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Ramication of truncated discrete valuation rings: \mathrm{a}

survey

By

Toshiro HIRANOUCHI *

Abstract

A truncated discrete valuation ring is a commutative ring which is isomorphic to a quotient
of finite length of a complete discrete valuation ring. We give an equivalence between the

category of at most a‐ramied finite separable extensions of a complete discrete valuation field

K and the category of at most a‐ramied finite extensions of the �length‐a truncation� of the

integer ring of K . This extends a theorem of Deligne in which he proved this fact assuming
the residue field is perfect. Our theory depends heavily on Abbes‐Saito�s ramication theory.

§1. Introduction

A truncated discrete valuation ring (abbreviated as tdvr in the following) is a

commutative ring which is isomorphic to a quotient of finite length of a discrete valuation

ring (equivalently, it can be dened to be an Artinian local ring whose maximal ideal

is generated by one element). This note is a short survey of the author�s results of

[9] and [10] (joint work with Y. Taguchi) which are concerned with the ramication of

extensions of such rings.
One of the motivations for studying such objects is that many phenomena on objects

over discrete valuation rings are often determined by their reduction modulo powers

of the maximal ideal. Classical examples of such phenomena include Hensel�s lemma

(cf. [15], §2.2, Th. 1). In the case where the tdvr has a perfect residue field, Deligne

([5]) formulated this fact precisely as a categorical equivalence between the category of

at most a‐ramied finite separable extensions of a complete discrete valuation field K

and the category of at most a‐ramied finite extensions of the \backslash \backslash \mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}-a truncation�
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\mathcal{O}_{K}/\mathfrak{m}_{K}^{a} of the integer ring of K . Our main result is a generalization of this theorem to

the case of arbitrary residue field.

For a tdvr A of length a\geq 1 and each rational number m with 0<m\leq a ,
we

shall construct a category \mathcal{F}F\mathcal{P}_{A}^{<m} of finite flat principal A‐algebrasl with ramication

bounded by m (Def. 3.6 below). Next, let K be a cdvf and A a tdvr of length a . Suppose

\mathcal{O}_{K}/\mathfrak{m}_{K}^{a} and A are isomorphic as rings, where \mathfrak{m}_{K} is the maximal ideal of \mathcal{O}_{K} . Then for

each rational number m with 0<m\leq a ,
we construct a functor T:\mathcal{F}\mathcal{E}_{K}^{<m}\rightarrow \mathcal{F}F\mathcal{P}_{A}^{<m}

from the category \mathcal{F}\mathcal{E}_{K}^{<m} of finite étale K‐algebras with ramication bounded by m

(Def. 3.7). The object T(L) for L in \mathcal{F}\mathcal{E}_{K}^{<m} is by denition the quotient ring \mathcal{O}_{L}/\mathfrak{m}_{K}^{a}\mathcal{O}_{L},
where \mathcal{O}_{L} is the integral closure of \mathcal{O}_{K} in L . Our main theorem is the following, which

generalizes Deligne�s theorem ([5], Th. 2.8) to the case of imperfect residue fields, except

that he uses a category of triples associated with the tdvr�s in our \mathcal{F}F\mathcal{P}_{A}^{<m} ,
which have

a priori less information than the tdvr�s themselves.

Theorem 1.1. The functor T:\mathcal{F}\mathcal{E}_{K}^{<m}\rightarrow \mathcal{F}F\mathcal{P}_{A}^{<m} is an equivalence of categories.

Remark. (i) The case of a=1 in the theorem is well‐known (cf. [14], Chap. III,

§5). Indeed, if m\leq 1 ,
the objects of \mathcal{F}\mathcal{E}_{K}^{<m} are direct products of finite unramied

extensions of K
,

and the objects of \mathcal{F}F\mathcal{P}_{A}^{<m} are étale over A (cf. Prop. 2.1). Thus our

main interest is in the case a>1.

