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Algebraic interpretation of Kawashima relation

for multiple zeta values

By

Tatsushi Tanaka *

Abstract

This is a survey article which is concerned with a recent remarkable work of Gaku

Kawashima on a class of relations among multiple zeta values, and its applications to the

quasi‐derivation relation conjectured by Masanobu Kaneko and proven by the author and to

the cyclic sum formula first proven by Michael Hoffman and Yasuo Ohno.

§1. Introduction

For each index (kl, . .

:, k_{l} ) with l\geq 1, k_{1}>1, k_{2} ,
. . .

; k_{l}\geq 1 ,
the multiple zeta value

(MZV for short) is a real number dened by the convergent series

 $\zeta$(k_{1}, k2, . . . , k_{l})=\displaystyle \sum_{m_{1}>m_{2}>\cdot\cdot>m_{l}>0}.\frac{1}{m_{1}^{k_{1}}m_{2^{2}}^{k}\cdots m_{l}^{k_{l}}},
and the multiple zeta‐star value (MZSV for short) is dened by the convergent series

$\zeta$^{\star}(k_{1}, k2, . . . , k_{l})=\displaystyle \sum_{m_{1}\geq m_{2}\geq\cdot\cdot\geq m_{l}>0}.\frac{1}{m_{1}^{k_{1}}m_{2^{2}}^{k}\cdots m_{n}^{k_{l}}}.
We call the number k_{1}+\cdots+k_{l} weight and l depth. When l=1

, MZV and MZSV

coincide and are known as a special value of the Riemann zeta function. The proper‐

ties of MZV�s and MZSV�s as �values� such as irrationality, transcendency and linearly

independency among them are rarely studied. (A few results appear in [1, 23, 28, .)
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In these days, MZV�s and MZSV�s appear in several aspects of mathematics and

physics. One of the mathematical interests for MZV�s and MZSV�s is to find and prove

explicit relations among them. It is well‐known that each of MZSV�s can be expressed
as a \mathbb{Q}‐linear combination of MZV�s, and vice versa. For example,

$\zeta$^{\star}(2,1)=\displaystyle \sum_{m_{1}\geq m_{2}>0}\frac{1}{m_{1}^{2}m_{2}}=\sum_{m_{1}>m_{2}>0}\frac{1}{m_{1}^{2}m_{2}}+\sum_{m_{1}=m_{2}>0}\frac{1}{m_{1}^{2}m_{2}}= $\zeta$(2,1)+ $\zeta$(3) ,

and so on. That means the \mathbb{Q}‐vector space generated by MZSV�s coincides with the

\mathbb{Q}‐vector space generated by MZV�s. Zagier gives in [27] the following conjecture on the

dimension of the space.

Dimension conjecture. Let \{d_{k}\} be a sequence given by d_{0}=1, d_{1}=0, d_{2}=1, d_{k}=

d_{k-2}+d_{k-3}(k\geq 3) . Then we have

\displaystyle \dim_{\mathbb{Q}}\sum_{k_{1}+\cdots+k_{l}.=kl\geq 1,k_{1}>1,k_{2},k_{l}\geq 1}..,\mathbb{Q} $\zeta$(k_{1}, \ldots, k_{l})=d_{k}.
Goncharov and Terasoma showed independently in [8, 26] that the sequence d_{k} gives the

upper bound of the dimension. The number of indices of weight k is 2^{k-2}
,

and hence

there are at least 2^{k-2}-d_{k} linearly independent relations among MZV�s.

Can we describe all \mathbb{Q}‐linear relations among MZV�s explicitly? A few classes of

relations which are expected to give all \mathbb{Q}‐linear relations among MZV�s have been

found so far. Ihara‐Kaneko‐Zagier [12] and other writers (Goncharov, Minh, Petitot,
Boutet de Monvel, Écalle, Racinet, proved the so‐called regularized double shuffle

relation, which is known to give 2^{k-2}-d_{k} linearly independent relations for k\leq 20 in

[16]. Drinfel�d associator introduced in [3, 4, 6, is a kind of generating functions of

MZV�s and satises the group‐like property and 2‐, 3‐ and 5‐cycle relation. Relations of

Drinfel�d associator can be translated into relations among MZV�s and are also expected
to give 2^{k-2}-d_{k} linearly independent relations. The following Kawashima relation also

conjecturally gives all relations among MZV�s.

From now on, we describe relations among MZV�s by using the algebraic setup

introduced by Hoffman [9]. Let \mathfrak{H}=\mathbb{Q}\langle x,  y\rangle denote the non‐commutative polynomial

algebra over \mathbb{Q} in two indeterminates x and y ,
and let \mathfrak{H}^{1} and \mathfrak{H}^{0} denote the subalgebras

\mathbb{Q}+\mathfrak{H}y and \mathbb{Q}+x\mathfrak{H}y , respectively. We dene the \mathbb{Q}‐linear map Z:\mathfrak{H}^{0}\rightarrow \mathbb{R} by Z(1)=1
and

Z(x^{k_{1}-1}yx^{k_{2}-1}y\cdots x^{k_{n}-1}y)= $\zeta$(k_{1}, k2, . . . , k_{n}) .

We also dene the \mathbb{Q}‐linear map \overline{Z}:\mathfrak{H}^{0}\rightarrow \mathbb{R} by \overline{Z}(1)=1 and

\overline{Z}(x^{k_{1}-1}yx^{k_{2}-1}y\cdots x^{k_{n}-1}y)=$\zeta$^{\star}(k_{1}, k2, . . . , k_{n}) .
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The degree (resp. degree with respect to y) of a word is the weight (resp. the depth) of

the corresponding MZV or MZSV.

Let z_{k}=x^{k-1}y for k\geq 1 . The harmonic product *:\mathfrak{H}^{1}\times \mathfrak{H}^{1}\rightarrow \mathfrak{H}^{1} is a \mathbb{Q}‐bilinear

map dened by the following rules:

i) For any w\in \mathfrak{H}^{1}, 1*w=w*1=w,

ii) For any w, w'\in \mathfrak{H}^{1} and any k, l\geq 1,

z_{k}w*z_{l}w'=z_{k}(w*z_{l}w')+z_{l}(z_{k}w*w')+z_{k+l}(w*w') .

This is, as shown in [9], an associative and commutative product on \mathfrak{H}^{1} . Another

harmonic product \overline{*}:\mathfrak{H}^{1}\times \mathfrak{H}^{1}\rightarrow \mathfrak{H}^{1} is a \mathbb{Q}‐bilinear map dened by

i) For any w\in \mathfrak{H}^{1}, 1\overline{*}w=w\overline{*}1=w,

ii) For any w, w'\in \mathfrak{H}^{1} and any k, l\geq 1,

z_{k}w\overline{*}z_{l}w'=z_{k}(w\overline{*}z_{l}w')+z_{l}(z_{k}w\overline{*}w')-z_{k+l}(w\overline{*}w') .

