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Abstract

Let  $\varphi$ be a suitable bump function such as the sinc function or the Cardinal

\mathrm{B} ‐splines. The sampling approximation of a given function f is defined by

S_{N}(f,  $\varphi$)(x):=\displaystyle \sum_{k\in \mathbb{Z}}f(k/N) $\varphi$(Nx-k) .

Then under suitable conditions for  $\varphi$ ,
we have the following asymptotic estimate:

\Vert S_{N}(f,  $\varphi$)-f\Vert_{L^{p}(\mathbb{R})}\leq CN^{-s}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})},
where B_{p,\infty}^{s}(\mathbb{R}) is the Besov space with 1/p<s,  1<p<\infty and  C is a constant

depending only on  $\varphi$, p and s.

Moreover, the asymptotic order of approximation can be shown to be sharp in

some cases. In fact, if we choose  $\varphi$ to be the the Cardinal cubic \mathrm{B}‐spline, then

we can show a reversed inequality, which gives the characterization of the Besov

smoothness by sampled values of f on dyadic points:

\displaystyle \Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})}\simeq \sup 2^{js}\Vert S_{2j}(f, \mathrm{N}_{4})-f\Vert_{L(\mathbb{R})}p+\Vert f\Vert_{L(\mathbb{R})}p
 j=1,2,\cdots

\displaystyle \simeq \sup 2^{js}(\sum_{k\in \mathbb{Z}}2^{-j}|f(\frac{k}{2^{j}})-\frac{1}{2}\{f(\frac{k-1}{2^{j}})+f(\frac{k+1}{2^{j}})\}|^{p})^{1/p}+\Vert f\Vert_{L(\mathbb{R})}p, j=1,2,\cdots

for p,  s satisfying 1/p<s<2, 1<p<\infty.
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1 Introduction

The famous Shannon sampling theorem (also called Whittaker‐ Kotel�nikov‐ Someya‐
Shannon�s sampling theorem) gives an exact reproducing formula for band limited analytic
functions using the sinc function  $\varphi$=\sin $\pi$ x/ $\pi$ x . This sinc function has also been known to

be useful to compute a numerical solution of partial differential equations, which doesn�t

necessarily satisfy the band limited condition.

One of the purposes of this paper is to study its generalization to not sufficiently regular
functions. We shall give a sharp asymptotic order of the regular sampling approximation
of functions in Besov spaces.

Another purpose is to enlarge the class of sampling functions besides the sinc function

which may enable various applications of approximation theory of functions. In fact, the

cardinal \mathrm{B}‐spline functions turn out to be another good examples of sampling function

which is useful in the characterization of the order of smoothness of Besov functions by
means of the asymptotic order of the sampling approximation.

Other purposes are applications of sampling approximation. One obvious application
is in numerical analysis taking advantage of the practical way of computation. Another

unexpected application is the analysis of data sampled at dyadic points for a Hölder

continuous curve.

2 Sampling functions  $\varphi$

One type of sampling functions is defined by slight modification of the sinc function

(let us call it of type I). Namely, a function of type I is a product of the sinc function

\sin $\pi$ x/ $\pi$ x and a smooth even function of Schwartz class g(x) whose Fourier transform

\displaystyle \hat{g}( $\xi$)=\int e^{-ix $\xi$}g(x)dx has a small support contained in \{ $\xi$|| $\xi$|< $\delta \pi$\},  $\delta$<1/2 ,
and

satisfies \displaystyle \int\hat{g}( $\xi$)d $\xi$=1.
Another type of sampling functions, called functions of type II, is defined as an enlarged

family of the cardinal \mathrm{B}‐spline functions. Namely, a function of type II is a compactly
supported even continuous function  $\varphi$ vanishing at integer points  k(\in \mathbb{Z}\backslash \{0\}) ,

which

also satisfies somewhat stronger conditions than the so‐called Strang‐Fix condition, i.e.,
its Fourier transform \hat{ $\varphi$}( $\xi$) multiplied by (1+$\xi$^{2})^{ $\gamma$} with a fixed constant  1/2< $\gamma$ has

uniformly bounded second derivative and vanishes at  2 $\pi$ k(k\in \mathbb{Z}\backslash \{0\}) up to at least the

second order. The typical example is the cardinal \mathrm{B}‐spline of order 2 (=degree 1) which

also satisfies the two scaling relation. This sampling function can be used in the case

where the order of smoothness s of Besov space is not so large (i.e., 0<s<2 ), which

we shall suppose in the sequel for simplicity of presentation. There are many specially
designed sampling functions of this type. See [9], [19] and [27] for example.

Note finally that sampling functions  $\varphi$ of both types vanish at all integer points except
at  0

,
and thus they enable the exact interpolation, i.e., S_{N}(f,  $\varphi$)(k/N)=f(k/N) , k\in \mathbb{Z}.

