RIMS Kokyuroku Bessatsu B17
(2010), 127-133

Modulus of continuity, a Hardy-Littlewood theorem
and its application

By

Hiroshige SHIGA*

§1. Introduction

Let D be a simply connected proper domain in C and ¢ : A — D a Riemann
mapping from the unit disk A = {|z| < 1} onto D. The geometric function theory gives
us various informations of the mapping ¢. For example, if D is a quasi-disk, then we
have

(L.1) " ()| = O((1 = |2))™™)

for some k € [0,1) as |z| — 1 (cf. [8]). On the other hand, if a simply connected domain
D is an invariant component of a finitely generated Kleinian group G, we can say much
more on the Riemann mapping ¢. In fact, if D is a Jordan domain, then G must be
a quasi-Fuchsian group by a theorem of Maskit ([3]). Hence, D is a quasi-disk, and
the inequality (1.1) holds. Recently ([9]), we have shown that the converse is also true.
Namely, we have shown the following;

Theorem 1.1. Let D > oo be a simply connected invariant component of a
finitely generated non-elementary Kleinian group G and ¢ a Riemann mapping from
the unit disk onto D. Then the following are equivalent.

1. G is a quasi-Fuchsian group and D is a quasi-disk.
2. (1.1) holds for some k € [0,1) as |z| — 1.

In other words, the growth rate of the derivatives of the Riemann mappings characterizes
quasi-Fuchsian groups.
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Remark.  The condition (2) implies that D is a Holder domain. It is known that
every quasi-disk is a Holder domain. Thus (1) implies (2). But the converse is not true

in general.

It is a natural question what happens for ¢ if D is a simply connected invariant
component of G other than a quasi-Fuchsian group. In fact, we have obtained the growth
rate of |¢’(2)| of Riemann mappings ¢ for regular b-groups and Kleinian groups with
bounded geometry. Particularly, when G is a regular b-group, we have estimated the
modulus of continuity of ¢ on the unit circle and we have shown the local connectivity
of the limit set of G.

In this note, we will show a Hardy-Littlewood theorem to estimate the growth rate
of |¢'(2)| from the modulus of continuity and as a corollary, the growth rate of |p’(2)| for
Kleinian groups with bounded geometry. It is an alternative proof of a result obtained
in our previous paper [9].

§2. A Hardy-Littlewood theorem

Let f be a continuous function on the unit circle. The modulus of continuity of f
is the function

wt)= sup |f(e)— f(e")|.

|61 —02|<t

In 1932, Hardy and Littlewood [2] shows the following theorem called a Hardy-Littlewood
theorem.

Theorem 2.1 (cf. [1] p. 74).  Let f be a holomorphic function on the unit disk
A and continuous on A = AUOA. Suppose that there exists o € (0,1] such that

() = f(e%)] = O(l6r — 02).

Then
[f'(2)| = O((1 = |z))*7)

holds as |z| — 1.

In this section, we shall show the following theorem of Hardy-Littlewood type for
holomorphic functions whose modulus of continuity is | log |0]|~“.

Theorem 2.2.  Let f be a holomorphic function on the unit disk A and contin-
uous on A = A UIA. Suppose that there exists a > 0 such that

(2.1) |f(e") = f(e")] = O(|log |01 — 027,
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if 101 — 02| < & for some § € (0,1). Then,

(2.2) [f/(2)] = O((1 = |21) " log(1 — [2)| =)

holds as |z| — 1.

Proof. By Cauchy’s integral formula,

/ 1 /2” (f(e") — f(e'?))e™ :
== . dt. = re'?
e -5 [ S (= = re'¥)
Thus, we have
/ 1 /” f(eF9) — f(e'))]
< = dt.
F )= 27 J_. 1 —2rcost+r?
Since i
1—2rcost+7r%>(1—7)*+ T—i,
m
it follows from (2.1) that
A | log |¢]| ™
2.3 "(2)] < = dt + B.
(23) F@l< 5 /_5 Q=2+ dr/m2 ©

Setting C,. = 72(1 — r)2?/4r and t = \/C, tan ), we have

5 —« ) —«
Iz): = % /_5 = |7’l)02g—:—t|é|lr(t/7r)2 dt = % /_5 %dt
Arx [P do
~ 8/C, s, [log /C; +log | tan ||
Ar [P do

:47°\/C’T 0 |log\/Cr—|—log|tan9||a’

129

where 3, = arctan —2= € (0, 5). Asr=|z[ -1, C. — 0and 3, — 5. We take r > 0

VT,
sufficiently close to 1 so that C). < 1.