(ii) Let G_{K}=\mathrm{G}\mathrm{a}1(\overline{K}/K) denote the absolute Galois group of K
,

and G_{K}^{a} its ath

ramication subgroup dened by Abbes and Saito ([2], [3]). The category \mathcal{F}\mathcal{E}_{K}^{<m} is, and

hence \mathcal{F}F\mathcal{P}_{A}^{<m} is also, a Galois category whose fundamental group is G_{K}/G_{K}^{m} by the

very denition of the ramication filtration. Note that \mathcal{F}\mathcal{E}_{K}^{<m} is equivalent also to the

category of coverings of Spec( ) with ramication bounded by \mathfrak{m}_{K}^{m} ([8], Def. 2.3); in

the terminology of op. cit., we have $\pi$_{1}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{K}), \mathfrak{m}_{K}^{m})=G_{K}/G_{K}^{m}.

A direct consequence of our theorem is:

Corollary 1.2. Let F and K be two cdvf�s, and a an integer \geq 1 . Assume that

\mathcal{O}_{F}/\mathfrak{m}_{F}^{a}\simeq \mathcal{O}_{K}/\mathfrak{m}_{K}^{a} as a ring.

(i) The categories \mathcal{F}\mathcal{E}_{F}^{<m} and \mathcal{F}\mathcal{E}_{K}^{<m} are equivalent for any m\leq a.

(ii) There is a (non‐canonical) isomorphism  $\gamma$ :  G_{F}/G_{F}^{a}\rightarrow^{\simeq}G_{K}/G_{K}^{a} such that

 $\gamma$(G_{F}^{m}/G_{F}^{a})=G_{K}^{m}/G_{K}^{a} for all m\leq a.

Here, G_{F}^{m} etc. are the ramication subgroups of the absolute Galois group G_{F} of F

etc. dened by Abbes and Saito ([2], [3]). This corollary holds because we have \mathcal{F}\mathcal{E}_{F}^{<m}\simeq

\mathcal{F}F\mathcal{P}_{\mathcal{O}_{F}/\mathfrak{m}_{F}^{a}}^{<m}\simeq \mathcal{F}F\mathcal{P}_{\mathcal{O}_{K}/\mathfrak{m}_{K}^{a}}^{<m}\simeq \mathcal{F}\mathcal{E}_{K}^{<m} as Galois categories from the above theorem. This

lWe mean by a principal A‐algebra an A‐algebra of which every ideal is generated by one element.

All algebras in this paper are commutative.
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is particularly interesting when F and K have different characteristics. Note that, for

any cdvf F of positive characteristic, there exists a cdvf K of characteristic 0 which

satises the assumption \mathcal{O}_{F}/\mathfrak{m}_{F}^{a}\simeq \mathcal{O}_{K}/\mathfrak{m}_{K}^{a} (Prop. 2.1). The larger a is, the larger
absolute ramication index K must have. Thus the cdvf F of characteristic p>0 may

be thought of as a
\backslash limit� of cdvf�s K of characteristic 0 (cf. [5]).

In view of the above results, we may dene the Galois group G_{A} of A to be G_{K}/G_{K}^{a}
(or equivalently, to be the fundamental group of the Galois category \mathcal{F}F\mathcal{P}_{A}^{<a} ) together
with the ramication subgroups G_{A}^{m} :=G_{K}^{m}/G_{K}^{a} ,

where K is any cdvf such that  A\simeq

\mathcal{O}_{K}/\mathfrak{m}_{K}^{a} . The filtered group G_{A} depends (up to inner automorphisms) only on the

isomorphism class of A as a ring. It is natural to ask the converse:

Question. If A and A' are two tdvr�s of length a and if there is an isomorphism  $\gamma$ :

 G_{A}\rightarrow G_{A'} of groups such that  $\gamma$(G_{A}^{m})=G_{A}^{m}, for all m\leq a ,
then is it true that A\simeq A'

as a ring?