3 Asymptotic error estimate in L^{p}(\mathbb{R}) norm

Let  $\varphi$ be a sampling function described above. Then we have the following asymptotic
error estimate for  f in the Besov space B_{p,1}^{1/p}(\mathbb{R}) .
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Theorem 3.1 \Vert S_{N}(f,  $\varphi$)-f\Vert_{L^{p}(\mathbb{R})}\leq CN^{-1/p}\Vert f\Vert_{B_{p,1}^{1/p}(\mathbb{R})},  1<p<\infty ,
where  C is

independent of N and f.

We shall show later that the order of approximation O(N^{-1/p}) as N tends to \infty is sharp
at least in the case of the cardinal cubic \mathrm{B}‐spline.

4 Outline of the proof of Theorem 3.1

Let us show the outline of the proof. First of all, we have the following formula which

shall be crucial in the sequel.

4.1 Poisson summation formula

Let \hat{F} denote the Fourier transform of F . Then we have

Lemma 4.1  S_{N}\overline{(F,} $\varphi$ ) ( $\xi$)=\displaystyle \hat{ $\varphi$}( $\xi$/N)\sum_{n=-\infty}^{\infty}\hat{F}( $\xi$+2 $\pi$ nN) .

To prove Lemma 4.1, we apply the Poisson summation formula to F(t/N) $\varphi$(Nx-t) with

respect to the t variable and take the Fourier transform with respect to x.

The usefulness of the Poisson summation formula for the regular sampling theorem

was kindly suggested to one of the authors by Acad. P. Malliavin in 2006 at ICM Madrid.

4.2 Decomposition of f
Now we choose a function  $\chi$ of the Schwartz class such that \hat{ $\chi$} is a non negative cut off

function with its support included in \{ $\xi$|2^{-1} $\pi$<| $\xi$|<2 $\pi$\} satisfying \displaystyle \int_{0}^{\infty} $\chi$( $\xi$)$\xi$^{-1}d $\xi$=1.
Then f is decomposed into the low frequency part and the high frequency one, namely,

f=g+h where \displaystyle \hat{g}( $\xi$)=\hat{f}( $\xi$)\int_{0}^{L} $\chi$( $\xi$/ $\lambda$)$\lambda$^{-1}d $\lambda$ and \displaystyle \hat{h}( $\xi$)=\hat{f}( $\xi$)\int_{L}^{\infty} $\chi$( $\xi$/ $\lambda$)$\lambda$^{-1}d $\lambda$ with

 L= $\pi$ N(1- $\delta$)/2 . Note that supp \hat{g}\subset\{ $\xi$|| $\xi$|<2L\} and supp \hat{h}\subset\{ $\xi$|L/2<| $\xi$|\}.

4.3 Estimate of S_{N}(g,  $\varphi$)-g
With  $\varphi$ of type I, it is easy to see that  S_{N}(g,  $\varphi$)-g=0 , comparing the compact supports
of \hat{g} and \hat{ $\varphi$} in the following formula due to Lemma 4.1 applied to g :

S_{N}\displaystyle \overline{(g, $\varphi$})( $\xi$)-\hat{g}( $\xi$)=\{\hat{ $\varphi$}( $\xi$/N)-1\}\hat{g}( $\xi$)+\hat{ $\varphi$}( $\xi$/N)\sum_{n\neq 0}\hat{g}( $\xi$+2 $\pi$ nN) . (1)

The situation is not so simple for  $\varphi$ of type II. In fact, we have to use the  L^{p} boundedness

of an operator defined by a Fourier multiplier, i.e., the Marcinkiewicz multiplier theorem

(also, Mikhlin, Hörmander, Krée). Let us first define a smooth non negative cut off func‐

tion  $\rho$( $\xi$) with its support included in \{ $\xi$| $\pi$/2<| $\xi$|<2 $\pi$\} such that \displaystyle \sum_{j=0}^{[\log_{2}N]}$\rho$^{2}( $\xi$/2^{j})=1
on \{ $\xi$| $\pi$<| $\xi$|<N $\pi$\} . Then the first term is decomposed into a sum of functions as

follows:

\displaystyle \{\hat{ $\varphi$}( $\xi$/N)-1\}\hat{g}( $\xi$)=N^{-s}\sum_{l=0}^{[\log_{2}N]}\{\hat{ $\varphi$}( $\xi$/N)-1\}| $\xi$/N|^{-s}$\rho$^{2}(2^{l} $\xi$/N)| $\xi$|^{s}\hat{g}( $\xi$)+R , (2)
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where R is the remaining part which is not important. Now we estimate the L^{p} norm of the

Fourier inverse transform of each term separately, applying the Marcinkiewicz multiplier
theorem to the Fourier multiplier \{\hat{ $\varphi$}( $\xi$/N)-1\}| $\xi$/N|^{-s} $\rho$(2^{l} $\xi$/N) for each l . Note here

that the L^{p} bound of the operator defined by the Fourier multiplier is O(2^{(s-2)l}) by simple
computation so that the sum in j is finite and independent of N . Also, recall that the

L^{p} norm of the Fourier inverse transform of  $\rho$(2^{l} $\xi$/N)| $\xi$|^{s}\hat{g}( $\xi$) is bounded by \Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})}
according to the definition of the Besov norm.

