{2}) , x\rightarrow 0,
which will be essentially used in the proofs of Lemma 2.3 and Lemma 2.6.

For a\geq 1 ,
the a‐cusp region C_{j}(a)(\subset S_{0}^{j}\cup S_{0}^{j+1}) around the node q_{j} is the

union of two copies of \langle z\mapsto z+1\rangle\backslash \{z\in H {\rm Im} z\geq a\} , equipped with the metric

ds^{2}=(dy^{2}+dx^{2})/y^{2} ,
where H:=\{z\in \mathrm{C}|{\rm Im} z>0\} is the upper half plane.

Let (f^{l})^{*}\triangle_{l} denote the pull‐back of the negative hyperbolic Laplacian \triangle_{l} on S_{l} by

f^{l} ,
that is, for a C^{2} ‐function h on S_{0},

(f^{l})^{*}\triangle_{l}(h)=\triangle_{l}(h\circ(f^{l})^{-1})\circ f^{i}
Let \triangle_{0} denote the negative hyperbolic Laplacian on S_{0} . Then, it is known that (f^{l})^{*}\triangle_{l}
converges to \triangle_{0} uniformly on any compact subset of S_{0} in the C^{3}‐norm (see [15]). And,
for a function g on S_{l} ,

the pull‐back of g by f^{l} is defined as

(f^{i})^{*}g=g\circ f^{i}

It should be noted that a C^{2} ‐function g on S_{l} satisfies

(2.2) (f^{l})^{*}\triangle_{l}((f^{l})^{*}g)=\triangle_{l}(g)\circ f^{l},

which will be used in the proof of Lemma 2.7.
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§2.2. The counting function of orbits

Let $\Gamma$_{l} be a Fuchsian group uniformizing S_{l} such that S_{l}\simeq H/$\Gamma$_{l} . We normalize it

such that $\Gamma$_{l} contains a parabolic element z\mapsto z+1 . A cyclic group generated by the

parabolic element is denoted by $\Gamma$_{\infty} . Then the Eisenstein series for $\Gamma$_{l} associated to the

unique puncture is expressed as

E^{l}(z, s)=\displaystyle \sum_{ $\delta$\in$\Gamma$_{\infty}\backslash $\Gamma$_{l}}({\rm Im} $\delta$ z)^{s}, z\in H, {\rm Re} s>1.
Here for any z in H and any equivalent class [ $\delta$] in $\Gamma$_{\infty}\backslash $\Gamma$_{l} ,

we can select the unique

representative \hat{ $\delta$} for [ $\delta$] such that − \displaystyle \frac{1}{2}\leq{\rm Re}\hat{ $\delta$}z<\frac{1}{2} . Such \hat{ $\delta$}=\hat{ $\delta$}(z, [ $\delta$]) will be called the

canonical representative.

E^{l}(z, s) is invariant under the action of $\Gamma$_{l} . Thus it can be considered as a function

on S_{l} . Moreover, it is well known that the Eisenstein seires satisfies

(2.3) (\triangle-s(s-1))E^{l}(z, s)=0, z\in H, {\rm Re} s>1,

which will play a crucial role in the proof of Lemma 2.7. Here \displaystyle \triangle:=4({\rm Im} z)^{2}\frac{\partial^{2}}{\partial z\partial\overline{z}} is the

negative hyperbolic Laplacian on H
,

invariant under $\Gamma$_{l} ,
and thus it naturally descends

to \triangle_{l} on S_{l}.
Now we are ready to present a new way to study the asymptotics of the Eisenstein

series. When {\rm Im} z<1 and z is not equivalent to any point of \{w\in H|{\rm Im} w>1\} under

the action of $\Gamma$_{\infty}\backslash $\Gamma$_{l} ,
it is easy to see that for [ $\delta$] in $\Gamma$_{\infty}\backslash $\Gamma$_{l}, {\rm Im}\hat{ $\delta$}(z)=e^{-d(h,\hat{ $\delta$}z)} ,

where

d) denotes the hyperbolic distance in H and h=\displaystyle \{w\in H|-\frac{1}{2}\leq{\rm Re} w<\frac{1}{2}, {\rm Im} w=1\}.
We introduce two counting functions of orbits of z with {\rm Im} z<1,

