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Modulus of continuity, a Hardy‐Littlewood theorem

and its application

By

Hiroshige SHIGA *

§1. Introduction

Let D be a simply connected proper domain in \mathbb{C} and  $\varphi$ : \triangle\rightarrow D a Riemann

mapping from the unit disk \triangle=\{|z|<1\} onto D . The geometric function theory gives
us various informations of the mapping  $\varphi$ . For example, if  D is a quasi‐disk, then we

have

(1.1) |$\varphi$'(z)|=O((1-|z))

for some  $\kappa$\in[0 , 1) as |z|\rightarrow 1 (cf. [8]). On the other hand, if a simply connected domain

D is an invariant component of a finitely generated Kleinian group G ,
we can say much

more on the Riemann mapping  $\varphi$ . In fact, if  D is a Jordan domain, then G must be

a quasi‐Fuchsian group by a theorem of Maskit ([3]). Hence, D is a quasi‐disk, and

the inequality (1.1) holds. Recently ([9]), we have shown that the converse is also true.

Namely, we have shown the following;

Theorem 1.1. Let  D\ni\infty be a simply connected invariant component of a

finitely generated non‐elementary Kleinian group  G and  $\varphi$ a Riemann mapping from
the unit disk onto D. Then the following are equivalent.

1.  G is a quasi‐Fuchsian group and D is a quasi‐disk.

2. (1.1) holds for some  $\kappa$\in[0 , 1) as |z|\rightarrow 1.

In other words, the growth rate of the derivatives of the Riemann mappings characterizes

quasi‐Fuchsian groups.
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Remark. The condition (2) implies that D is a Hölder domain. It is known that

every quasi‐disk is a Hölder domain. Thus (1) implies (2). But the converse is not true

in general.

It is a natural question what happens for  $\varphi$ if  D is a simply connected invariant

component of G other than a quasi‐Fuchsian group. In fact, we have obtained the growth
rate of |$\varphi$'(z)| of Riemann mappings  $\varphi$ for regular  b‐groups and Kleinian groups with

bounded geometry. Particularly, when G is a regular b‐group, we have estimated the

modulus of continuity of  $\varphi$ on the unit circle and we have shown the local connectivity
of the limit set of  G.

In this note, we will show a Hardy‐Littlewood theorem to estimate the growth rate

of |$\varphi$'(z)| from the modulus of continuity and as a corollary, the growth rate of |$\varphi$'(z)| for

Kleinian groups with bounded geometry. It is an alternative proof of a result obtained

in our previous paper [9].

§2. A Hardy‐Littlewood theorem

Let f be a continuous function on the unit circle. The modulus of continuity of f
is the function

 $\omega$(t)= \displaystyle \sup |f(e^{i$\theta$_{1}})-f(e^{i$\theta$_{2}})|.
|$\theta$_{1}-$\theta$_{2}|\leq t

In 1932, Hardy and Littlewood [2] shows the following theorem called a Hardy‐Littlewood
theorem.

Theorem 2.1 (cf. [1] p. 74). Let f be a holomorphic function on the unit disk

\triangle and continuous on \overline{\triangle}=\triangle\cup\partial\triangle . Suppose that there exists  $\alpha$\in(0,1 ] such that

|f(e^{i$\theta$_{1}})-f(e^{i$\theta$_{2}})|=O(|$\theta$_{1}-$\theta$_{2}|^{ $\alpha$}) .

Then

|f'(z)|=O((1-|z))

holds as |z|\rightarrow 1.

In this section, we shall show the following theorem of Hardy‐Littlewood type for

holomorphic functions whose modulus of continuity is |\log| $\theta$||^{- $\alpha$}.

Theorem 2.2. Let f be a holomorphic function on the unit disk \triangle and contin‐

uous on \overline{\triangle}=\triangle\cup\partial\triangle . Suppose that there exists  $\alpha$>0 such that

(2.1) |f(e^{i$\theta$_{1}})-f(e^{i$\theta$_{2}})|=O(|\log|$\theta$_{1}-$\theta$_{2}||^{- $\alpha$}) ,
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 if|$\theta$_{1}-$\theta$_{2}|< $\delta$ for some  $\delta$\in(0,1) . Then,

(2.2) |f'(z)|=O((1-|z|)^{-1}|\log(1-|z))

holds as |z|\rightarrow 1.