The second term can be estimated similarly at each point  $\xi$/N=2 $\pi$ n in view of the

fact that \displaystyle \hat{ $\varphi$}( $\xi$/N)\sum_{n\neq 0}\hat{g}( $\xi$+2 $\pi$ nN)=\sum_{n\neq 0}\{\hat{ $\varphi$}( $\xi$/N)-\hat{ $\varphi$}(2 $\pi$ n)\}\hat{g}( $\xi$+2 $\pi$ nN) ,
and that

\hat{ $\varphi$}( $\xi$) decays at \infty with an order faster than  O(| $\xi$|^{- $\mu$}) , 1< $\mu$.

Consequently, we have

Proposition 4.1 For p, s satisfy ing 0<s<2, 1<p<\infty,

\Vert S_{N}(g,  $\varphi$)-g\Vert_{L^{p}(\mathbb{R})}\leq CN^{-s}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})}.

4.4 Estimate of S_{N}(h,  $\varphi$)
To handle the high frequency part \Vert S_{N}(h,  $\varphi$)-h\Vert_{L^{p}(\mathbb{R})} ,

it suffices to estimate \Vert S_{N}(h,  $\varphi$)\Vert_{L^{p}(\mathbb{R})}
and \Vert h\Vert_{L^{p}(\mathbb{R})} separately.

Since we have the estimate: \Vert h\Vert_{L^{p}(\mathbb{R})}\leq CN^{-s}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})} , according to a standard

property of the Besov space, it suffices to show how to estimate \Vert S_{N}(h,  $\varphi$)\Vert_{L^{p}(\mathbb{R})}.
Let us first see the case p=2 . Then we have

Lemma 4.2 \Vert S_{N}(h,  $\varphi$)\Vert_{L^{2}(\mathbb{R})}\leq CN^{-1/2}\Vert f\Vert_{B_{2,1}^{1/2}(\mathbb{R})}
The proof is rather technical and let us describe the outline of the proof.

1st step: We first choose a function  $\eta$ of the Schwartz class such that \hat{ $\eta$}=1 on  supp $\chi$
with its support included in \{ $\xi$|2^{-1} $\pi$<| $\xi$|<2 $\pi$\} ,

so that if we define $\chi$_{ $\lambda$}(x)= $\chi$( $\lambda$ x)
and $\eta$_{ $\lambda$}(x)= $\eta$( $\lambda$ x) ,

then  h(x)=\displaystyle \int_{L}^{\infty}($\chi$_{ $\lambda$}*$\eta$_{ $\lambda$}*f)(x) $\lambda$ d $\lambda$ . Let us denote by \triangle_{y}f(x) the

finite difference \{f(x+y)+f(x-y)\}/2-f(x) of f and recall that  $\chi$(-x)= $\chi$(x) and

\displaystyle \int_{-\infty}^{\infty} $\chi$(x)dx=0 . Then, we have the following equality.

h(x)=2\displaystyle \int_{L}^{\infty}(\int_{0}^{\infty} $\chi$( $\lambda$ y)(\int_{-\infty}^{\infty} $\eta$( $\lambda$(x-r))\triangle_{y}f(r)dr)dy) $\lambda$ d $\lambda$.
and thus we obtain

Proposition 4.2

 S_{N}(h,  $\varphi$)(x)=2\displaystyle \int_{L}^{\infty}(\int_{0}^{\infty} $\chi$( $\lambda$ y)(\int_{-\infty}^{\infty}K(x, r)\triangle_{y}f(r)dr)dy) $\lambda$ d $\lambda$ , (3)

where  K is defined by K(x, r)=\displaystyle \sum_{k\in \mathbb{Z}} $\eta$( $\lambda$(k/N-r)) $\varphi$(Nx-k) ,
the sampling approxi‐

mation of the translated $\eta$_{ $\lambda$}.

2nd step: Now, the following inequality is valid for a function F\in L^{2}() in general.
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Proposition 4.3

\displaystyle \Vert\int_{-\infty}^{\infty}K(, r)F(r)dr\Vert_{L^{2}(\mathbb{R})}\leq C( $\lambda$ N)^{-1/2}\Vert F\Vert_{L^{2}(\mathbb{R})} . (4)