$\Pi$_{l}(h, z, t):=\#\{[ $\delta$]\in$\Gamma$_{\infty}\backslash $\Gamma$_{l}|d(h,\hat{ $\delta$}z)\leq t\},
$\Pi$_{l}(z, t):=\#\{[ $\delta$]\in$\Gamma$_{\infty}\backslash $\Gamma$_{l}|d(i,\hat{ $\delta$}z)\leq t\},

where \hat{ $\delta$} is the canonical representative. Here we should remark that d(i,\displaystyle \hat{ $\delta$}z)=\min d(i,  $\delta$ z) .

 $\delta$\in[ $\delta$]
For z with {\rm Im} z<1 not equivalent to any point of \{w\in H|{\rm Im} w>1\} under the

action of $\Gamma$_{\infty}\backslash $\Gamma$_{l} ,
we can observe

E^{l}(z, s)=\displaystyle \int_{0}^{\infty}e^{-st}d$\Pi$_{l}(h, z, t) .

We will state a famous property of $\Pi$_{l}(z, t) as in the form suited to our purpose.

Proposition 2.1. There exists an absolute constant U such that for z\in H with

{\rm Im} z<1 ,
the following estimate holds:

$\Pi$_{l}(z, t)\leq Ue^{t} for any t\geq 0 and any $\Gamma$_{l}.
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Proof. Our proof is based on the discussion in [12] p.516. Let B(p, r) denote a

hyperbolic ball centered at p with radius r in H . Now the collar lemma assures us that

in any hyperbolic surface with at least one puncture, each puncture has a horocyclic

neighborhood with area 2 (see [10]). Then we can find a universal constant  $\epsilon$>0 such

that orbits B( $\delta$ i,  $\epsilon$) for  $\delta$\in$\Gamma$_{l} are mutually disjoint for any $\Gamma$_{l} . Because if d( $\delta$ i, z)\leq t
then B( $\delta$ i,  $\epsilon$)\subset B(z, t+ $\epsilon$) ,

we have

$\Pi$_{l}(z, t)=\#\{[ $\delta$]\in$\Gamma$_{\infty}\backslash $\Gamma$_{l}|d((\hat{ $\delta$})^{-1}i, z)\leq t\}
\leq]\{[ $\delta$]\in$\Gamma$_{\infty}\backslash $\Gamma$_{l}|(\hat{ $\delta$})^{-1}(B(i,  $\epsilon$))\subset B(z, t+ $\epsilon$)\}

\displaystyle \leq\frac{|B(z,t+ $\epsilon$)|}{|B(i, $\epsilon$)|}=\sinh^{2}(\frac{t+ $\epsilon$}{2})/\sinh^{2}\frac{ $\epsilon$}{2}
\displaystyle \leq\frac{e^{ $\epsilon$}}{2\sinh^{2}\frac{ $\epsilon$}{2}}e^{t} for t\geq 0.

Here | | denotes the hyperbolic area in H. \square 

Proposition 2.2. Let s>1 . Let z\in H with {\rm Im} z<1 be not equivalent to any

point of \{w\in H|{\rm Im} w>1\} under the action of $\Gamma$_{\infty}\backslash $\Gamma$_{l} . Then we obtain

$\Pi$_{l}(z, t)\leq$\Pi$_{l}(h, z, t)\leq$\Pi$_{l}(z, t+1) ,

E^{l}(z, s)=s\displaystyle \int_{0}^{\infty}e^{-st}$\Pi$_{l}(h, z, t)dt,
s\displaystyle \int_{0}^{\infty}e^{-st}$\Pi$_{l}(z, t)dt\leq E^{l}(z, s)\leq s\int_{0}^{\infty}e^{-st}$\Pi$_{l}(z, t+1)dt.