Proof. By Cauchy�s integral formula,

f'(z)=\displaystyle \frac{1}{2 $\pi$}\int_{0}^{2 $\pi$}\frac{(f(e^{it})-f(e^{i $\varphi$}))e^{it}}{(e^{it}-z)^{2}}dt. (z=re^{i $\varphi$})
Thus, we have

|f'(z)|\displaystyle \leq\frac{1}{2 $\pi$}\int_{- $\pi$}^{ $\pi$}\frac{|f(e^{i(t+ $\varphi$)})-f(e^{i $\varphi$})|}{1-2r\cos t+r^{2}}dt.
Since

1-2r\cos t+r^{2}\geq(1-r)^{2}+\underline{4rt^{2}}$\pi$^{2},

it follows from (2. 1) that

(2.3) |f'(z)|\displaystyle \leq\frac{A}{2 $\pi$}\int_{- $\delta$}^{ $\delta$}\frac{|\log|t||^{- $\alpha$}}{(1-r)^{2}+4r(t/ $\pi$)^{2}}dt+B.
Setting C_{r}=$\pi$^{2}(1-r)^{2}/4r and  t=\sqrt{C_{r}}\tan $\theta$ ,

we have

 I(z):=\displaystyle \frac{A}{2 $\pi$}\int_{- $\delta$}^{ $\delta$}\frac{|\log|t||^{- $\alpha$}}{(1-r)^{2}+4r(t/ $\pi$)^{2}}dt=\frac{A $\pi$}{8r}\int_{- $\delta$}^{ $\delta$}\frac{|\log|t||^{- $\alpha$}}{t^{2}+C_{r}}dt
=\displaystyle \frac{A $\pi$}{8r\sqrt{C_{r}}}\int_{-$\beta$_{r}}^{$\beta$_{r}}\frac{d $\theta$}{|\log\sqrt{C_{r}}+\log|\tan $\theta$||^{ $\alpha$}}
=\displaystyle \frac{A $\pi$}{4r\sqrt{C_{r}}}\int_{0}^{$\beta$_{r}}\frac{d $\theta$}{|\log\sqrt{C_{r}}+\log|\tan $\theta$||^{ $\alpha$}},

where $\beta$_{r}=\displaystyle \arctan\frac{ $\delta$}{\sqrt{C_{r}}}\in(0, \frac{ $\pi$}{2}) . As r=|z|\rightarrow 1, C_{r}\rightarrow 0 and $\beta$_{r}\displaystyle \rightarrow\frac{ $\pi$}{2} . We take r>0

sufficiently close to 1 so that C_{r}<1.
When  $\theta$\displaystyle \in(0, \frac{ $\pi$}{4} ], \tan $\theta$\in(0,1 ]. Hence

\log\sqrt{C_{r}}+\log|\tan $\theta$|\leq\log\sqrt{C_{r}}<0,

and

|\log\sqrt{C_{r}}+\log|\tan $\theta$||^{- $\alpha$}\leq|\log\sqrt{C_{r}}|^{- $\alpha$}
Thus, we have

(2.4) \displaystyle \int_{0}^{ $\pi$/4}\frac{d $\theta$}{|\log\sqrt{C_{r}}+\log|\tan $\theta$||^{ $\alpha$}}=O(|\log(1-|z|)|^{- $\alpha$}) ,
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because C_{r}=O((1-|z|)^{2}) .

Next, we take a constant  $\lambda$\in (\displaystyle \frac{1}{2},1) and put $\gamma$_{r}:=\displaystyle \arctan(\frac{1}{\sqrt{C_{r}}})^{ $\lambda$} . We may assume

that $\gamma$_{r}<$\beta$_{r} . When  $\theta$\in (\displaystyle \frac{ $\pi$}{4}, $\gamma$_{r}], \tan $\theta$\in(1, C_{r}^{- $\lambda$/2}) and we have

\log\sqrt{C_{r}}+\log|\tan $\theta$|\leq(1- $\lambda$)\log\sqrt{C_{r}}<0.

This implies

|\log\sqrt{C_{r}}+\log|\tan $\theta$||^{- $\alpha$}\leq(1- $\lambda$)^{- $\alpha$}|\log\sqrt{C_{r}}|^{- $\alpha$}
and we have

(2.5) \displaystyle \int_{ $\pi$/4}^{$\gamma$_{r}}\frac{d $\theta$}{|\log\sqrt{C_{r}}+\log|\tan $\theta$||^{ $\alpha$}}=O(|\log(1-|z|)|^{- $\alpha$})
Finally, we consider the case where  $\theta$\in($\gamma$_{r}, $\beta$_{r} ]. Since \displaystyle \arctan x=\int_{0}^{x}\frac{1}{t^{2}+1}dt ,

we have

$\beta$_{r}-$\gamma$_{r}=\displaystyle \int_{(\sqrt{C_{r}})^{- $\lambda$}}^{ $\delta$/\sqrt{C_{r}}}\frac{dx}{x^{2}+1}
\displaystyle \leq(\frac{ $\delta$}{\sqrt{C_{r}}}-\frac{1}{\sqrt{C_{r}^{ $\lambda$}}})\frac{\sqrt{C_{r}^{2 $\lambda$}}}{\sqrt{C_{r}^{2 $\lambda$}}+1}=O(C_{r}^{ $\lambda$-1/2}) .

On the other hand,

\log\sqrt{C_{r}}+\log|\tan $\theta$|\leq\log $\delta$<0,
because \displaystyle \tan $\theta$\leq\frac{ $\delta$}{\sqrt{C_{r}}} . Therefore, we conclude

(2.6) \displaystyle \int_{$\gamma$_{r}}^{$\beta$_{r}}\frac{d $\theta$}{|\log\sqrt{C_{r}}+\log|\tan $\theta$||^{ $\alpha$}}\leq($\beta$_{r}-$\gamma$_{r})|\log $\delta$|^{- $\alpha$}
=O((1-|z|)^{2 $\lambda$-1}) .