To prove this inequality, let us use the Parseval�s identity. After computing the Fourier

transform with respect to x of K(x, r) ,
we find that the integral with respect to r turns

out to be the Fourier transform of F(r) . And thus, we have

\displaystyle \Vert\int_{-\infty}^{\infty}K(, r)F(r)dr\Vert_{L^{2}(\mathbb{R})}=(2 $\pi$)^{-1/2}\Vert\hat{ $\varphi$}( $\xi$/N)\sum_{n\in \mathbb{Z}}\hat{ $\eta$}(( $\xi$+2 $\pi$ nN)/ $\lambda$)$\lambda$^{-1}\hat{F}( $\xi$+2 $\pi$ nN)\Vert_{L^{2}(\mathbb{R}_{ $\xi$})}
Here, in order to estimate the right hand side, we apply the Cauchy‐Schwarz inequality
to the sum in n and we note that if  $\varphi$ is of the type I, the integral with respect to  $\xi$ can

be restricted to the interval [-2N $\pi$, 2N $\pi$] and the effective number of non zero terms in

the sum with respect to n is of order O( $\lambda$/N) in view of the support of \hat{ $\eta$}.
On the other hand, if  $\varphi$ is of the type II, we have to take into account the decay order

of \hat{ $\varphi$}( $\xi$/N) , although the rest is essentially the same.

Consequently, putting F=\triangle_{y}f in the proposition, we have obtained

\displaystyle \Vert\int_{-\infty}^{\infty}K(\cdot, r)\triangle_{y}f(r)dr\Vert_{L^{2}(\mathbb{R})}\leq C( $\lambda$ N)^{-1/2}\Vert\triangle_{y}f\Vert_{L^{2}(\mathbb{R})} . (5)

3rd step: By the Minkowski�s inequality applied to the right hand side of Prop. 4.2,

\displaystyle \Vert S_{N}(h,  $\varphi$)\Vert_{L^{2}(\mathbb{R})} \leq 2\int_{L}^{\infty}(\int_{0}^{\infty}| $\chi$|( $\lambda$ y)C( $\lambda$ N)^{-1/2}\Vert\triangle_{y}f\Vert_{L^{2}(\mathbb{R})}dy) $\lambda$ d $\lambda$
\displaystyle \leq 2\int_{0}^{\infty}\Vert\triangle_{y}f\Vert_{L^{2}(\mathbb{R})}(\int_{yL}^{\infty}t^{1/2}| $\chi$(t)|dt)y^{-3/2}dyN^{-1/2},

where we have made the change of variables  $\lambda$ y=t.
Now, recall that \displaystyle \int_{0}^{1}\Vert\triangle_{y}f\Vert_{L^{2}(\mathbb{R})}y^{-1/2}dy/y\leq\Vert f\Vert_{B_{2,1}^{1/2}(\mathbb{R})} by another definition of the Besov

norm (see e.g., [26] p.189). Since the integral \displaystyle \int_{1}^{\infty}\Vert\triangle_{y}f\Vert_{L^{2}(\mathbb{R})}y^{-1/2}dy/y is easier to treat,
the outline of the proof of Lemma 4.2 is finally finished.

4.5 Estimates in L^{\infty}(\mathbb{R}) and L^{1}(\mathbb{R}) , and interpolation

In this subsection, let C denotes constants which may not always be the same. Note

that the inequality \Vert S_{N}(h,  $\varphi$)\Vert_{L^{\infty}(\mathbb{R})}\leq C\Vert h\Vert_{L^{\infty}(\mathbb{R})} is straightforward owing to the decay
property of  $\varphi$ . Also, by a basic property of the convolution, \Vert h\Vert_{L^{\infty}(\mathbb{R})}\leq C\Vert f\Vert_{L^{\infty}(\mathbb{R})} ,

which

gives

\Vert S_{N}(h,  $\varphi$)\Vert_{L^{\infty}(\mathbb{R})}\leq C\Vert f\Vert_{L^{\infty}(\mathbb{R})} . (6)

Let us proceed to estimate the L^{1}() norm of S_{N}(h,  $\varphi$) .

Lemma 4.3

\Vert S_{N}(h,  $\varphi$)\Vert_{L^{1}(\mathbb{R})}\leq CN^{-1}\Vert f\Vert_{B_{1,1}^{1}(\mathbb{R})} . (7)
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Note first that, by the Minkowski�s inequality, Lemma 4.3 is derived from the following
estimate as in the preceding case of L^{2}() estimate up to some modification.

Proposition 4.4

\Vert K (, r ) \Vert_{L^{1}(\mathbb{R})}\leq C(1/N+1/ $\lambda$) . (8)

To show this estimate, recall that the Fourier transform of K r) is equal to

\displaystyle \hat{ $\varphi$}( $\xi$/N)\sum_{n\in \mathbb{Z}}\hat{ $\eta$}(( $\xi$+2 $\pi$ nN)/ $\lambda$)e^{-ir( $\xi$+2 $\pi$ nN)}/ $\lambda$ , (9)

which means that  K r) is equal to

\displaystyle \sum_{n\in \mathbb{Z}}\int_{-\infty}^{\infty} $\eta$( $\lambda$(u-r))N $\varphi$(N(x-u))e^{-i2 $\pi$ nNu}du . (10)

Here, again, it suffices to notice that the effective number of non zero terms in the sum

with respect to n is of order O( $\lambda$/N) in view of the support of \hat{ $\eta$} ,
in the case where  $\varphi$ is

of the type I. Also, the same result holds for  $\varphi$ of type II with the same argument thanks

to the decay order of  $\varphi$ ,
as we have seen before. Therefore, the proof is done.

