Lifting Galois representations over arbitrary number fields: A resume

By

Yoshiyuki TOMIYAMA*

Let \(k \) be a finite field of characteristic \(p > 5 \). Let \(K \) be a number field of finite degree over \(\mathbb{Q} \) and \(G_K \) its absolute Galois group \(\text{Gal}(\overline{K}/K) \). Let \(\bar{\rho} : G_K \rightarrow \text{GL}_2(k) \) be a continuous representation and let \(W(k) \) be the ring of Witt vectors of \(k \). We consider the following question:

Question 0.1. Is there a continuous representation \(\rho : G_K \rightarrow \text{GL}_2(W(k)) \) satisfying \(\bar{\rho} = \rho \mod p \)?

This question has been motivated by a conjecture of Serre ([S]) saying that all odd absolutely irreducible continuous representations \(\bar{\rho} : G_\mathbb{Q} \rightarrow \text{GL}_2(k) \) are modular. This implies the existence of a lift to characteristic zero. This conjecture was proved by Khare and Wintenberger in [KW1, KW2].

In [K], Khare proved the existence of a lift to \(W(k) \) for any \(\bar{\rho} : G_K \rightarrow \text{GL}_2(k) \) which is reducible. Thus we may assume that \(\bar{\rho} \) is irreducible.

For a place \(v \) of \(K \), let \(K_v \) be the completion of \(K \) at \(v \), and let \(G_v \) be its absolute Galois group \(\text{Gal}(\overline{K_v}/K_v) \). Let \(\text{Ad}^0 \bar{\rho} \) be the \(k \)-vector space of all trace zero two-by-two matrices over \(k \) on which \(G_K \) acts by conjugation. Our main result is the following:

Theorem 0.2. Assume that \(H^2(G_v, \text{Ad}^0 \bar{\rho}) = 0 \) for each place \(v \mid p \). Then \(\bar{\rho} \) lifts to a continuous representation \(\rho : G_K \rightarrow \text{GL}_2(W(k)) \) which is unramified outside a finite set of places of \(K \).

For \(K = \mathbb{Q} \), Ramakrishna proved under very general conditions on \(\bar{\rho} \) that there exist lifts to \(W(k) \) in [R1, R2]. Gee ([G]) and Manoharmayum ([M]) proved, independently, that there exist lifts to \(W(k) \) for \(K \) satisfying \([K(\mu_p) : K] > 2 \), where \(\mu_p \) is the group of \(p \)-th roots of unity.

Our method used in the proof of the Theorem is essentially that of Ramakrishna [R1, R2], but we follow the more axiomatic treatment presented in [Ta]. We denote by \(S \)
a finite set of places of K containing the places above p, the infinite places and the places at which $\bar{\rho}$ is ramified. Let K_S denote the maximal algebraic extension of K unramified outside S and put $G_{K,S} = \text{Gal}(K_S/K)$. Thus $\bar{\rho}$ factors through $G_{K,S}$. The existence of a lifting of $\bar{\rho}$ follows from the triviality of a certain class of $H^2(G_{K,S}, \text{Ad}^0 \bar{\rho})$. Since it is difficult to calculate it directly, we reduce the calculations of global obstructions to those of local obstructions, which are much better understood. By Taylor [Ta], it boils down to showing the vanishing of a certain Selmer group. We can prove the triviality of this group by extending S by a suitably chosen finite set Q. With the choice of Q of Ramakrishna and Gee, they could not prove the triviality of the Selmer group for an arbitrary number field. Our choice of Q is different from Ramakrishna’s and Gee’s. For more details, see our preprint [To].

References

[KW1] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (I), preprint