The product \overline{*}\mathrm{i}\mathrm{s} also known to be associative and commutative. We denote

z_{k}w-z_{l}w'=z_{k+l}(w*w') , z_{k}w\overline{*}z_{l}w'=z_{k+l}(w\overline{*}w')

for any k, l\geq 1 and w, w'\in \mathfrak{H}^{1}.
Let  $\varphi$,  $\alpha$ be the automorphisms on \mathfrak{H} characterized by  $\varphi$(x)=x+y,  $\varphi$(y)=-y and

 $\alpha$(x)=y,  $\alpha$(y)=x ,
and \tilde{ $\alpha$} the \mathbb{Q}‐linear map on \mathfrak{H}y satisfying \sim(wy)= $\alpha$(w)y(w\in \mathfrak{H}) .

Then Kawashima relation is stated as follows.

Theorem 1.1 (Kawashima relation [14]). For any m\geq 1 and any w, w'\in \mathfrak{H}y,
we have

i ) p+q=m\displaystyle \sum_{p,q\geq 1}Z( $\varphi$(w)*y^{p})Z( $\varphi$(w')-y^{q})=Z( $\varphi$(w*w')*y^{m})
,

ii ) p+q=m\displaystyle \sum_{p,q\geq 1}\overline{Z}(\sim(w)\overline{*}y^{p})\overline{Z}(\sim(w')\overline{*}y^{q})=-\overline{Z}(\sim(w\overline{*}w')\overline{*}y^{m})
.

He showed these formulas by studying an analytic property of certain Newton series,
which is summarized in §2. Expanding the products of MZV�s in the left‐hand side

of Kawashima relation by the iterated integral shuffle product (for the denition of

the shuffle product, see [22, 12] for example), we find that Kawashima relation gives

2^{k-2}-d_{k} linearly independent relations for k\leq 12 . (The calculation is due to Risa/asir,
an open source general computer algebra system. Also see [24].)

For any w\in \mathfrak{H} ,
dene the \mathbb{Q}‐linear operator L_{w} on \mathfrak{H} by L_{w}(w')=ww'(w'\in \mathfrak{H}) .

We notice that w*y=xw=L_{x}(w)(w\in \mathfrak{H}^{1}) . We write

\mathfrak{H}y*\mathfrak{H}y=\{w*w'|w, w'\in \mathfrak{H}y\},
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\mathfrak{H}y\overline{*}\mathfrak{H}y=\{w\overline{*}w'|w, w'\in \mathfrak{H}y\}.

Then, when m=1
,

Theorem 1.1 reduces to

Corollary 1.2 (the linear part of Kawashima relation). We have

i ) L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y)\subset \mathrm{k}\mathrm{e}\mathrm{r}Z,

ii) L_{x}\sim(\mathfrak{H}y\overline{*}\mathfrak{H}y)\subset \mathrm{k}\mathrm{e}\mathrm{r}\overline{Z}.

Indeed, the statements i) and ii) in Corollary 1.2 are equivalent. The linear part of

Kawashima relation looks so simple but contains many linearly independent relations

and has some nice properties. Let  $\tau$ be the anti‐automorphism on \mathfrak{H} such that  $\tau$(x)=
y,  $\tau$(y)=x . Let $\sigma$_{j}(j\geq 0) be the \mathbb{Q}‐linear map on \mathfrak{H}y such that

$\sigma$_{j}(z_{k_{1}}\displaystyle \cdots z_{k_{l}})=\sum_{$\epsilon$_{1}+.\cdot.\cdot.\cdot+$\epsilon$_{l}=j$\epsilon$_{1},,,$\epsilon$_{l}\geq 0}z_{k_{1}+$\epsilon$_{1}}\cdots z_{k_{l}+$\epsilon$_{l}}.
We note that $\sigma$_{0}=id . Kawashima showed that Ohno relation ([19]), which reduces to

the duality formula if j=0 ,
is contained in the linear part of Kawashima relation:

Theorem 1.3 ([14]). For any j\geq 0 ,
we have $\sigma$_{j}(1- $\tau$)(\mathfrak{H}^{0})\subset L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y) .

In [24], it is proven that the quasi‐derivation relation, which is conjectured in Kaneko

[15], is also contained in the linear part of Kawashima relation. In [25], it is proven that

the cyclic sum formula, which is shown in Hoffman‐Ohno [11] or Ohno‐Wakabayashi

[20], is also contained in the linear part of Kawashima relation. They are described in

§3 and §4.

§2. Kawashima�s work

We recall Kawashima�s theory in the present section. Proofs can be seen in [14].
His first investigation is on some analytic properties of certain interpolation series called

Newton series. Firstly, some fundamental properties of Newton series are explained in

§2:1 (also see [7, 13, 14 In §2:2, we discuss on the inversion sequence of certain multiple
harmonic sums. In §2:3, we consider special Newton series made by interpolating the

multiple harmonic sums. Such Newton series satisfy a functional equation. Then we

describe that Taylor coefficients of the functional equation give us relations among

MZV�s, which we call Kawashima relation.

§2.1. Newton series

Let a : \mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} be a complex‐valued sequence. The Newton series for the sequence

a is dened by

f_{a}(z):=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}(\nabla a)(n)\left(\begin{array}{l}
z\\
n
\end{array}\right),
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where \displaystyle \left(\begin{array}{l}
z\\
n
\end{array}\right)=\frac{z(z-1)\cdots(z-n+1)}{n!}, z is a complex variable, and \nabla a denotes the inversion

sequence of a :

(\displaystyle \nabla a)(m)=\sum_{i=0}^{m}(-1)^{i}\left(\begin{array}{l}
m\\
i
\end{array}\right)a(i) .

We note that the operator \nabla is an involution, and hence we find that  f_{a}(m)=a(m)
holds for any m\in \mathbb{Z}_{\geq 0} . In this sense, we often denote f(z) by a(z) .

The following properties are fundamental in the theory of the Newton series (see
[7, 13, 14] for their proofs).

Proposition 2.1. Let a:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} be a sequence and z\in \mathbb{C}\backslash \mathbb{Z}_{\geq 0} . Then the

Newton series

\displaystyle \sum_{n=0}^{\infty}(-1)^{n}a(n)\left(\begin{array}{l}
z\\
n
\end{array}\right)
and the Dirichlet series

\displaystyle \sum_{n=1}^{\infty}\frac{a(n)}{n^{z+1}}
possess one and the same abscissa of convergence and absolute convergence.