Finally, we apply the interpolation theorem of the Besov spaces (see e.g., [2] p.153),
which yields

\Vert S_{N}(h,  $\varphi$)\Vert_{L^{p}(\mathbb{R})}\leq CN^{-1/p}\Vert f\Vert_{B_{p,1}^{1/p}(\mathbb{R})}, 1<p<\infty (11)

Therefore, summing up preceding estimates for  g and h
,

the proof of Theorem 3.1 is now

immediate.

Let us state a slightly different version of Theorem 3.1 as its corollary:

Corollary 4.1

\Vert S_{N}(f,  $\varphi$)-f\Vert_{L^{p}(\mathbb{R})}\leq CN^{-s}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})}, 1/p<s<2, 1<p<\infty , (12)

where the constant  C is independent of N and f.

Let us show how to derive Corollary 4.1 for the sake of completeness, since it is some‐

what involved. From the the proof of Theorem 3.1, it follows that we only need to

prove \Vert S_{N}(h,  $\varphi$)\Vert_{Lp(\mathbb{R})}\leq CN^{-s}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})} ,
for 1/p<s<2,  1<p<\infty . First, we

define a smooth non‐negative function  $\theta$ by  $\theta$( $\xi$)=\displaystyle \sum_{l=1}^{\infty}$\rho$^{2}( $\xi$/2^{l}) so that  $\theta$( $\xi$)=0,
for | $\xi$|\leq $\pi$ ,

and  $\theta$( $\xi$)=1 ,
for 2 $\pi$<| $\xi$| . Then, the above inequality (11) implies

\Vert S_{N}(h,  $\varphi$)\Vert_{L^{p}(\mathbb{R})}\leq CN^{-1/p}\Vert f_{0}\Vert_{B_{p,1(\mathbb{R})}^{1/p}} ,
where f_{0} is defined by its Fourier transform such as

\hat{f_{0}}( $\xi$)= $\theta$(4 $\pi \xi$/L)\hat{f}( $\xi$) . Finally, we know that \Vert f_{0}\Vert_{B_{p,1(\mathbb{R})}^{1/p}} is dominated by CN^{1/p-s}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})},
according to the property of the Besov norm, from which follows the proof.

Remark 1 The case where  $\varphi$ is the sinc function is excluded from our consideration.

Incidentally, however, we can obtain similar results in this case by analogous arguments.
In particular, we have the same estimate as above for  1<p\leqq 2 . This may explain
why the sinc function is still so useful in the approximate sampling of not band limited

functions.
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5 Inverse inequality
Note first that from Corollary 4.1 with N=2^{j}

,
we have by the Minkowski�s inequality

\Vert S_{2j+1}(f,  $\varphi$)-S_{2j}(f,  $\varphi$)\Vert_{L^{p}(\mathbb{R})}\leq C_{0}2^{-js}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})}, j=1 , 2, \cdots, 1/p<s<2, 1<p<\infty.

And we also observe that, under the same assumption on p and s,

\displaystyle \sup_{j=1,2}\ldots 2^{js}\Vert S_{2j}(f,  $\varphi$)-f\Vert_{L^{p}(\mathbb{R})}\leq C_{1}\Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})} . (13)

In this section, we are concerned with the inequality inverse to (13).
Let us choose  $\varphi$(x)=\mathrm{N}_{2}(x+1) , \mathrm{N}_{4}(x+2) ,

the translated cardinal \mathrm{B}‐spline of order 2,
4 respectively, which are defined by the convolution of the characteristic function of the

unit interval [0 ,
1 ] :

\mathrm{N}_{2}(x)=\mathrm{I}_{[0,1]}*\mathrm{I}_{[0,1]}(x) , \mathrm{N}_{4}(x)=\mathrm{I}_{[0,1]}*\mathrm{I}_{[0,1]}*\mathrm{I}_{[0,1]}*\mathrm{I}_{[0,1]}(x) . (14)

Recall that both  $\varphi$=\mathrm{N}_{2} and  $\varphi$=\mathrm{N}_{4} satisfy the so called two scaling relation which

is ubiquitous in the wavelet theory:

\mathrm{N}_{2}(x) = 2^{-1}\mathrm{N}_{2}(2x)+\mathrm{N}_{2}(2x-1)+2^{-1}\mathrm{N}_{2}(2x-2) ,

\mathrm{N}_{4}(x) = 8^{-1}\mathrm{N}_{4}(2x)+2^{-1}\mathrm{N}_{4}(2x-1)+(3/4)\mathrm{N}_{4}(2x-2)+2^{-1}\mathrm{N}_{4}(2x-3)+8^{-1}\mathrm{N}_{4}(2x-4) .