This problem is a version of the Grothendieck conjecture in anabelian geometry.
The Neukirch‐Uchida theorem (= the Grothendieck conjecture on global fields) says

that for global fields K and K'
,
if we have an isomorphism G_{K}\rightarrow^{\simeq}G_{K'} of the absolute

Galois groups of K and K' then we have K\simeq K' (cf. [16], Chap. XII, Sect. 3). In other

words, any global field can be recovered from its absolute Galois group. However, it is

known that the local analogue of this theorem dose not hold ([17], see also [11]). In [13],
S. Mochizuki showed that any finite extension field over \mathbb{Q}_{p} can be recovered from its

absolute Galois group equipped with the filtration dened by the ramication groups in

the upper numbering (See also [1] for the case of positive characteristic). This result can

be thought of as the case of ( (a=\infty � and finite residue fields in the above Question. In

general, it is necessary to assume that the residue fields of  A and A' are either finite or

of some
\backslash anabelian� nature. If we include the case a=1

,
where the Question reduces to

the usual Grothendieck conjecture on fields (the
\backslash birational� Grothendieck conjecture),

the residue field should be a field for which the Grothendieck conjecture holds. For

example, it should not be algebraically closed. However, if we look only at the case

a>1 ,
then it is not clear if the question above holds even if the residue field is, say,

algebraically closed.

Throughout this paper, K is a complete discrete valuation field with residual char‐

acteristic p>0 . We denote by \mathcal{O}_{K} the valuation ring of K, \mathfrak{m}_{K} the maximal ideal

of \mathcal{O}_{K}, $\pi$_{K} a uniformizing element of K
,

and \overline{K} a fixed separable closure of K . For

any étale K‐algebra L
,

we denote by \mathcal{O}_{L} the integral closure of \mathcal{O}_{K} in L . We use the

following abbreviations:

dvr := discrete valuation ring,
cdvf := complete discrete valuation field,
cdvr := complete discrete valuation ring,
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tdvr := truncated discrete valuation ring.

Acknowledgments. The author would like to thank the referee for his/her careful reading
of the manuscript. The author has been partially supported by GCOE (Kyoto Univer‐

sity), JSPS KAKENHI #21740015 and JSPS Core‐to‐Core Program #18005 (Coordi‐
nator: Makoto Matsumoto).

§2. Truncated discrete valuation rings

First we recall some basic notions from [9]. A tdvr is an Artinian local ring whose

maximal ideal is generated by one element. The length of a tdvr A is the length of A as

an A‐module. It is known that a tdvr A is principal, and any ideal is of the form \mathfrak{m}_{A}^{i}
for some i\geq 0 . Any generator $\pi$_{A} of the maximal ideal \mathfrak{m}_{A} is said to be a uniformizer
of A . Any element x of a tdvr A of length a can be written as x=u$\pi$_{A}^{i} with u\in A^{\times},

$\pi$_{A} a uniformizer of A
,

and 0\leq i<a (with the convention 0^{0}=1 if a=1 ).
If K is a cdvf, then \mathcal{O}_{K}/\mathfrak{m}_{K}^{a} is a tdvr for any integer a\geq 1 . If L/K is a finite exten‐

sion of cdvf�s, then B=\mathcal{O}_{L}/\mathfrak{m}_{K}^{a}\mathcal{O}_{L} is a finite extension of A=\mathcal{O}_{K}/\mathfrak{m}_{K}^{a} . Conversely,
it is known that any tdvr is a quotient of a cdvr (cf. [12], Th. 3.3). More precisely, we

have:

Proposition 2.1 ([9], Prop. 2.2). Let A be a tdvr with residue field k of char‐

acteristic p\geq 0 ,
and let a be the length of A. Then there exists a cdvr \mathcal{O} such that A is

isomorphic to \mathcal{O}/\mathfrak{m}^{a} , where \mathfrak{m} is the maximal ideal of \mathcal{O} . IfpA=0 ,
then this \mathcal{O} can be

taken to be the power series ring k[ $\pi$] ; if pA\neq 0 ,
then \mathcal{O} as above must be finite over a

Cohen p ‐ring ([6], 0_{\mathrm{I}\mathrm{V}}, 19.8) with residue field k . (If pA=0 and p\neq 0 ,
then both types

of \mathcal{O} are possible.)