Proof. Because d(i,  $\delta$ z)\leq d(h,  $\delta$ z)+1 ,
it follows from Proposition 2.1 that

$\Pi$_{l}(h, z, t)\leq$\Pi$_{l}(z, t+1)\leq eUe^{t}

Then, integrations by parts and Proposition 2.1 provide

E^{l}(z, s)=\displaystyle \int_{0}^{\infty}e^{-st}d$\Pi$_{l}(h, z, t)=[e^{-st}$\Pi$_{l}(h, z, t)]_{0}^{\infty}+s\int_{0}^{\infty}e^{-st}$\Pi$_{l}(h, z, t)dt
=s\displaystyle \int_{0}^{\infty}e^{-st}$\Pi$_{l}(h, z, t)dt\leq s\int_{0}^{\infty}e^{-st}$\Pi$_{l}(\mathrm{z}, t+1)dt.

This is the right‐hand inequality in the statement.

Next we will prove the left‐hand inequality. Since d(h,  $\delta$ z)\leq d(i,  $\delta$ z) ,
it is easy to

see that

$\Pi$_{l}(h, z, t)\geq$\Pi$_{l}(z, t) ,

E^{l}(z, s)=s\displaystyle \int_{0}^{\infty}e^{-st}$\Pi$_{l}(h, z, t)dt
\displaystyle \geq s\int_{0}^{\infty}e^{-st}$\Pi$_{l}(\mathrm{z}, t)dt.
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This completes the proof. \square 

§2.3. Upper bounds for degenerating Eisenstein series

We are going to present upper bounds for Eisenstein series on the components S_{l}^{2}
and S_{l}^{3}.

Lemma 2.3. Assume {\rm Re} s>1 . There exists an absolute constant M_{2}({\rm Re} s)
depending only on {\rm Re} s such that for L_{l}($\gamma$_{1}) , L_{l}($\gamma$_{2})<2\sinh^{-1}1 and 0\leq k\leq 1 ,

then

|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{(1+k)({\rm Re} s-1)} on \partial N_{$\gamma$_{1}}(k)\cap S_{l}^{2},
|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{2({\rm Re} s-1)}L_{l}($\gamma$_{2})^{(1+k)({\rm Re} s-1)} on \partial N_{$\gamma$_{2}}(k)\cap S_{l}^{3}

Proof. Because |E^{l}(\mathrm{z}, s)|\leq E^{l}(z, {\rm Re} s) holds, it is enough to show in the case

s>1 . For z in H, [z] denotes the corresponding point of S_{l} . (2.1) implies easily that

the distance of any curve connecting [z] on \partial N_{$\gamma$_{1}}(k)\cap S_{l}^{2} and the horocycle [h] is greater
than (1+k) [the width of half collar]. Therefore we see

$\Pi$_{l}(h, z, -(1+k)\log L_{l}($\gamma$_{1}))=0.

Then Proposition 2.2 yields

E^{l}(z, s)=s\displaystyle \int_{-(1+k)\log L_{l}($\gamma$_{1})}^{\infty}e^{-st}$\Pi$_{l}(h, z, t)dt.
By Propositions 2.1 and 2.2, it concludes that

E^{l}(z, s)\displaystyle \leq s\int_{-(1+k)\log L_{l}($\gamma$_{1})}^{\infty}e^{-st}$\Pi$_{l}(\mathrm{z}, t+1)dt
\displaystyle \leq s\int_{-(1+k)\log L_{l}($\gamma$_{1})}^{\infty}e^{-st}eUe^{t}dt
=eUs\displaystyle \int_{-(1+k)\log L_{l}($\gamma$_{1})}^{\infty}e^{-(s-1)t}dt
=\displaystyle \frac{eUs}{s-1}L_{l}($\gamma$_{1})^{(1+k)(s-1)}.