Therefore, putting c_{j,k}=f(k/2^{j}) ,
we can derive by simple computation,

S_{2j+1}(f, \displaystyle \mathrm{N}_{2})(x)-S_{2j}(f, \mathrm{N}_{2})(x)=\sum_{k\in \mathbb{Z}}\{c_{j}+1,2k+1-2^{-1}(c_{j,k}+c_{j,k+1})\}\mathrm{N}_{2}(2^{j+1}x-2k-1) ,

S_{2j+1}(f, \displaystyle \mathrm{N}_{4})(x)-S_{2j}(f, \mathrm{N}_{4})(x)=4^{-1}\sum_{k\in \mathbb{Z}}\{c_{j,k}-2^{-1}(c_{j,k-1}+c_{j,k+1})\}\mathrm{N}_{4}(2^{j+1}x-2k)
+\displaystyle \sum_{k\in \mathbb{Z}}\{\mathcal{C}_{j+1,2k+1-2^{-1}(c_{j,k}+c_{j,k+1})\}\mathrm{N}_{4}(2^{j+1}x-2k-1)}.

Consequently, we get the following equivalence (see [11] p.145).

Proposition 5.1

\displaystyle \Vert S_{2j+1}(f, \mathrm{N}_{2})-S_{2j}(f, \mathrm{N}_{2})\Vert_{L^{p}(\mathbb{R})}^{p}\simeq\sum_{k\in \mathbb{Z}}2^{-j}|\mathcal{C}_{j+1,2k+1-2^{-1}(c_{j,k}+c_{j,k+1})|^{p}},
\displaystyle \Vert S_{2j+1}(f, \mathrm{N}_{4})-S_{2j}(f, \mathrm{N}_{4})\Vert_{L^{p}(\mathbb{R})}^{p}\simeq\sum_{k\in \mathbb{Z}}2^{-j}|c_{j,k}-2^{-1}(c_{j,k-1}+c_{j,k+1})|^{p}

+\displaystyle \sum_{k\in \mathbb{Z}}2^{-j}|\mathcal{C}_{j+1,2k+1-2^{-1}(c_{j,k}+c_{j,k+1})|^{p}}
As an immediate consequence, we obtain

Proposition 5.2

\Vert S_{2j+1}(f, \mathrm{N}_{2})-S_{2j}(f, \mathrm{N}_{2})\Vert_{L^{p}(\mathbb{R})}\leq C_{2}\Vert S_{2j+1}(f, \mathrm{N}_{4})-S_{2j}(f, \mathrm{N}_{4})\Vert_{L^{p}(\mathbb{R})} . (15)
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Therefore, by the telescope argument again, we have

Corollary 5.1

\displaystyle \Vert S_{2j}(f, \mathrm{N}_{2})-f\Vert_{L^{p}(\mathbb{R})}\leq C_{3}\sum_{i=j}^{\infty}\Vert S_{2^{i}}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})} . (16)

This means that \Vert S_{2j}(f, \mathrm{N}_{2})-f\Vert_{L^{p}(\mathbb{R})} is essentially dominated by \Vert S_{2j}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})}.

Now, we can state a characterization of the Besov norm by establishing the inverse

inequality of the preceding estimate as follows.

Theorem 5.3

\displaystyle \Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})}\simeq\sup_{j=1,2}\ldots 2^{js}\Vert S_{2j}(f, \mathrm{N}_{4})-f\Vert_{L^{p(\mathbb{R})}}+\Vert f\Vert_{L^{p(\mathbb{R})}}, 1/p<s<2,  1<p<\infty . (17)

Note that we have to prove only the inequality ``\leq`` of Theorem 5.3.

Let us employ the cut off function  $\theta$ again. Then by the definition of the Besov norm,

we have for  0<s,

\displaystyle \Vert f\Vert_{B_{p,\infty}^{s}(\mathbb{R})}\simeq\sup_{j=1,2},\cdots 2^{js}\Vert \mathfrak{F}^{-1}[$\theta$^{2}( $\xi$/2^{j})\hat{f}( $\xi$)]\Vert_{L^{p(\mathbb{R})}}+\Vert f\Vert_{L^{p}(\mathbb{R})},
(18)

where \mathfrak{F}^{-1}[G] means the inverse Fourier transform of G.

Secondly, we use a cheap trick, namely, we observe that \Vert \mathfrak{F}^{-1}[$\theta$^{2}( $\xi$/2^{j})\hat{f}( $\xi$)]\Vert_{Lp(\mathbb{R})} is

not greater than

\displaystyle \Vert \mathfrak{F}^{-1}[$\theta$^{2}( $\xi$/2^{j})\{\hat{\mathrm{N}_{2}}( $\xi$/2^{j})\sum_{n\in \mathbb{Z}}\hat{f}( $\xi$+2^{j+1} $\pi$ n)-\hat{f}( $\xi$)\}]\Vert_{L^{p}(\mathbb{R})}
+\displaystyle \Vert \mathfrak{F}^{-1}[$\theta$^{2}( $\xi$/2^{j})\hat{\mathrm{N}_{2}}( $\xi$/2^{j})\sum_{n\in \mathbb{Z}}\hat{f}( $\xi$+2^{j+1} $\pi$ n)]\Vert_{L^{p}(\mathbb{R})}.