(ii) Let K be a cdvf and let A=\mathcal{O}_{K}/\mathfrak{m}_{K}^{a} with a \geq 1 . For any finite extension

B/A of tdvr�s, there exist a finite separable extension L/K and an isomorphism  $\psi$ :

\mathcal{O}_{L}/\mathfrak{m}_{K}^{a}\mathcal{O}_{L}\rightarrow B such that the diagram

\mathcal{O}_{L}/\mathfrak{m}_{K}^{a}\mathcal{O}_{L}\rightarrow^{ $\psi$}B

\mathcal{O}_{K}/\mathfrak{m}_{K}^{a}\uparrow-A\uparrow
is commutative, where the left vertical arrow is the one induced by \mathcal{O}_{K}\mapsto \mathcal{O}_{L}.

By abuse of terminology, we may call a cdvr a tdvr of length \infty.
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§3. Construction of the category \mathcal{F}F\mathcal{P}_{A}^{<m}

In this section, we fix a tdvr A of length  a\leq\infty with residue field  k of characteristic

p>0 . We recall here the denition of the category of \mathcal{F}F\mathcal{P}_{A}^{<m} of finite flat principal
A‐algebras with \backslash ramication <m

�

, assuming for simplicity that m is a positive integer.
A polarization  $\alpha$ of  A is a pair (S\rightarrow $\alpha$ A, (x)) consisting of a surjective local ring

homomorphism  $\alpha$ :  S\rightarrow A ,
where S is a complete regular local ring with residue

field k
,

and a principal ideal (x) of S such that  $\alpha$((x))=\mathfrak{m}_{A} . Two basic examples of

polarizations are the following:

Example 3.1. (i) If A is a quotient of a cdvr S ,
it may be regarded as a po‐

larization (S\rightarrow $\alpha$ A, (x)) ,
where  $\alpha$ is the quotient map  S\rightarrow A and x is a uniformizer of

S.

(ii) Let W be a Cohen p‐ring with residue field k
,

and S=W[x] the power series ring
over W in one variable x . Then for any choice of a uniformizer  $\pi$ of  A

,
there exists a

unique continuous homomorphism  $\alpha$ :  S\rightarrow A which induces the identity map between

the residue fields and maps x to  $\pi$ . The pair (S\rightarrow $\alpha$ A, (x)) is a polarization of A.

For the moment, we fix such an  $\alpha$ . Then we view any  A‐algebra also as an S‐

algebra via  $\alpha$ . We endow  S with the \mathfrak{m}_{S} ‐adic topology. All S‐algebra homomorphisms
are assumed continuous with respect to the \mathfrak{m}_{S} ‐adic topology. Fix an algebraic closure

\overline{C} of the fraction field C of S and let G_{C}=\mathrm{G}\mathrm{a}1(\overline{C}/C) be the absolute Galois group

of C . Let S_{C} be the category of finite G_{C} ‐sets. To dene the notion of \backslash ramication

bounded by m
� and the \mathrm{H}\mathrm{o}\mathrm{m} sets in the category \mathcal{F}F\mathcal{P}_{A}^{<m} ,

we dene a contravariant

functor F_{ $\alpha$}^{m} from the category \mathcal{F}\mathcal{F}_{A} of finite flat algebras over A to S_{C} . We say that

an S‐algebra \mathrm{B} is formally of finite type over S if it is semi‐local, \mathfrak{m}_{\mathrm{B}} ‐adically complete,
Noetherian and the quotient \mathrm{B}/\mathfrak{m}_{\mathrm{B}} is finite over k . Let B be a finite flat A‐algebra and

regard it as an S‐algebra via  $\alpha$ . We call a commutative diagram

\mathrm{B}\rightarrow^{ $\epsilon$}B

 S\uparrow\rightarrow^{ $\alpha$}A\uparrow
an embedding of  B over  $\alpha$ if \mathrm{B} is an S‐algebra which is formally of finite type and formally
smooth over S and  $\epsilon$ is a surjective homomorphism which induces an isomorphism

\mathrm{B}/\mathfrak{m}_{\mathrm{B}}\rightarrow B/\mathfrak{m}_{B} . We may often call it briey an  $\alpha$ ‐embedding  $\epsilon$ : \mathrm{B}\rightarrow B.