The second case is similar. Just replace -(1+k)\log L_{l}($\gamma$_{1}) with -2\log L_{l}($\gamma$_{1})-(1+
k) \log L_{l}($\gamma$_{2}) . \square 

Corollary 2.4. Assume as in Lemma 2.3. Then for all L_{l}($\gamma$_{1}) , L_{l}($\gamma$_{2})<2\sinh^{-1}1
and all k with 0\leq k\leq 1 ,

it holds that

|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{(1+k)({\rm Re} s-1)} on S_{l}^{2}-N_{$\gamma$_{1}}(k) ,

|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{2({\rm Re} s-1)}L_{l}($\gamma$_{2})^{(1+k)({\rm Re} s-1)} on S_{l}^{3}-N_{$\gamma$_{2}}(k) .

Here M_{2}({\rm Re} s) is the constant appearing in Lemma 2.3.
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Proof. Because |E^{l}(\mathrm{z}, s)|\leq E^{l}(z, {\rm Re} s) holds, it is enough to show the statements

for s>1 . By (2.3), it is easy to see that E^{l}(z, s) is subharmonic. The maximal principle
for subharmonic functions provides

\displaystyle \sup E^{l}(z, s)\leq \sup E^{l}(z, s)
z\in S_{l}^{2}-N_{$\gamma$_{1}}(k) z\in S_{l}^{3}\cup S_{l}^{2}-N_{$\gamma$_{1}}(k)

= \displaystyle \sup E^{l}(z, s)
z\in\partial N_{$\gamma$_{1}}(k)\cap S_{l}^{2}

\leq M_{2}(s)L_{l}($\gamma$_{1})^{(1+k)(s-1)}.

(Remark: even in the case S_{l}^{3}\cup S_{l}^{2} has other old punctures, our discussion remains valid

because E^{l}(z, s) assumes 0 at the old punctures.) The second case is similar. Just use

the second inequality in Lemma 2.3. \square 

We will summarize the special case for k=0 ,
1 in Corollary 2.4 as follows.

Theorem 2.5. Assume {\rm Re} s>1 . Then for all L_{l}($\gamma$_{1}) , L_{l}($\gamma$_{2})<2\sinh^{-1}1 ,
it

holds that

|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{({\rm Re} s-1)} on S_{l}^{2},

|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{2({\rm Re} s-1)} on S_{l}^{2}-N_{$\gamma$_{1}}(1) ,

|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{2({\rm Re} s-1)}L_{l}($\gamma$_{2})^{({\rm Re} s-1)} on S_{l}^{3},

|E^{l}(\mathrm{z}, s)|\leq M_{2}({\rm Re} s)L_{l}($\gamma$_{1})^{2({\rm Re} s-1)}L_{l}($\gamma$_{2})^{2({\rm Re} s-1)} on S_{l}^{3}-N_{$\gamma$_{2}}(1) .

Here M_{2}({\rm Re} s) is the constant appearing in Lemma 2.3.

Remark. Corollary 2.4 and Theorem 2.5 have essentially improved the order

estimates for the degenerating Eisenstein series in [5] Theorem 1 (2).

§2.4. Lower bounds for degenerating Eisenstein series

Now we are ready to present lower bounds for Eisenstein series on the components

S_{l}^{2} and S_{l}^{3} . Henceforth, the set of points in S_{l} the injectivity radii of which are greater
than \sinh^{-1}1 will be called the thick part of S_{l}.

Lemma 2.6. Let s>1 . There exist positive constants K_{i}=K_{i}(s, \{S_{l}\})(i=
1