Corollary 2.2. Let a:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} be a sequence and  $\epsilon$\in \mathbb{R} . If a(n)=O(n^{ $\epsilon$}) as

 n\rightarrow\infty
,

then the Newton series

\displaystyle \sum_{n=0}^{\infty}(-1)^{n}a(n)\left(\begin{array}{l}
z\\
n
\end{array}\right)
converges absolutely for any z\in \mathbb{C} with {\rm Re}(z)> $\epsilon$.

Proposition 2.3. Let a:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} be a sequence and let the Newton series

f(z)=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}a(n)\left(\begin{array}{l}
z\\
n
\end{array}\right)
have the abscissa of convergence  $\xi$ . If there exists  N\in \mathbb{Z}_{\geq 0} such that f(n)=0 for any

integer n\geq N ,
then we have f(z)=0 for any {\rm Re}(z)> $\xi$.

For any sequence a : \mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} and any n\in \mathbb{Z}_{\geq 0} ,
we denote the difference of a by

\triangle a . The m times composition of \triangle is given by

(\displaystyle \triangle^{m}a)(n)=\sum_{i=n}^{m+n}(-1)^{i-n}\left(\begin{array}{ll}
m & \\
i- & n
\end{array}\right)a(i)
for any n\in \mathbb{Z}_{\geq 0} . The inversion sequence \nabla a is also written as (\nabla a)(n)=(\triangle^{n}a)(0) for

any n\in \mathbb{Z}_{\geq 0}.
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Lemma 2.4. Let a:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} be a sequence. Let the abscissa of convergence of
Newton series

f(z)=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}a(n)\left(\begin{array}{l}
z\\
n
\end{array}\right)
by  $\xi$ . Let  l\in \mathbb{Z}_{\geq 0} . Then we have

(-1)^{l}\displaystyle \left(\begin{array}{l}
z\\
l
\end{array}\right)f(z)=\sum_{n=l}^{\infty}(-1)^{n}\left(\begin{array}{l}
n\\
l
\end{array}\right)(\triangle^{l}a)(n-l)\left(\begin{array}{l}
z\\
n
\end{array}\right)
for any {\rm Re}(z)> $\xi$+l.

Kawashima showed that Corollary 2.2 and Lemma 2.4 gives us the following propo‐

sition.

Proposition 2.5. Let a, b:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} be sequences. Suppose the Newton series

f(z)=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}a(n)\left(\begin{array}{l}
z\\
n
\end{array}\right), g(z)=\sum_{n=0}^{\infty}(-1)^{n}b(n)\left(\begin{array}{l}
z\\
n
\end{array}\right)
have the abscissas of convergence $\xi$_{a} and $\xi$_{b} , respectively. Let  $\epsilon$>0 . We assume that

the sequences a, b:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} satisfy the following conditions.

i) The values a(m) , (\triangle^{l}b)(m) are non‐negative for any m, l\in \mathbb{Z}_{\geq 0},

ii) $\xi$_{a}<0,

iii) For any l\in \mathbb{Z}_{\geq 0} , we have (\triangle^{l}b)(m)=O(m^{-l- $\epsilon$}) as m\rightarrow\infty.

Then, the product f(z)g(z) is expressed as a Newton series in the half‐ plane {\rm Re}(z)>
\displaystyle \max\{$\xi$_{a}, - $\epsilon$\}.

§2.2. Inversion sequence of multiple harmonic sums

For each word w=z_{k_{1}}\cdots z_{k_{l}}\in \mathfrak{H}^{1} ,
we dene four kinds of multiple harmonic sums

s_{w}(m)=\displaystyle \sum_{m+1=m_{1}\geq m_{2}\underline{>}\cdots\geq m_{l}>0}\frac{1}{m_{1}^{k_{1}}m_{2}^{k_{2}}\cdots m_{l}^{k_{l}}},
a_{w}(m)= \displaystyle \sum \frac{1}{k_{1}k_{2}k_{l}},

m+1=m_{1}>m_{2}>\cdots>m_{l}>01mm_{2}
. . .

m_{l}

S_{w}(m)=\displaystyle \sum_{m+1>m_{1}\geq m_{2}\underline{>}\cdots\geq m_{l}>0}\frac{1}{m_{1}^{k_{1}}m_{2}^{k_{2}}\cdots m_{l}^{k_{l}}},
A_{w}(m)= \displaystyle \sum \frac{1}{k_{1}k_{2}k_{l}}.

m+1>m_{1}>m_{2}>\cdots>m_{l}>01mm_{2}
. . .

m_{l}
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We consider that the subscripts of every harmonic sums are extended to any elements

in \mathfrak{H}^{1} ,
that means the subscripts are dened \mathbb{Q}‐linearly:

M_{pw+qw'}(m)=pM_{w}(m)+qM_{w'}(m)

for any m\geq 0 and any p, q\in \mathbb{Q} and M which stands for any of s, a, S, A . By denition,
we find that

\displaystyle \sum_{m=0}^{\infty}a_{w}(m)=\lim_{m\rightarrow\infty}A_{w}(m)=Z(w) , \sum_{m=0}^{\infty}s_{w}(m)=\lim_{m\rightarrow\infty}S_{w}(m)=\overline{Z}(w)
for w\in \mathfrak{H}^{0} . For any m\geq 0 ,

each of multiple harmonic sums satises the corresponding
harmonic product rule:

(2.1) s_{w}(m)s_{w'}(m)=s_{w\overline{*}w}, (m) ,

(2.2) a_{w}(m)a_{w'}(m)=a_{w-w'}(m) ,

(2.3) S_{w}(m)S_{w'}(m)=S_{w*w'}-(m) ,

(2.4) A_{w}(m)A_{w'}(m)=A_{w*w'}(m) .

We also notice that the following property of Newton series holds. See [14] for the proof.

Proposition 2.6. Let a:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} be a sequence. We suppose the abscissa of

convergence of Newton series

f(z)=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}a(n)\left(\begin{array}{l}
z\\
n
\end{array}\right)
is negative. Then we have

f(z)=a(0)+\displaystyle \sum_{m=1}^{\infty}(-1)^{m}\{\sum_{n=0}^{\infty}a(n)a_{y^{m}}(n-1)\}z^{m}
in some neighborhood of 0.

Let  $\gamma$ be the automorphism on \mathfrak{H} characterized by

 $\gamma$(x)=x,  $\gamma$(y)=x+y.