Let \mathcal{E}_{ $\alpha$}(B) denote the category of which the objects are the  $\alpha$‐embeddings of  B
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and the morphisms are the commutative diagrams

where  $\epsilon$ : \mathrm{B}\rightarrow B and $\epsilon$' : \mathrm{B}'\rightarrow B are objects of \mathcal{E}_{ $\alpha$}(B) and f:\mathrm{B}\rightarrow \mathrm{B}' is an S‐algebra

homomorphism. The category \mathcal{E}_{ $\alpha$}(B) is non‐empty ([10], Lem. 2.1).
Let  $\epsilon$ : \mathrm{B}\rightarrow B be an object of \mathcal{E}_{ $\alpha$}(B) and I_{ $\epsilon$} its kernel. For any positive integer

m<a ,
we dene a C‐algebra \mathrm{B}_{ $\epsilon$,C}^{m} by \mathrm{B}_{ $\epsilon$,C}^{m}=\mathrm{B}[I_{ $\epsilon$}/x^{m}]^{\wedge}\otimes_{S}C ,

where \wedge means the

 x‐adic completion. Dene2

$\pi$_{0}(\displaystyle \mathrm{B}_{ $\epsilon$,\overline{C}}^{m}):=\lim_{C}$\pi$_{0}(\mathrm{B}_{ $\epsilon$,C}^{m}\otimes_{C}C')\leftarrow
where  C' runs through the finite separable extensions of C contained in \overline{C} . The sets

$\pi$_{0}(\mathrm{B}_{ $\epsilon$}^{m}-) form a projective system when the embeddings  $\epsilon$ vary, which is in fact constant

(op. cit., Cor. 3.6). Put

 F_{ $\alpha$}^{m}(B):= \displaystyle \lim_{\leftarrow} $\pi$_{0}(\mathrm{B}_{ $\epsilon$,\overline{C}}^{m}) .

 $\epsilon$\in \mathcal{E}_{ $\alpha$}(B)

Then F_{ $\alpha$}^{m}(B) is a finite G_{C} ‐set. This correspondence B\mapsto F_{ $\alpha$}^{m}(B) is functorial, and

thus we obtain a contravariant functor F_{ $\alpha$}^{m}:\mathcal{F}\mathcal{F}_{A}\rightarrow S_{C}.
We can show that the functor F_{ $\alpha$}^{m} does not depend on the polarization  $\alpha$ in the

following sense: Let \mathcal{P}(A) be the category of polarizations of A
,

in which a morphism

 $\gamma$ : (S\rightarrow $\alpha$ A, (x))\rightarrow(T\rightarrow $\beta$ A, (y)) is a commutative diagram

such that  $\gamma$ :  S\rightarrow T is a surjective ring homomorphism and  $\gamma$((x))=(y) . Suppose

there is a morphism  $\gamma$ of polarizations from  $\alpha$=(S\rightarrow $\alpha$ A, (x)) to  $\beta$=(T\rightarrow $\beta$ A, (y)) .

Let C and K be the fraction fields of S and T
, respectively. Put \mathfrak{p}:=\mathrm{K}\mathrm{e}\mathrm{r} ( $\gamma$ : S\rightarrow T) ,

and let D_{\mathfrak{p}} be a decomposition group for \mathfrak{p} ; thus it is the subgroup of G_{C} consisting
of elements  $\sigma$ such that  $\sigma$(\overline{\mathfrak{p}})=\overline{\mathfrak{p}} for a choice of a prime ideal \overline{\mathfrak{p}} lying above \mathfrak{p} in the

integral closure of S in C . Let S_{C,\mathfrak{p}} denote the category of finite D_{\mathfrak{p}} ‐sets. There are