, 2, 3) depending only on s and the degenerating fa mily \{S_{l}\} such that for L_{l}($\gamma$_{1}) , L_{l}($\gamma$_{2})<
2\sinh^{-1}1 and 0\leq k\leq 1 ,

then

E^{l}(z, s)\geq K_{1}L_{l}($\gamma$_{1})^{(1+k)s} on \partial N_{$\gamma$_{1}}(k)\cap S_{l}^{2},
E^{l}(z, s)\geq K_{2}L_{l}($\gamma$_{1})^{2s}L_{l}($\gamma$_{2})^{(1-k)s} on \partial N_{$\gamma$_{2}}(k)\cap S_{l}^{2},
E^{l}(z, s)\geq K_{3}L_{l}($\gamma$_{1})^{2s}L_{l}($\gamma$_{2})^{(1+k)s} on \partial N_{$\gamma$_{2}}(k)\cap S_{l}^{3}
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Proof. We mimic the proof of Lemma 4.2 in [14] p.84. For z\in H with {\rm Im} z<1,

({\rm Im} z)^{s}\geq e^{-sd(z,h)}.

Since E^{l}(z, s)=\displaystyle \sum_{ $\delta$\in$\Gamma$_{\infty}\backslash $\Gamma$_{l}}({\rm Im} $\delta$ z)^{s} is a sum of positive terms over  $\Gamma$_{\infty}\backslash  $\Gamma$‐orbits of  z
,

we

obtain

E^{l}(z, s)\geq e^{-s\hat{d}(z,h)},
where \hat{d}(z, h) denotes the distance from h to the  $\Gamma$‐orbits of  z . We should recall two facts

here. The first one is (2.1). The second one is that the diameters of the thick parts of S_{l}
are bounded by a positive constant D for all small L_{l}($\gamma$_{1}) , L_{l}($\gamma$_{2}) ,

where D depends only
on the degenerating family {Sl}. (For example, by using the Bers constant we can easily
see the second fact. Refer to Theorem 5.2.6 in [1] p.130.) Then, for z\in\partial N_{$\gamma$_{1}}(k)\cap S_{l}^{2},
we can observe that \hat{d}(z, h)\leq-(1+k)\log L_{l}($\gamma$_{1})+D' . Here D' is a constant depending

only on the degenerating family. Then we have

E^{l}(z, s)\geq e^{-s\hat{d}(z,h)}\geq e^{-sD'}L_{l}($\gamma$_{1})^{(1+k)s}

The remaining two cases are similar. \square 

Lemma 2.7. Let s>1 . For i=1
, 2, let $\Omega$_{i} be any region (\subset S_{0}^{i+1}) containing

\partial C_{i}(1)\cap S_{0}^{i+1} . There exist positive constants P_{i}=P_{i}(s, $\Omega$_{i} , {Sl} ) depending only on

s and $\Omega$_{i} and the degenerating fa mily \{S_{l}\} such that for any sufficiently small L_{l}($\gamma$_{1}) ,

then

(f^{l})^{*}E^{l}(z, s)\geq P_{1}L_{l}($\gamma$_{1})^{2s} on $\Omega$_{1},

(f^{l})^{*}E^{l}(z, s)\geq P_{2}L_{l}($\gamma$_{1})^{2s}L_{l}($\gamma$_{1})^{2s} on $\Omega$_{2}.

Proof. We will show only the first case. The second case is similar. We set

P_{l}=\displaystyle \inf_{z\in$\Omega$_{1}}L_{l}($\gamma$_{1})^{-2s}(f^{l})^{*}E^{l}(z, s) .

Suppose that there exists a subsequence l_{j}\rightarrow 0 such that \displaystyle \lim_{j\rightarrow\infty}P_{l_{j}}=0 . Consider the

function P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s) . By (2.2) and (2.3), we can observe that

((f^{l_{j}})^{*}\triangle_{l_{j}}-s(s-1))P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)=0
and

\displaystyle \inf_{z\in$\Omega$_{1}}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)=1.
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We choose another region  $\Omega$ í such that  $\Omega$_{1}\Subset  $\Omega$ í \Subset S_{0}^{2} . Because ((f^{l_{j}})^{*}\triangle_{l_{j}}-s(s-1))
are uniformly non‐degenerate on  $\Omega$ í, the Harnack inequality provides

\displaystyle \sup_{z\in$\Omega$_{1}}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)\leq c($\Omega$_{1}, $\Omega$_{1}')\inf_{z\in$\Omega$_{1}}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)
=c($\Omega$_{1}, $\Omega$_{1}')<\infty.