For any w\in \mathfrak{H} ,
we dene the operator R_{w} on \mathfrak{H} by R_{w}(w')=w'w for any w'\in \mathfrak{H} . Let

d be the \mathbb{Q}‐linear map on \mathfrak{H}^{1} given by d(1)=1 and

d=R_{y} $\gamma$ R_{y}^{-1}
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on \mathfrak{H}y . The maps Z, \overline{Z} dened in §1 satisfy \overline{Z}=Zd
,
which is known as a simple \mathbb{Q}‐linear

transformation between MZV�s and MZSV�s. Similarly, we find that

(2.5) s_{w}(m)=a_{d(w)}(m) , S_{w}(m)=A_{d(w)}(m)

hold for any w\in \mathfrak{H}^{1} and any m\geq 0 . It is also known that the identities

(2.6) d(w\overline{*}w')=d(w)*d(w') ,

(2.7) d(w\overline{*}w')=d(w)-d(w') ,

hold for any w, w'\in \mathfrak{H}^{1} (see [14, 17] for example). We note that the harmonic product
rule (2.1) (resp. (2.3)) can be proven by the harmonic product rule (2.2) (resp. (2.4))
because of the identities (2.7) (resp. (2.6)) and (2.5), and vice versa.

Let m be a positive integer. For n, k\geq 0 and words  $\mu$=z_{$\mu$_{1}}
. . .

z_{$\mu$_{c}}, v=z_{$\nu$_{1}}
. . .  z_{$\nu$_{d}}\in

\mathfrak{H}^{1} with $\mu$_{1}+\cdots+$\mu$_{c}=v_{1}+\cdots+v_{d}=m ,
we dene

s_{ $\mu,\ \nu$}(n, k)=\displaystyle \left(\begin{array}{l}
n+k\\
n
\end{array}\right)\sum_{k=k_{1}\geq^{\frac{>}{\geq}}k_{d}\geq 0}\frac{1}{(n_{i_{1}}+k_{j_{1}}+1)\cdots(n_{i_{m}}+k_{j_{m}}+1)}n=n_{1}\geq.\cdot.\cdot.\cdot n_{c}\geq 0 �

where

| \{\mathrm{z} \} | \{\mathrm{z} \} | \{\mathrm{z} \} | \{\mathrm{z} \}(\mathrm{i};:::;\mathrm{i}) = (1; : : : ; 1 ); (\mathrm{j};:::;\mathrm{j}) = (1; : : : ; 1 ):(i_{1}, .

$\mu$_{1} $\mu$_{c} $\nu$_{1} $\nu$_{d}

We consider that the subscripts of s_{ $\mu,\ \nu$}(n, k) are extended to any elements in \mathfrak{H}^{1} ,
that

means the subscripts are dened \mathbb{Q}‐bilinearly:

s_{p $\mu$+q$\mu$',u $\nu$+v$\nu$'}(n, k)=pus_{ $\mu,\ \nu$}(n, k)+pvs_{ $\mu,\nu$'}(n, k)+qus_{$\mu$', $\nu$}(n, k)+qvs_{$\mu$',$\nu$'}(n, k)

for any n, k\geq 0 and any p, q, u, v\in \mathbb{Q} . We note that s_{ $\mu,\ \nu$}(n, 0)=s_{ $\mu$}(n) , s_{ $\mu,\ \nu$}(0, k)=
s_{ $\nu$}(k) .

We have the k times difference of s_{w} explicitly as follows.

Theorem 2.7 ([14]). For any w\in \mathfrak{H}^{1} and any n, k\geq 0 ,
we have

(\triangle^{k}s_{w})(n)=s_{w,\sim(w)}(n, k) .

Since (\nabla a)(n)=(\triangle^{n}a)(0)(n\geq 0) ,
we have the inversion sequence of s_{w} :

Corollary 2.8. For any w\in \mathfrak{H}^{1} ,
we have \nabla s_{w}=s_{8(w)}.



Algebraic interpretation 0F Kawashima relation for MZV�s 125

Remark 1. The inversion formula of s_{w} described in Corollary 2.8 was proven

also in Hoffman [10]. Here we present another different proof of the formula, which is

due to the polylogarithm function as a generating function of s_{w} . For w=z_{k_{1}}\cdots z_{k_{l}}

with k_{1} ,
.

::; k_{l}\geq 1 and a complex variable z with |z|<1 ,
the multiple polylogarithm

functions Li_{w}(z) , \overline{Li}_{w}(z) are dened by

Li_{w}(z)=\displaystyle \sum_{m_{1}>\cdots>m_{n}>0}\frac{z^{m_{1}}}{m_{1}^{k_{1}}\cdots m_{n}^{k_{n}}}, \overline{Li}_{w}(z)=\sum_{m_{1}\geq\cdots\geq m_{n}>0}\frac{z^{m_{1}}}{m_{1}^{k_{1}}\cdots m_{n}^{k_{n}}}.
We consider that the subscripts of Li(z) and \overline{Li}_{w}(z) are extended to any elements in

\mathfrak{H}^{1} ,
that means the subscripts are dened \mathbb{Q}‐linearly:

Li_{pw+qw'}(z)=pLi_{w}(z)+qLi_{w'}(z) , \overline{Li}_{pw+qw'}(z)=p\overline{Li}_{w}(z)+q\overline{Li}_{w'}(z)

for any n, k\geq 0 and any p, q\in \mathbb{Q} . We note that \overline{Li}_{w}(z)=Li_{d(w)}(z) . As a matter

of fact, the inversion formula of s_{w} comes from Landen connection formula of multiple

polylogarithm, which is described as follows (also see [18, 21]).
Differentiating Li_{z_{k_{1}}\cdots z_{k_{l}}}(z) and Li_{z_{k_{1}}\cdots z_{k_{l}}} (\displaystyle \frac{z}{z-1}) by z

,
we obtain

\displaystyle \frac{d}{dz}Li_{z_{k_{1}}\cdots z_{k_{l}}}(z)=\left\{\begin{array}{ll}
-Li_{z_{k_{1}-1}z_{k_{2}}\cdots z_{k_{l}}}(z)1 & k_{1}>1,\\
\frac{z_{1}}{1-z}Li_{z_{k_{2}}\cdots z_{k_{l}}}(z) & k_{1}=1, l>1,\\
\frac{1}{1-z} & k_{1}=l=1,
\end{array}\right.
\displaystyle \frac{d}{dz}Li_{z_{k_{1}}\cdots z_{k_{l}}}(\frac{z}{z-1})=\left\{\begin{array}{ll}
(\frac{1}{z}+\frac{1}{1-z})Li_{z_{k_{1}-1}z_{k_{2}}\cdots z_{k_{l}}}(\frac{z}{z-1}) & k_{1}>1,\\
-\frac{1}{1-z}Li_{z_{k_{2}}\cdots z_{k_{l}}}(\frac{z}{z-1}) & k_{1}=1, l>1,\\
-\frac{1}{1-z} & k_{1}=l=1.
\end{array}\right.