The first term is easily estimated above by

C_{4}\displaystyle \Vert \mathfrak{F}^{-1}[\hat{\mathrm{N}_{2}}( $\xi$/2^{j})\sum_{n\in \mathbb{Z}}\hat{f}( $\xi$+2^{j+1} $\pi$ n)-\hat{f}( $\xi$)]\Vert_{L^{p}(\mathbb{R})}=C_{4}\Vert S_{2j}(f, \mathrm{N}_{2})-f\Vert_{L^{p}(\mathbb{R})} . (19)

The second term needs a technical observation, namely, the function m= $\theta$\hat{\mathrm{N}_{2}}/(\hat{\mathrm{N}_{2}}-\hat{\mathrm{N}_{4}})
is a Fourier multiplier, since on the support of  $\theta$, \hat{\mathrm{N}_{2}}/(\hat{\mathrm{N}_{2}}-\hat{\mathrm{N}_{4}}) is bounded. Therefore,
by the Marcinkiewicz multiplier theorem it is estimated above by

C_{5}\displaystyle \Vert \mathfrak{F}^{-1}[ $\theta$( $\xi$/2^{j})\{\hat{\mathrm{N}_{2}}( $\xi$/2^{j})-\hat{\mathrm{N}_{4}}( $\xi$/2^{j})\}\sum_{n\in \mathbb{Z}}\hat{f}( $\xi$+2^{j+1} $\pi$ n)]\Vert_{Lp(\mathbb{R})} , (20)

which is also dominated by

C_{6}\Vert S_{2j}(f, \mathrm{N}_{2})-S_{2j}(f, \mathrm{N}_{4})\Vert_{L^{p}(\mathbb{R})} \leq  C_{6}\{\Vert S_{2j}(f, \mathrm{N}_{2})-f\Vert_{L^{p}(\mathbb{R})}+\Vert S_{2j}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})}\}

\displaystyle \leq C_{7}\sum_{i=j}^{\infty}\Vert S_{2^{i}}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})},
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due to Corollary 5.1. Consequently, we have

2^{js}\displaystyle \Vert \mathfrak{F}^{-1}[$\theta$^{2}( $\xi$/2^{j})\hat{f}( $\xi$)]\Vert_{L^{p(\mathbb{R})}}\leq C_{8}2^{js}\sum_{i=j}^{\infty}\Vert S_{2^{i}}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})}
=C_{8}\displaystyle \sum_{i=j}^{\infty}2^{(j-i)s}2^{is}\Vert S_{2^{i}}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})}.

Since \displaystyle \sum_{i=j}^{\infty}2^{(j-i)s} is finite for 0<s ,
the rest of the proof is now immediate.

6 Applications

6.1 Numerical solutions of PDE

Let us describe a historical connection of our results to the numerical computation of

solutions to time dependent PDEs. For this purpose, we mainly follow the the book of

H. L. Resnikoff‐ R. O. Wells, Jr.[18]. See, for example, [1], [7] and [29] among others, for

other references of wavelet methods. Following the book, let us denote by  $\varphi$=$\varphi$_{coif} the

Coifman�s scaling function of a suitable degree. According to the book, Resnikoff‐ Wells

and Tian‐ Wells proved the following asymptotic error estimate for r‐times differentiable

functions f in mid‐1990�s:

\Vert f-S_{2j}(f, $\varphi$_{coif})\Vert_{L^{2}(\mathbb{R})}\leq C_{r}2^{-jr} (j=1,2, \ldots) ,

with C_{r} depending on f but not on j.
In the second part of their book, they compute numerical solutions of the Dirichlet

boundary value problems for the two dimensional Laplacian.
Inspired from their method, the asymptotic error estimate was investigated further

and its strengthened version was stated in [28] as follows, (see [4] for another closely
related interesting results). Let us put  $\varphi$=$\varphi$_{coif} as above. Then, if f belongs to the

Sobolev space W_{p}^{r}(\mathbb{R}) , r\leq m,  1\leq p\leq\infty ,
we have

\Vert f-S_{2j}(f, $\varphi$_{coif})\Vert_{L^{p}(\mathbb{R})}\leq C_{ $\varphi$,p,r}2^{-jr}\Vert f^{(r)}\Vert_{L^{p}(\mathbb{R})} (j=1,2, \ldots) , (21)

where, C_{ $\varphi$,p,r} is a constant depending only on  $\varphi$, p and r . It has been one of our motiva‐

tions to generalize this asymptotic error estimate for sampling approximation further to

functions in Besov spaces with respect to more general sampling functions.

Then, it is natural to use this sampling approximation to compute numerical solutions

of time dependent partial differential equations as follows.