Then using the interior Schauder estimate and the diagonal method as in the proof of

Theorem 1 in [5], we can have a further subsequence which will be denoted by the same

notation such that P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s) and its first and second derivatives

converge uniformly on any compact subset of $\Omega$_{1} to a nonnegative function G(z, s) and

its derivatives respectively. Then G(z, s) satisfies

(\triangle_{0}-s(s-1))G(z, s)=0

and

\displaystyle \sup_{z\in$\Omega$_{1}}G(z, s)\leq\varlimsup_{j\rightarrow\infty}\sup_{z\in$\Omega$_{1}}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)\leq c($\Omega$_{1}, $\Omega$_{1}')<\infty.
Now it should be noted that $\Omega$_{1}\supset(f^{l})^{-1}(\partial N_{$\gamma$_{1}}(1)\cap S_{l}^{2}) for any sufficiently small

l because (f^{l})^{-1}(\partial N_{$\gamma$_{1}}(1)\cap S_{l}^{2}2
region $\Omega$_{1}''\subset$\Omega$_{1} such that $\Omega$_{1}''
we have

) converges to \partial \mathrm{c}(1) \mathrm{s}

(\mathrm{f})(\partial \mathrm{N}(1) \mathrm{s}

\displaystyle \sup G(z, s)\geq\sup G(z, s)
z\in$\Omega$_{1} z\in$\Omega$_{1}''

)\cap S_{0}^{2} as l\rightarrow 0 . We choose another

(2l) for any sufficiently small l . Then

=\displaystyle \lim_{j\rightarrow\infty}\sup_{z\in$\Omega$_{1}'}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)
\displaystyle \geq\lim_{j\rightarrow\infty}\sup_{(z\in(f^{l})^{-1}(\partial N_{$\gamma$_{1}}1)\cap S_{l}^{2})}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)
\displaystyle \geq\lim_{j\rightarrow\infty}\inf_{(z\in(f^{l})^{-1}(\partial N_{$\gamma$_{1}}1)\cap S_{l}^{2})}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)
=\displaystyle \lim inf j\rightarrow\infty w\in\partial N_{$\gamma$_{1}}(1)\cap S_{l}^{2}P_{l_{j}}^{-1}L_{l_{j}}($\gamma$_{1})^{-2s}E^{l_{j}}(w, s)
\displaystyle \geq\lim_{j\rightarrow\infty}P_{l_{j}}^{-1}K_{1}=+\infty.

Here we used the first inequality in Lemma 2.6. This is a contradiction. \square 

Remark. All claims in Lemmas 2.6, 2.7 remain valid even in the case where the

components S_{0}^{2}, S_{0}^{3} have other old punctures. However, care for such additional old

punctures is needed in the proof of the following theorem.
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Theorem 2.8. Let s>1 . For all sufficiently small L_{l}($\gamma$_{1}) , L_{l}($\gamma$_{2}) ,
it holds that

E^{l}(z, s)\geq Q_{1}L_{l}($\gamma$_{1})^{2s} on S_{l}^{2}-f^{l}(C_{2}(a)) ,

E^{l}(z, s)\geq Q_{2}L_{l}($\gamma$_{1})^{2s}L_{l}($\gamma$_{2})^{s} on S_{l}^{2}\cap N_{$\gamma$_{2}}(1) ,

E^{l}(z, s)\geq Q_{3}L_{l}($\gamma$_{1})^{2s}L_{l}($\gamma$_{2})^{2s} on S_{l}^{3}

Here Q_{1}=Q_{1}(s, a, \{S_{l}\}) is a positive constant depending only on s, a and the degener‐

ating fa mily {Sl}. Q_{i}=Q_{i}(s, \{S_{l}\})(i=2,3) are positive constants depending only on

s and the degenerating family {Sl}.