According to these formulas together with the identity proven by Euler [5],

\displaystyle \sum_{i=1}^{n}(-1)^{i}\left(\begin{array}{l}
n\\
i
\end{array}\right)\frac{1}{i}=-\sum_{i=1}^{n}\frac{1}{i},
we have the Landen connection formula

Li_{w}(z)=Li_{ $\varphi$(w)}(\displaystyle \frac{z}{z-1}) ,

where  $\varphi$ stands for the automorphism on \mathfrak{H} given by  $\varphi$(x)=x+y,  $\varphi$(y)=-y . We find

the identity

(2.8)  $\varphi$ d=-d\tilde{ $\alpha$},
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and hence we easily calculate

(2.9)

\displaystyle \overline{Li}_{w}(z)=Li_{d(w)}(z)=Li_{ $\varphi$ d(w)}(\frac{z}{z-1})=-Li_{d\sim(w)}(\frac{z}{z-1})=-\overline{Li}_{8(w)}(\frac{z}{z-1}) .

Since \displaystyle \overline{Li}_{w}(z)=\sum_{m=1}^{\infty}s_{w}(m-1)z^{m} ,
we have

\displaystyle \frac{1}{1-z}\overline{Li}_{w}(z)=\sum_{m=1}^{\infty}s_{w}(m-1)\sum_{l=m}^{\infty}z^{l}=\sum_{i>0}\sum_{m=1}^{i}s_{w}(m-1)z^{i}=\sum_{i\geq 0}( $\Sigma$ s_{w})(i)z^{i+1},
where, for a sequence a:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} ,

the sequence  $\Sigma$ a stands for

( $\Sigma$ a)(m)=\displaystyle \sum_{i=0}^{m}a(i) .

Similarly, we can calculate

\displaystyle \frac{1}{1-z}\overline{Li}_{w}(\frac{z}{z-1})=-\sum_{i\geq 0}(\nabla$\Sigma$^{-1}s_{w})(i)z^{i+1},
where, for a sequence a:\mathbb{Z}_{\geq 0}\rightarrow \mathbb{C} ,

the sequence $\Sigma$^{-1}a stands for

($\Sigma$^{-1}a)(m)=\left\{\begin{array}{l}
a(0) m=0,\\
a(m)-a(m-1)m>0.
\end{array}\right.
By (2.9), we obtain

 $\Sigma$ s_{w}=\nabla$\Sigma$^{-1}s_{d(w)}.
Since  $\Sigma$\nabla is an involution on \mathbb{C}^{\mathbb{Z}_{\geq 0}} ,

i.e.  $\Sigma$\nabla $\Sigma$\nabla a=a ,
and  $\Sigma \Sigma$^{-1}=$\Sigma$^{-1} $\Sigma$=id

,
we have

\nabla s_{w}= $\Sigma$\nabla $\Sigma$ s_{w}=s_{8(w)}.

§2.3. A functional equation and Kawashima relation

Theorem 2.7 is important not only to lead the inversion sequence of s_{w} stated in

Corollary 2.8 but also to prove the following proposition.

Proposition 2.9. Let m\geq 0 and w=z_{k_{1}}\cdots z_{k_{l}}\in \mathfrak{H}^{1} . For any  $\epsilon$>0 ,
we have

(\displaystyle \triangle^{m}s_{w})(n)=O(\frac{1}{n^{m+k_{1-\in}}}) (n\rightarrow\infty) .

For w\in \mathfrak{H}^{1} ,
we dene the Newton series

f_{w}(z)=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}(\nabla s_{w})(n)\left(\begin{array}{l}
z\\
n
\end{array}\right), F_{w}(z)=\sum_{n=0}^{\infty}(-1)^{n}(\nabla S_{w})(n)\left(\begin{array}{l}
z\\
n
\end{array}\right).
Corollary 2.8 and Proposition 2.9 tell us the following proposition.
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Proposition 2.10. Let w=z_{k_{1}}\cdots z_{k_{r}}y^{l}(k_{r}\geq 2, r, l\geq 0) . Then the abscissas

of convergence of both Newton series f(z) and F(z) are -l-1.

Then we obtain a functional equation as follows.

Theorem 2.11. For any w, w'\in \mathfrak{H}^{1} ,
we have

F_{w}(z)F_{w'}(z)=F_{w*w'}-(z)

for any z\in \mathbb{C} with {\rm Re}(z)>-1.

Proof. The proof goes as follows. First, the function (z+1)f_{L_{y}(w)}(z)(w=
z_{k_{1}}\cdots z_{k_{l}}\in \mathfrak{H}^{1}) is expanded to certain Newton series according to Lemma 2.4. This

together with the formula

s_{w}(m)=S_{z_{k_{2}}\cdots z_{k_{l}}}(m+1)\displaystyle \frac{1}{(m+1)^{k_{1}}} (m\geq 0)
and Proposition 2.3 tell us the identity

(2.10) (z+1)f_{L_{y}(w)}(z)=F_{w}(z+1) .

Proposition 2.10 shows that the Newton series F(z) converges at least {\rm Re}(z)>-1,
and hence the equation (2.10) makes sense for at least {\rm Re}(z)>-2 . The product

f_{L_{y}(w)}(z)f_{L_{y}(w')}(z) is expanded to a Newton series by Proposition 2.5, and hence so

does F_{w}(z+1)F_{w'}(z+1) . Because of the equation (2.3) and Proposition 2.3, we conclude

the theorem. \square 

Proposition 2.10 permits to expand f(z) and F(z) as Taylor series at z=0 . By

Proposition 2.6 and Corollary 2.8, we have

F_{w}(z)=\displaystyle \sum_{m=1}^{\infty}(-1)^{m-1}\{\sum_{n=1}^{\infty}s_{8(w)}(n-1)a_{y^{m}}(n-1)\}z^{m}
Using the equations (2.2), (2.5) and the formula (2.8),

\displaystyle \sum_{n=1}^{\infty}\mathcal{S}_{8(w)(n-1)a_{y^{m}}(n-1)=\sum_{n=0}^{\infty}a_{d\sim(w)}(n)a_{y^{m}}(n)=-\sum_{n=0}^{\infty}a_{ $\varphi$ d(w)-y^{m}}(n)}.
This is equal to -Z( $\varphi$ d(w)*y^{m}) . Therefore we have

(2.11) F_{d^{-1}(w)}(z)=\displaystyle \sum_{m=1}^{\infty}(-1)^{m}Z( $\varphi$(w)*y^{m})z^{m}



128 Tatsushi Tanaka

According to the functional equation proven in Theorem 2.11 and the equation (2.11),
we have a class of relations among MZV�s stated in Theorem 1.1. This is what the

author calls Kawashima relation.