Let u(x, t) be the exact solution of a PDE and suppose that it is smooth enough with

respect to the x variable. Then we denote by u_{d} a numerical solution define as follows

which is expected to be close to u if we choose a sufficiently large fixed number J :

u(x, t)\displaystyle \approx u_{d}(x, t):=\sum_{k\in \mathbb{Z}}c_{k}(t) $\varphi$(2^{J}x-k) .

Here c(t) are functions in t to be computed numerically, since the PDE for u(x, t) is

reduced to a system of ODE for c(t) after replacing u_{t}, u_{x} , etc., of the PDE by their

counterparts (u_{d})_{t}, (u_{d})_{x} , etc., in view of the good approximation property: u_{t}\approx(u_{d})_{t}=
\displaystyle \sum_{k\in \mathbb{Z}}c_{k}(t) $\varphi$(2^{J}x-k) ,

and u_{x}\displaystyle \approx(u_{d})_{x}=2^{J}\sum_{k\in \mathbb{Z}}c_{k}(t)$\varphi$'(2^{J}x-k) ,
etc.
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6.2 The order of smoothness of functions

Let f(x) be a kind of  $\alpha$‐Hölder continuous function (0< $\alpha$<1) like the stock price
curve defined on \mathbb{R} and let us consider the case where the function f(x) belongs to

B_{p,\infty}^{s}() , s= $\alpha$+1/p . Then our problem is to find the information on  $\alpha$ from the

observed value of  f(x) at dyadic points k/2^{j}, k\in \mathbb{Z}, j=1 , 2, \cdots

, i.e., from the sampling
approximation  S_{2j}(f,  $\varphi$) of f.
Let us call  $\alpha$ the critical order of smoothness of  f if either

(i) f(x) belongs to B_{p,\infty}^{s}(\mathbb{R}) , s= $\alpha$+1/p and not to B_{p,\infty}^{t}(\mathbb{R}) , t> $\alpha$+1/p ,
or

(ii) f(x) belongs to B_{p,\infty}^{s}(\mathbb{R}) , s< $\alpha$+1/p and not to B_{p,\infty}^{t}() , t= $\alpha$+1/p.

Let us show that this critical order can be determined using only the value of f on the

dyadic points \{k/2^{j}\}.
Let us define  $\beta$ by

 $\beta$=-\displaystyle \lim\sup_{j\rightarrow\infty}\frac{1}{jp}\log_{2}(\sum_{k\in \mathbb{Z}}|c_{j,k}-\frac{1}{2}(c_{j,k-1}+c_{j,k+1})|^{p}) . (22)

Then we have

Theorem 6.1  $\alpha$= $\beta$.

Let us sketch the proof for the sake of completeness. We first note an elementary
equivalence: For any sequence \{F_{j}\} which is convergent to F,

\displaystyle \sup_{j=1,2}\ldots 2^{js}\Vert F_{j}-F\Vert<\infty\Leftrightarrow\lim\sup_{j\rightarrow\infty}2^{js}\Vert F_{j}-F_{j+1}\Vert<\infty.
By means of this equivalence, Theorem 5.3 implies that

 f\displaystyle \in B_{p,\infty}^{s}(\mathbb{R})\Leftrightarrow\sup_{j=1,2}\ldots 2^{js}\Vert S_{2j}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})}<\infty
\displaystyle \Leftrightarrow\lim\sup_{j\rightarrow\infty}2^{js}\Vert S_{2j+1}(f, \mathrm{N}_{4})-S_{2j}(f, \mathrm{N}_{4})\Vert_{L^{p}(\mathbb{R})}<\infty.

Then, we use the second equivalence of Proposition 5.1 and compute the \log_{2} of the both

hand sides. The rest of the proof is elementary.

Remark 2 It follows from preceding arguments, with an additinal computation, that we

actually have the equivalence forp, q, s satisfy ing 1<p<\infty, 1\leq q\leq\infty, 1/p<s<2 :

\displaystyle \Vert f\Vert_{B_{p,q}^{s}(\mathbb{R})}\simeq(\sum_{j=0}^{\infty}2^{jsq}(\Vert S_{2j}(f, \mathrm{N}_{4})-f\Vert_{L^{p}(\mathbb{R})})^{q})^{1/q}+\Vert f\Vert_{L^{p}(\mathbb{R})} . (23)

TherefO re, under the condition that 1<p<\infty, 1\leq q\leq\infty,  0< $\alpha$ and  $\alpha$+1/p<2 ,
we

have also the equivalence:

\displaystyle \Vert f\Vert_{B_{p,q}^{ $\alpha$+1/p}(\mathbb{R})}\simeq(\sum_{j=0}^{\infty}2^{j $\alpha$ q}(\sum_{k\in \mathbb{Z}}|c_{j,k}-\frac{1}{2}(c_{j,k-1}+c_{j,k+1})|^{p})^{q/p})^{1/q}+\Vert f\Vert_{L^{p}(\mathbb{R})} . (24)

See [7] and [11] p.362 for closeley related equivalences where the coefficients in the expan‐

sion by the cardinal B‐spline are diffe rent, i.e., they are given by the inner product.
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