2In the case where S is a cdvr \mathcal{O}_{K} with fraction field C=K ,
the set  $\pi$ 0(\mathrm{B}_{ $\epsilon$}^{m}-) is in fact identical

with the set  $\pi$ 0(X_{\frac{m}{K}}) of geometric connected components of the affinoid variety X^{m}=\mathrm{S}\mathrm{p}(\mathrm{B}_{ $\epsilon$,K}^{m})
considered in [3], [7] and [9] by Proposition 9.1.8 of [4]. Thus the above denition of F_{ $\alpha$}^{m} coincides

with that of F^{m} in [9].
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natural functors d_{\mathfrak{p}} : S_{C}\rightarrow S_{C,\mathfrak{p}} and r_{\mathfrak{p}} : S_{K}\rightarrow S_{C,\mathfrak{p}} , corresponding respectively to

the group homomorphisms D_{\mathfrak{p}}\mapsto G_{C} and D_{\mathfrak{p}}\rightarrow G_{K} . Recall that we have dened two

functors F_{ $\alpha$}^{m} : \mathcal{F}\mathcal{F}_{A}\rightarrow S_{C} and F_{ $\beta$}^{m} : \mathcal{F}\mathcal{F}_{A}\rightarrow S_{K} . These functors all together form the

diagram

FF
(3.1)

S_{K}

One of the main results in [10] is the following Proposition:

Proposition 3.2 (op. cit., Prop. 3.1). The diagram (3.1) is commutative.

More precisely, this means that there exists a natural isomorphism r_{\mathfrak{p}}F_{ $\beta$}^{m}\rightarrow d_{\mathfrak{p}}F_{ $\alpha$}^{m}
of functors. Thus, intuitively speaking, the two functors F_{ $\alpha$}^{m} and F_{ $\beta$}^{m} may be identied

by means of reduction modulo \mathfrak{p} (or, extension of scalars by  $\gamma$ :  S\rightarrow T). If we forget
about the Galois action and regard F_{ $\alpha$}^{m} simply as a functor to the category S of finite

sets, then there exists a natural isomorphism F_{ $\alpha$}^{m}\rightarrow F_{ $\beta$}^{m} of functors.

Then we dene a functor F_{A}^{m}:\mathcal{F}\mathcal{F}_{A}\rightarrow S by

F_{A}^{m}(B):= \underline{1}\mathrm{i}! F_{ $\alpha$}^{m}(B) .

 $\alpha$\in \mathcal{P}(A)

We can prove the lemma below ([9]).

Lemma 3.3. For any finite flat principal A ‐algebra B and 0<m\leq a ,
we have

\# F_{A}^{m}(B)\leq rank(B).

Proof. It is enough to show the inequality \# F_{ $\alpha$}^{m}(B)\leq rank ( \mathrm{B}) for some polar‐
ization  $\alpha$=(S\rightarrow $\alpha$ A, (x)) . By Proposition 3.2, we may assume that S is a cdvr. Let T

be a finite flat S‐algebra such that T/\mathfrak{m}_{S}^{a}T\simeq B ; then we have rank(B) =\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{S}(T)
(Prop. 2.1). By Hattori�s lemma below, we have F_{ $\alpha$}^{m}(B)\simeq F_{A}^{m}(B)=F_{S}^{m}(T) . Since

F_{S}^{m}(T) is naturally identied with a quotient of F_{S}(L) :=\mathrm{H}\mathrm{o}\mathrm{m}_{S}(T,\overline{C})\simeq$\pi$_{0}(T\otimes_{S}\overline{C}) ,

we have \# F_{S}^{m}(T)\leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{S}(T) ,
and hence \# F_{ $\alpha$}^{m}(B)\leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{A}(B) . \square 

Lemma 3.4 ([7], Lem. 1). Let S\rightarrow A be a surjective local ring homomorphism,
where S is a cdvr with residue field k . For any finite flat S ‐algebra T

, put B=T/\mathfrak{m}_{S}^{a}T.
Then we have F_{A}^{m}(B)=F_{S}^{m}(T) as an object of S the category of finite sets for any

rational number 0<m\leq a . In particular, the ramication of B is bounded by m if and

only if so is T.
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Denition 3.5. Let B be a finite flat principal A‐algebra. We say that the

ramication of B is bounded by m if \# F_{A}^{m}(B)=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{A}(B) .