§3. quasi‐Derivation relation

The quasi‐derivation relation is conjectured in Kaneko [15] as an extension of the

derivation relation proven in Ihara‐Kaneko‐Zagier [12]. The derivation relation is proven

[12] by reducing it to the regularized double shuffle relation. In [11, 12], the derivation

relation is proven by reducing it to the Ohno relation appeared in [19]. But the quasi‐
derivation relation was never proven until the author proved it by reducing it to (the
linear part of) the Kawashima relation in [24].

A derivation @ on \mathfrak{H} is a \mathbb{Q}‐linear endomorphism of \mathfrak{H} satisfying the Leibniz rule

@(ww�) =\partial(w)w' + w@(w�)

for any w, w'\in \mathfrak{H} . Such a derivation is uniquely determined by its images of generators
x and y . Let z=x+y . For each n\geq 1 ,

the derivation \partial_{n}:\mathfrak{H}\rightarrow \mathfrak{H} is dened by

\partial_{n}(x)=xz^{n-1}y, \partial_{n}(y)=-xz^{n-1}y.

It follows immediately that \partial_{n}(\mathfrak{H})\subset \mathfrak{H}^{0} . Then we state the derivation relation for

MZV�s.

Theorem 3.1 (Derivation relation). For any n\geq 1 ,
we have \partial_{n}(\mathfrak{H}^{0})\subset \mathrm{k}\mathrm{e}\mathrm{r}Z.

It is known that the operator \partial_{n} satises the identity

\displaystyle \partial_{n}=\frac{1}{(n-1)!}\mathrm{a}\mathrm{d}( $\theta$)^{n-1}(\partial_{1})
in [12], where  $\theta$ stands for the derivation on \mathfrak{H} dened by

 $\theta$(x)=\displaystyle \frac{1}{2}(xz+zx) ,  $\theta$(y)=\frac{1}{2}(yz+zy) ,

and ad()(@)= [; @]= $\theta$@—@. Kaneko formulated the quasi‐derivation operator \partial_{n}^{(c)}
by modifying this formula as follows.

Denition 3.2. Let c\in \mathbb{Q} and H the derivation on \mathfrak{H} dened by H(w)=
\deg(w)w for any words w\in \mathfrak{H} . For each integer n\geq 1 ,

the \mathbb{Q} ‐linear map \partial_{n}^{(c)} : \mathfrak{H}\rightarrow \mathfrak{H},
which is called the quasi‐derivation (with respect to n and $\theta$^{(c)} for the given c\in \mathbb{Q}) in

[24], is dened by

\displaystyle \partial_{n}^{(c)}=\frac{1}{(n-1)!}\mathrm{a}\mathrm{d}($\theta$^{(c)})^{n-1}(\partial_{1}) ,
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where $\theta$^{(c)} : \mathfrak{H}\rightarrow \mathfrak{H} is the \mathbb{Q} ‐linear map dened by $\theta$^{(c)}(x)= $\theta$(x) , $\theta$^{(c)}(y)= $\theta$(y) and

the rule

(3.1) $\theta$^{(c)} (ww�) =$\theta$^{(c)}(w)w'+w$\theta$^{(c)}(w')+c\partial_{1}(w)H(w')

for any w, w'\in \mathfrak{H}.

When c=0 ,
the quasi‐derivation \partial_{n}^{(c)} is reduced to the ordinary derivation \partial_{n} . If

c\neq 0 and n\geq 2 ,
the operator \partial_{n}^{(c)} is no longer a derivation. Although the inclusion

\partial_{n}^{(c)}(\mathfrak{H})\subset \mathfrak{H}^{0} does not hold in general, we have the inclusion \partial_{n}^{(c)}(\mathfrak{H}^{0})\subset \mathfrak{H}^{0}.
One of the main theorem in [24] is that any two of the quasi‐derivation operators

commute with each other:

Theorem 3.3. For any n, m\geq 1 and any c, c'\in \mathbb{Q} , we have [\partial_{n}^{(c)}, \partial_{m}^{(c')}]=0.
The proof is not so simple but certain kind of induction works. This theorem also

helps us to find the Connes‐Moscovici�s Hopf algebra structure of the quasi‐derivation

operators (see [2]).
Our aim is to prove the inclusion

(3.2) \partial_{n}^{(c)}(\mathfrak{H}^{0})\subset L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y)

for any n\geq 1 and any c\in \mathbb{Q} ,
which equals to show that  $\varphi$ L_{x}^{-1}\partial_{n}^{(c)}(\mathfrak{H}^{0}) is an element in

\mathfrak{H}y*\mathfrak{H}y . Actually we can show the following identity.

Theorem 3.4. Let  $\chi$_{x}= $\tau$ L_{x} $\epsilon$ . For any  n\geq 1 and any c\in \mathbb{Q} , there exists

an element w=w(n, c)\in \mathfrak{H}y such that \partial_{n}^{(c)}$\chi$_{x}=$\chi$_{x}\mathcal{H}_{w} on \mathfrak{H}^{1} . In other words, the

following diagram commutes:

\mathfrak{H}^{1}\rightarrow^{\mathcal{H}_{w}}\mathfrak{H}^{1}

$\chi$_{x}\downarrow \downarrow$\chi$_{x}
\mathfrak{H}^{0}\rightarrow^{\partial_{n}^{(c)}}\mathfrak{H}^{0}

For the proof of Theorem 3.4, we use Theorem 3.3. The proof is also by certain kind of

induction.

Theorem 3.4 is the key property to show the inclusion (3.2). The proof goes as

follows. Since  $\varphi$ is an automorphism on \mathfrak{H} with  $\varphi$(y)=-y and  $\tau$ an anti‐automorphism
on \mathfrak{H} given by  $\tau$(x)=y and  $\tau$(y)=x ,

we find

$\chi$_{x}(\mathfrak{H}y)=x\mathfrak{H}y.

By Theorem 3.4, there exists w=w(n, c)\in \mathfrak{H}y satisfying

\partial_{n}^{(c)}$\chi$_{x}=$\chi$_{x}\mathcal{H}_{w}.
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We therefore have

\partial_{n}^{(c)}(x\mathfrak{H}y)=\partial_{n}^{(c)}$\chi$_{x}(\mathfrak{H}y)=$\chi$_{x}\mathcal{H}_{w}(\mathfrak{H}y)\subset$\chi$_{x}(\mathfrak{H}y*\mathfrak{H}y) .