Remark. In the case where S_{l}^{i} has additional old punctures (i=2,3) ,
we have to

replace S_{l}^{i} with S_{l}^{i}-f^{l} (the union of all neighborhoods of old punctures), and all Q_{i} �s

depend on all the removed neighborhoods.

Proof. First, we will show the first inequality. Set

Q_{l}=\displaystyle \inf_{z\in(f^{l})^{-1}(N_{$\gamma$_{1}}(1))\cap S_{0}^{2}}L_{l}($\gamma$_{1})^{-2s}(f^{l})^{*}E^{l}(z, s)=\inf_{w\in N_{$\gamma$_{1}}(1)\cap\overline{S}_{l}^{2}}L_{l}($\gamma$_{1})^{-2s}E^{l}(w, s) .

Due to the first inequality in Lemma 2.7, all we have to prove is that Q_{l} is larger than

a positive constant for all small l . Assume that there exists a subsequence l_{j}\rightarrow 0 such

that \displaystyle \lim_{j\rightarrow\infty}Q_{l_{j}}=0 . For each j ,
we can find a point w_{j}\in N_{$\gamma$_{1}}(1)\cap\overline{S}_{l}^{2} such that

L_{l_{j}}($\gamma$_{1})^{-2s}E^{l_{j}}(w_{j}, s)=\displaystyle \inf_{w\in N_{$\gamma$_{1}}(1)\cap\overline{S}_{l_{j}}^{2}}L_{l_{j}}($\gamma$_{1})^{-2s}E^{l_{j}}(w, s) .

If w_{j} is not on the geodesic $\gamma$_{1} ,
set z_{j}=(f^{l_{j}})^{-1}(w_{j}) . Divide our situation into three

cases. (If necessary, we will take a subsequence which is denoted by the same symbol,
for simplicity.)

I. infinitely many w_{j} are on the geodesic $\gamma$_{1},

II. there exists b\geq 1 such that all but finitely many z_{j} are outside of C_{1}(b)\cap S_{0}^{2},
III. there exists a subsequence such that \displaystyle \lim_{j\rightarrow\infty}z_{j}=q_{1}.
In case I, due to the first inequality with k=0 in Lemma 2.6,

Q_{l_{j}}=L_{l_{j}}($\gamma$_{1})^{-2s}E^{l_{j}}(w_{j}, s)\geq K_{1}L_{l_{j}}($\gamma$_{1})^{-s}\geq K_{1}>0 for all large j.

This is a contradiction.

In case II, we choose a region $\Omega$_{1}(\subset S_{0}^{2}) which contains \partial C_{1}(1)\cap S_{0}^{2} and z_{j} . Due

to the first inequality in Lemma 2.7,

Q_{l_{j}}=L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z_{j}, s)\displaystyle \geq\inf_{z\in$\Omega$_{1}}L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)\geq P_{1}($\Omega$_{1})>0.
This is a contradiction.
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In case III, there exists 0\leq k_{j}\leq 1 such that f^{l_{j}}(z_{j})\in\partial N_{$\gamma$_{1}}(k_{j})\cap S_{l_{j}}^{2} . Then due to

the first inequality in Lemma 2.6, we have

Q_{l_{j}}=L_{l_{j}}($\gamma$_{1})^{-2s}(f^{l_{j}})^{*}E^{l_{j}}(z_{j}, s)\displaystyle \geq\inf_{w\in\partial N_{$\gamma$_{1}}(k_{j})\cap S_{l_{j}}^{2}}L_{l_{j}}($\gamma$_{1})^{-2s}E^{l_{j}}(w, s)
\geq K_{1}L_{l_{j}}($\gamma$_{1})^{(k_{j}-1)s}\geq K_{1}>0

for all large j . This is a contradiction. We have proved the first inequality.

Next, we will show the second inequality in a similar method. We set

Q_{l}'=\displaystyle \inf_{w\in N_{$\gamma$_{2}}(1)\cap\overline{S}_{l}^{2}}L_{l}($\gamma$_{1})^{-2s}L_{l}($\gamma$_{2})^{-s}E^{l}(w, s) .