Denition 3.6. For each rational number m with 0<m\leq a ,
dene \mathcal{F}F\mathcal{P}_{A}^{<m}

to be the category whose objects are finite flat principal A‐algebras with ramica‐

tion bounded by m in which we dene \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{F}TP_{A}^{<m}}(B, B') to be the quotient set of

\mathrm{H}\mathrm{o}\mathrm{m}_{A}(B, B') by the equivalence relation \sim m dened as follows: For f, g\in \mathrm{H}\mathrm{o}\mathrm{m}_{A}(B, B

f\sim mg
\mathrm{d}\mathrm{e}\mathrm{f}_{:}

F_{A}^{m}(f)=F_{A}^{m}(g) in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{S}}(F_{A}^{m}(B'), F_{A}^{m}(B)) ,

where S is the category of finite sets.

Thus the set \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{F}R_{A}^{\supset}}<7m(B, B') may be identied with the image of

\mathrm{H}\mathrm{o}\mathrm{m}_{A}(B, B')\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{S}}(F_{A}^{m}(B'), F_{A}^{m}(B)) .

Denition 3.7. Dene3 \mathcal{F}\mathcal{E}_{K}^{<m}:=\mathcal{F}F\mathcal{P}_{\mathcal{O}_{K}}^{<m}.

Choose a polarization  $\alpha$=(\mathcal{O}_{K}\rightarrow $\alpha$ A ,
of A . Then the truncation functor

T:\mathcal{F}\mathcal{E}_{K}^{<m}\rightarrow \mathcal{F}F\mathcal{P}_{A}^{<m}

is dened by T(\mathcal{O}) :=\mathcal{O}/\mathfrak{m}_{K}^{a}\mathcal{O} . The image is in \mathcal{F}F\mathcal{P}_{A}^{<m} by Hattori�s lemma.

Finally, we prove Theorem 1.1. The essential surjectivity of T follows from (ii) of

Proposition 2.1 and Lemma 3.4, since any object of \mathcal{F}F\mathcal{P}_{A}^{<m} is a direct product of finite

extensions of A . To prove the full‐faithfulness, let \mathcal{O} and \mathcal{O}' be two objects in \mathcal{F}F\mathcal{P}_{\mathcal{O}_{K}}^{<m},
and let B=T(\mathcal{O}) and B'=T(\mathcal{O}') . Since the functor F_{\mathcal{O}_{K}}^{m} gives an anti‐equivalence of

the Galois category \mathcal{F}\mathcal{E}_{K}^{<m} with a full‐subcategory of S_{K} ,
we have

\mathrm{H}_{\mathrm{o}\mathrm{m}<m}\mathrm{F}\mathrm{P}P_{\mathrm{O}_{K}}(\mathcal{O}, \mathcal{O}')\simeq \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{S}_{K}}(F_{\mathcal{O}_{K}}^{m}(\mathcal{O}'), F_{\mathcal{O}_{K}}^{m}(\mathcal{O})) .

By Lemma 3.4, we have

\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{S}_{K}}(F_{\mathcal{O}_{K}}^{m}(\mathcal{O}'), F_{\mathcal{O}_{K}}^{m}(\mathcal{O}))=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{S}_{K}}(F_{A}^{m}(B'), F_{A}^{m}(B)) .

It follows from our denition of \mathrm{H}\mathrm{o}\mathrm{m} in \mathcal{F}F\mathcal{P}_{\mathcal{O}_{K}}^{<m} and \mathcal{F}F\mathcal{P}_{A}^{<m} that

\mathrm{H}_{\mathrm{o}\mathrm{m}_{\mathrm{F}}<m} $\pi$\supset_{\mathrm{o}_{K}}(\mathcal{O}, \mathcal{O}')=\mathrm{H}<m.
This completes the proof of the Theorem.

3In [9], the category \mathcal{F}\mathcal{E}_{K}^{<m} is dened to be finite étale K‐algebras with ramication bounded by
m (op. cit., Def. 3.1). The correspondence L\mapsto \mathcal{O}_{L} gives an equivalence of categories from this to

fF\mathcal{P}_{\mathcal{O}_{K}}^{<m} . Thus the two denitions coincide.
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