This is included L_{x} $\varphi$(\mathfrak{H}y*Hy) because

$\chi$_{x}(\mathfrak{H}y*\mathfrak{H}y)=(1-(1- $\tau$))L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y)\subset L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y)-(1- $\tau$)(\mathfrak{H}^{0})\subset L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y) .

The last inclusion is by Thorem 1.3. Since \mathfrak{H}^{0}=\mathbb{Q}+xHy and \partial_{n}^{(c)}(\mathbb{Q})=\{0\}\subset
 L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y) ,

we conclude the inclusion (3.2).
Another extension of the derivation operator \partial_{n} is discussed in [24].

Denition 3.5. Let c\in \mathbb{Q} and H the same operator as in Denition 3:2. For

each integer n\geq 1 ,
the \mathbb{Q} ‐linear map \hat{\partial}_{n}^{(c)} : \mathfrak{H}\rightarrow \mathfrak{H} is dened by

\displaystyle \hat{\partial}_{n}^{(c)}=\frac{1}{(n-1)!}\mathrm{a}\mathrm{d}(\hat{ $\theta$}^{(c)})^{n-1}(\partial_{1})
where \hat{ $\theta$}^{(c)} is the \mathbb{Q} ‐linear map dened by \hat{ $\theta$}^{(c)}(x)= $\theta$(x) , \hat{ $\theta$}^{(c)}(y)= $\theta$(y) and the rule

(3.3) \hat{ $\theta$}^{(c)} (ww�) =\hat{ $\theta$}^{(c)}(w)w'+w\hat{ $\theta$}^{(c)}(w')+cH(w)@(w')

for any w, w'\in \mathfrak{H}.

The operator \hat{\partial}_{n}^{(c)} gives another quasi‐derivation operator (with respect to n and \hat{ $\theta$}^{(c)}
for the given c\in \mathbb{Q} ). The only difference between $\theta$^{(c)} and \hat{ $\theta$}^{(c)} is the order of H and \partial_{1}

appearing in the right‐hand side of (3.1) and (3.3).
In fact, the quasi‐derivation \hat{\partial}_{n}^{(c)} satises

Proposition 3.6. For any n \geq 1 and any  c \in \mathbb{Q} , we have \hat{\partial}_{n}^{(c)} \in

\mathbb{Q}[\partial_{1}^{(-c)}, . . . , \partial_{n}^{(-c)}].

Example 3.7. The polynomials in Proposition 3:6 can be constructed explicitly.
For example,

\hat{\partial}_{2}^{(c)}=\partial_{2}^{(-c)}+c\partial_{1}^{2},
\hat{\partial}_{3}^{(c)}=\partial_{3}^{(-c)}+2c\partial_{1}\partial_{2}^{(-c)}+c^{2}\partial_{1}^{3},

\displaystyle \hat{\partial}_{4}^{(c)}=\partial_{4}^{(-c)}+\frac{7}{3}c\partial_{1}\partial_{3}^{(-c)}+\frac{2}{3}c\partial_{2}^{(-c)^{2}}+3c^{2}\partial_{1}^{2}\partial_{2}^{(-c)}+c^{3}\partial_{1}^{4}.
Because of Theorem 3.3 and Proposition 3.6, we see that

[\partial_{n}^{(c)}, \hat{\partial}_{m}^{(c')}]=0, [\hat{\partial}_{n}^{(c)}, \hat{\partial}_{m}^{(c')}]=0

for any n, m\geq 1 and any c, c'\in \mathbb{Q} . Moreover, we obtain the following identity.
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Proposition 3.8. For any c\in \mathbb{Q} , we have \hat{\partial}_{n}^{(c)}=- $\tau$\partial_{n}^{(-c)} $\tau$.

By Proposition 3.8, we have \hat{\partial}_{n}^{(c)}(\mathfrak{H}^{0})\subset L_{x} $\varphi$(\mathfrak{H}y*Hy) for any n\geq 1 and any c\in \mathbb{Q}.
Therefore the quasi‐derivation \hat{\partial}_{n}^{(c)} also gives a class of relations among MZV�s, which

is in fact the same class induced by the quasi‐derivation \partial_{n}^{(c)}.

§4. Cyclic sum formula

For k_{1} ,
.

::, k_{l}\geq 1 with some k_{q}>1 ,
the cyclic sum formula (CSF for short) for

MZV�s

(4.1)

\displaystyle \sum_{j=1}^{l}\sum_{i=1}^{k_{j}-1} $\zeta$ (  k_{j}-i+1, k_{j+1}, \ldots, k_{l} , kl, . . .

, k_{j-1}, i ) =\displaystyle \sum_{j=1}^{l} $\zeta$ (  k_{j}+1, k_{j+1}, \ldots, k_{l} , kl, . . .

, k_{j-1} )

is proven in Hoffman‐Ohno [11] by means of partial fraction expansions and CSF for

MZSV�s

(4.2) \displaystyle \sum_{j=1}^{l}\sum_{i=1}^{k_{j}-1}$\zeta$^{\star}(k_{j}-i+1, k_{j+1}, \ldots, k_{l}, k_{1}, \ldots, k_{j-1}, i)=k $\zeta$(k+1) ,

where k=k_{1}+\cdots+k_{l} ,
in Ohno‐Wakabayashi [20] in a similar way. Hoffman and Ohno

also introduced an algebraic expression of CSF for MZV�s. They formulated CSF using

�cyclic derivatives� on \mathfrak{H} (see [11, 25] for details).
In the present section, using the formulation of CSF in [25], we give another proof

by showing that CSF is contained in the linear part of Kawashima relation stated in

Corollary 1.2.

Let n\geq 1 . We denote an action of \mathfrak{H} on \mathfrak{H}^{\otimes(n+1)} b\mathrm{y}^{((}\text{◇�, which is dened by

a\text{◇}(w_{1}\otimes\cdots\otimes w_{n+1})=w_{1}\otimes\cdots\otimes w_{n}\otimes aw_{n+1},

(w_{1}\otimes\cdots\otimes w_{n+1})\text{◇}b=w_{1}b\otimes w_{2}\otimes\cdots\otimes w_{n+1}.