Assume that there exists a subsequence l_{j}\rightarrow 0 such that \displaystyle \lim_{j\rightarrow\infty}Q_{l_{j}}'=0 . For each j ,
we

can find a point w_{j}\in N_{$\gamma$_{2}}(1)\cap\overline{S}_{l}^{2} such that

L_{l_{j}}($\gamma$_{1})^{-2s}L_{l_{j}}($\gamma$_{2})^{-s}E^{l_{j}}(w_{j}, s)=\displaystyle \inf_{w\in N_{$\gamma$_{2}}(1)\cap\overline{S}_{l_{j}}^{2}}L_{l_{j}}($\gamma$_{1})^{-2s}L_{l_{j}}($\gamma$_{2})^{-s}E^{l_{j}}(w, s) .

If w_{j} is not on the geodesic $\gamma$_{2} ,
set z_{j}=(f^{l_{j}})^{-1}(w_{j}) . Divide our situation into three

cases. (If necessary, we will take a subsequence which is denoted by the same symbol,
for simplicity.)

\mathrm{I}' . infinitely many w_{j} are on the geodesic $\gamma$_{2},

\mathrm{I}\mathrm{I}' . there exists b\geq 1 such that all but finitely many z_{j} are outside of C_{2}(b)\cap S_{0}^{2},
III�. there exists a subsequence such that \displaystyle \lim_{j\rightarrow\infty}z_{j}=q_{2}.
In case \mathrm{I}'

,
due to the second inequality with k=0 in Lemma 2.6,

Q_{l_{j}}'=L_{l_{j}}($\gamma$_{1})^{-2s}L_{l_{j}}($\gamma$_{2})^{-s}E^{l_{j}}(w_{j}, s)\geq K_{2}>0 for all large j.

This is a contradiction.

In case \mathrm{I}\mathrm{I}'
,

we choose a region  $\Omega$ í (\subset S_{0}^{2}) which contains \partial C_{1}(1)\cap S_{0}^{2} and z_{j} . Due

to the first inequality in Lemma 2.7,

Q_{l_{j}}'=L_{l_{j}}($\gamma$_{1})^{-2s}L_{l_{j}}($\gamma$_{2})^{-s}(f^{l_{j}})^{*}E^{l_{j}}(z_{j}, s)\displaystyle \geq\inf_{z\in$\Omega$_{1}\'{i}},L_{l_{j}}($\gamma$_{1})^{-2s}L_{l_{j}}($\gamma$_{2})^{-s}(f^{l_{j}})^{*}E^{l_{j}}(z, s)
\geq P_{1}($\Omega$_{1}')L_{l_{j}}($\gamma$_{2})^{-s}\geq P_{1}($\Omega$_{1}')>0

for all large j . This is a contradiction.

In case III�, there exists 0\leq k_{j}\leq 1 such that f^{l_{j}}(z_{j})\in\partial N_{$\gamma$_{2}}(k_{j})\cap S_{l_{j}}^{2} . Then due

to the second inequality in Lemma 2.6, we have

Q_{l_{j}}'=L_{l_{j}}($\gamma$_{1})^{-2s}L_{l_{j}}($\gamma$_{2})^{-s}E^{l_{j}}(f^{i_{j}} (zj), s)\displaystyle \geq\inf_{w\in\partial N_{$\gamma$_{2}}(k_{j})\cap S_{l_{j}}^{2}}L_{l_{j}}($\gamma$_{1})^{-2s}L_{l_{j}}($\gamma$_{2})^{-s}E^{l_{j}}(w, s)
\geq K_{2}L_{l_{j}}($\gamma$_{1})^{-k_{j}s}\geq K_{2}>0
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for all large j . This is a contradiction. We have proved the second inequality. We

can prove the third inequality in the same way as the first inequality, using the third

inequality in Lemma 2.6 and the second inequality in Lemma 2.7. \square 
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