Combining (2.4), (2.5) and (2.6), we have

I(z)=O((1-|z|)^{-1}|\log(1-|z|)|^{- $\alpha$})

Thus, we complete the proof of the theorem. \square 

§3. Conformal mappings on invariant components of Kleinian groups

Let G be a finitely generated non‐elementary Kleinian group. The group G is said

to have bounded geometry if there exists a constant  $\epsilon$>0 such that the injectivity
radius with respect to the hyperbolic metric at any point in \mathbb{H}^{3}/G is greater than  $\epsilon$.
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We also assume that G has a simply connected invariant component D and denote by

 $\varphi$ a Riemann mapping from the unit disk \triangle onto  D as before. Many things are known

for Kleinian groups with bounded geometry (cf. [5]). For example, the limit set of G

is locally connected whenever it is connected. Particularly, H. Miyachi ([6]) shows the

following;

Proposition 3.1. Let G be a Kl einian group with bounded geometry having a

simply connected invariant component D and  $\varphi$ : \triangle\rightarrow D a Riemann mapping. Then,

 $\varphi$ has a continuous extension to \partial\triangle and

| $\varphi$(e^{i$\theta$_{1}})- $\varphi$(e^{i$\theta$_{2}})|=O(|\log|$\theta$_{1}-$\theta$_{2}||^{- $\alpha$})

holds as |$\theta$_{1}-$\theta$_{2}|\rightarrow 0.

From this proposition and Theorem 2.1, we immediately obtain a theorem which

is shown in [9] by a different method;

Theorem 3.2. Let G, D and  $\varphi$ be the same ones as in Proposition 3.1. Then,

(3.1) |$\varphi$'(z)|=O((1-|z|)^{-1}|\log(1-|z|)|^{- $\alpha$})

holds as |z|\rightarrow 1.

Remark. In [9], we have also shown that if G is a regular b‐group, then

(3.2) |$\varphi$'(z)|=O((1-|z|)^{-1}|\log(1-|z|)|^{-2})

and we obtain the modulus of continuity on \partial\triangle,

(3.3) | $\varphi$(e^{i$\theta$_{1}})- $\varphi$(e^{i$\theta$_{2}})|=O(|\log|$\theta$_{1}-$\theta$_{2}||^{-1})

by using (3.2). From Theorem 2.1 it seems to be difficult to show (3.2) from (3.3).
Actually, Nolder and Oberlin [7] show the following;

Proposition 3.3. Let  $\omega$(t) be a differentiable non‐negative increasing function
on [0, \infty) having the decreasing derivative $\omega$'(t) . The following are equivalent:

1. If f is a holomorphic function with the modulus of continuity  $\theta$
,

then

|f'(z)|=O($\omega$'(1-|z|)) .

2.

\displaystyle \lim_{t\rightarrow}\sup_{0+}\frac{ $\omega$(t)}{t $\omega$(t)}<\infty.
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In our case, (3.3) implies  $\omega$(t)= (- \log t)^{-1} for small t>0 and $\omega$'(t)=t^{-1}(\log t)^{-2}.
However,

\displaystyle \lim_{t\rightarrow}\sup_{0+}\frac{ $\omega$(t)}{t$\omega$'(t)}=\lim_{t\rightarrow 0+}(-\log t)=+\infty.
Hence, the second condition is not satisfied and we can not apply the above proposition
to get (3.3) from (3.2).

We have also characterized quasi‐Fuchsian groups in terms of the growth of deriva‐

tives of Riemann mappings of invariant components.

Proposition 3.4 ([9]). Let G be a Kl einian group having a simply connected

invariant component D with \partial D\subset \mathbb{C} and  $\varphi$ a conformal mapping of the unit disk

\triangle onto D. Suppose that  D/G has no punctures. Then, the following conditions are

equivalent.

1. There exist constants  $\alpha$>0, A>0 and a point $\zeta$_{0}\in D such that for any  z\in

$\varphi$^{-1}(G$\zeta$_{0})\backslash $\varphi$^{-1}(\infty) ,

(3.4) |$\varphi$'(z)|\displaystyle \leq\frac{A}{(1-|z|)|\log(1-|z|)|^{2+ $\alpha$}}
holds.

2. G is a quasi‐Fuchsian group.

From Theorem 2.1 and the above one, immediately we have;

Theorem 3.5. Let G, D and  $\varphi$ be the same ones as above. Suppose that  $\varphi$ :

\triangle\rightarrow D has the continuous extension to \partial\triangle . If the extension  $\varphi$ on \partial\triangle satisfies

| $\varphi$(e^{i$\theta$_{1}})- $\varphi$(e^{i$\theta$_{2}})|=O(|\log|$\theta$_{1}-$\theta$_{2}||^{-2- $\alpha$})

for some  $\alpha$>0 . Then G is a quasi‐Fuchsian group.
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