The action \text{◇ is a \mathfrak{H} ‐bimodule structure on \mathfrak{H}^{\otimes(n+1)} . We dene the \mathbb{Q}‐linear map  C_{n}:\mathfrak{H}\rightarrow

\mathfrak{H}^{\otimes(n+1)} by

C_{n}(x)=x\otimes z^{\otimes(n-1)}\otimes y, C_{n}(y)=-(x\otimes z^{\otimes(n-1)}\otimes y) ,

where z=x+y ,
and

(4.3) C_{n}(ww')=C_{n}(w)\text{◇}w'+w\text{◇}C_{n}(w')

for any w, w'\in \mathfrak{H} . We find that C_{n}(1)=0 by putting w=w'=1 in (4.3).
Let M_{n}:\mathfrak{H}^{\otimes(n+1)}\rightarrow \mathfrak{H} denote the multiplication map, i.e.,

M_{n}(w_{1}\otimes\cdots\otimes w_{n+1})=w_{1}\cdots w_{n+1},

and let $\rho$_{n}=M_{n}C_{n}(n\geq 1) . Then we have
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Theorem 4.1. For n\geq 1 ,
we have $\rho$_{n}(\check{\mathfrak{H}}^{1})\subset L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y) .

Hence, by Corollary 1.2, we obtain

Corollary 4.2. For n\geq 1 ,
we have $\rho$_{n}(\check{\mathfrak{H}}^{1})\subset \mathrm{k}\mathrm{e}\mathrm{r}Z.

When n=1 and w=z_{k_{1}}\cdots z_{k_{l}} ,
we have

$\rho$_{1}(w)=\displaystyle \sum_{j=1}^{l}\sum_{i=1}^{k_{j}-1}z_{k_{j}}-i+1^{Z_{k_{j+1}}\cdots z_{k_{l}}z_{k_{1}}\cdots z_{k_{j-1}}z_{i}-\sum_{j=1}^{l}xz_{k_{j+1}}\cdots z_{k_{l}}z_{k_{1}}\cdots z_{k_{j}}}.
This is evaluated to CSF for MZV�s (4.1) by the map Z.

Theorem 4.1 immediately follows by two key lemmas below. Let A_{0}=1 and

A_{j}=z^{j-1}y for j\geq 1 and let \check{\mathfrak{H}}^{1} be a subvector space of \mathfrak{H}^{1} generated by words of \mathfrak{H}^{1}

except for powers of y.

Lemma 4.3. The set \{A_{k_{1}+\cdots+k_{l}}-A_{k_{1}}\cdots A_{k_{l}}|k_{1}, . . :, k_{l}\geq 1, l\geq 1\} is a set of
bases of \check{\mathfrak{H}}^{1}.

Lemma 4.4. For k_{1}\geq n\geq 1, k_{2} ,
.

::, k_{l}\geq 1 ,
we have

 $\varphi$ L_{x}^{-1}$\rho$_{n}(A_{k_{1}+\cdots+k_{l}-n+1}-A_{k_{1}-n+1}A_{k_{2}}\cdots A_{k_{l}})

=\displaystyle \sum_{m=2}^{l}\frac{(-1)^{l-m}}{m}\sum_{j=1}^{l}\sum_{$\alpha$_{1}+.\cdot.\cdot.\cdot+$\alpha$_{m--}$\alpha$_{1},,,$\alpha$_{m}\geq 1^{l}}H(j, $\alpha$_{1}, \ldots, $\alpha$_{m}) .

Here, H(j, $\alpha$_{1}, \ldots, $\alpha$_{m}) is given by

H(j, $\alpha$_{1}, \ldots, $\alpha$_{m})=(z_{k_{j}}\cdots z_{k_{$\alpha$_{1}+j-1}})*\cdots*(z_{k_{$\alpha$_{1}+\cdots+$\alpha$_{m-1}+j}}\cdots z_{k_{$\alpha$_{1}+\cdots+$\alpha$_{m}+j-1}}) ,

where the subscripts of k �s of the right‐hand side are viewed as numbers modulo  l(\in
\{1, . . . , l\}) .

Lemma 4.4 is proven by certain combinatorial argument (see [25]).
According to Lemma 4.4, we see

 $\varphi$ L_{x}^{-1}$\rho$_{n}(A_{k_{1}+\cdots+k_{l}-n+1}-A_{k_{1}-n+1}A_{k_{2}}\cdots A_{k_{l}})\in \mathfrak{H}y*\mathfrak{H}y.

This together with Lemma 4.3 concludes Theorem 4.1.

In the case of CSF for MZSV�s, we dene another map \overline{ $\rho$}_{n} as follows. We first

notice that $\gamma$^{-1} is also the automorphism on \mathfrak{H} given by

$\gamma$^{-1}(x)=x, $\gamma$^{-1}(y)=y-x.
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We dene the \mathbb{Q}‐linear map \overline{C}_{n}:\mathfrak{H}\rightarrow \mathfrak{H}^{\otimes(n+1)} by

\overline{C}_{n}(x)=x\otimes y^{\otimes n}, \overline{C}_{n}(y)=-(x\otimes y^{\otimes n})

and

\overline{C}_{n}(ww')=\overline{C}_{n}(w)\text{◇$\gamma$^{-}1}(w')+$\gamma$^{-1}(w)\text{◇\overline{}C}_{n}(w')

for any w, w'\in \mathfrak{H} . Let \overline{ $\rho$}_{n}=M_{n}\overline{C}_{n}(n\geq 1) . Then we find the identity $\rho$_{n}=d\overline{ $\rho$}_{n} for any

n\geq 1 . By the identity (2.8), we also obtain the following equivalence.

Proposition 4.5. For any n\geq 1 ,
we have

\overline{ $\rho$}_{n}(\check{\mathfrak{H}}^{1})\subset L_{x}\overline{ $\alpha$}(\mathfrak{H}y\overline{*}\mathfrak{H}y)\Leftrightarrow$\rho$_{n}(\check{\mathfrak{H}}^{1})\subset L_{x} $\varphi$(\mathfrak{H}y*\mathfrak{H}y) .

Theorem 4.1 and Proposition 4.5 conclude

Corollary 4.6. For n\geq 1 ,
we have \overline{ $\rho$}_{n}(\check{\mathfrak{H}}^{1})\subset L_{x}\sim(\mathfrak{H}y\overline{*}\mathfrak{H}y) .

Therefore the map \overline{ $\rho$}_{n}(n\geq 1) gives relations among MZSV�s. The identity

\displaystyle \overline{ $\rho$}_{1}( $\gamma$(z_{k_{1}}\cdots z_{k_{l}})-x^{k_{1}+\cdots+k_{l}})=\sum_{j=1}^{l}\sum_{i=1}^{k_{j}-1}z_{k_{j}-i+1}z_{k_{j+1}}\cdots z_{k_{l}}z_{k_{1}}\cdots z_{k_{j-1}}z_{i}-kz_{k+1},
where k=k_{1}+\cdots+k_{l} ,

is evaluated to the formula (4.2) by the map \overline{Z}.
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