When 0 € (0, 7], tan6 € (0,1]. Hence

log +/C) +log|tan§| < log+/C, <0,

and
—Q

‘log\/C'r +10g|tan9|‘_a < ’log\/CT

Thus, we have

/4 do ;
2.4 O (1log(1 — o)),
. /0 [log /T, + log | tan ]| (|log(1 —[z1)|~*)
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because C, = O((1 — |z])?).
A
Next, we take a constant A € (%, 1) and put 7, := arctan ( \/IC—T> . We may assume

that v, < B.. When 0 € (Z,~,], tanf € 1,C’T_’\/2 and we have
1

log v/C; +log|tand| < (1 — A)log v/C, < 0.

This implies

—

log v/ C:-

‘log VO +log | tan9|’_a <(1-x""

and we have

Ir do
2.5 / = = O (l1og(1 = [2])|7%) .
( ) /4 |log VCr —|—log|tan9|| (| g( | |)| )

1

mdt, we have

Finally, we consider the case where 6 € (v, 3,]. Since arctanx = fom

4 — _/6/\/C_r d
r Yr = (\/C_'r)_)\ £C2+1

< — =0 |(C .
= (x/or MC,%) VO 41 ( " >

On the other hand,
log v/C) 4+ log |tand| < logd < 0,

[
because tanf < T Therefore, we conclude

Br do
2.6 _ < (B, — )| log 8|
(2:6) LT |log v/C; + log | tan 6| (Br = 7-)] log 4|
—0((1 - 2?1,

Combining (2.4), (2.5) and (2.6), we have
I(2) = O ((1 = |2])""[log(1 — [2)| ™).

Thus, we complete the proof of the theorem. O

§3. Conformal mappings on invariant components of Kleinian groups

Let G be a finitely generated non-elementary Kleinian group. The group G is said
to have bounded geometry if there exists a constant € > 0 such that the injectivity
radius with respect to the hyperbolic metric at any point in H?/G is greater than e.
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We also assume that G has a simply connected invariant component D and denote by
¢ a Riemann mapping from the unit disk A onto D as before. Many things are known
for Kleinian groups with bounded geometry (cf. [5]). For example, the limit set of G
is locally connected whenever it is connected. Particularly, H. Miyachi ([6]) shows the
following;;

Proposition 3.1.  Let G be a Kleinian group with bounded geometry having a
simply connected invariant component D and ¢ : A — D a Riemann mapping. Then,
@ has a continuous extension to OA and

[p(e1) — p(e2)] = O(llog 61 — 6] )
holds as |01 — 62| — 0.

From this proposition and Theorem 2.1, we immediately obtain a theorem which
is shown in [9] by a different method;

Theorem 3.2. Let G, D and ¢ be the same ones as in Proposition 3.1. Then,
(3.1) ' (2)] = O (1 = |2)) " [log(1 — |2])|7*)
holds as |z| — 1.
Remark.  In [9], we have also shown that if G is a regular b-group, then
(3.2) ' (2)] = O ((1 = [2]) " log(1 — |2])| %)
and we obtain the modulus of continuity on 0A,
(3.3) () = p(e")] = O (|log [0 — 62| 7") .

by using (3.2). From Theorem 2.1 it seems to be difficult to show (3.2) from (3.3).
Actually, Nolder and Oberlin [7] show the following;

Proposition 3.3.  Let w(t) be a differentiable non-negative increasing function
on [0,00) having the decreasing derivative w'(t). The following are equivalent:

1. If f is a holomorphic function with the modulus of continuity 6, then

[F'(2)] = O (1 —[2])).

t
lim sup wit)
t—0+ tw/(t)
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In our case, (3.3) implies w(t) = (—logt)~! for small t > 0 and w'(t) =t~ (logt) 2.

However,
. w(t) .
1 =1 —logt) = .
msup ;70 = i, (—logt) = +oc

Hence, the second condition is not satisfied and we can not apply the above proposition
to get (3.3) from (3.2).

We have also characterized quasi-Fuchsian groups in terms of the growth of deriva-
tives of Riemann mappings of invariant components.

Proposition 3.4 ([9]). Let G be a Kleinian group having a simply connected
invariant component D with 0D C C and ¢ a conformal mapping of the unit disk
A onto D. Suppose that D/G has no punctures. Then, the following conditions are
equivalent.

1. There exist constants o > 0, A > 0 and a point {3 € D such that for any z €
1 (GCo) \ v~ (00),

A

34 NS e P

holds.

2. G is a quasi-Fuchsian group.
From Theorem 2.1 and the above one, immediately we have;

Theorem 3.5. Let G, D and ¢ be the same ones as above. Suppose that o :
A — D has the continuous extension to OA. If the extension ¢ on OA satisfies

() — @(c®)] = O(Jlog |6: — 62| >~

for some a > 0. Then G is a quasi-Fuchsian group.
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