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Stability and Arithmetic: An extract of essence

By

Lin Weng *

Abstract

Stability plays a central role in arithmetic. In this article, we explain some basic ideas

and present certain constructions for such studies. There are two aspects: namely, general
Class Field Theories for Riemann surfaces using semi‐stable parabolic bundles & for \mathrm{p}‐adic

number fields using what we call semi‐stable filtered (phi,N;omega) ‐modules; and non‐abelian

zeta functions for function fields over finite fields using semi‐stable bundles & for number fields

using semi‐stable lattices.

Introduction

Most part of the following text is a resume of the paper [W7], based on which my talk

was delivered. Due to its large size of 135 pages and to the importance of the topics

treated, the author feels the necessity to provide a digest version to help potential
readers. Different from [W7], where various aspects of the theories related to stability
are discussed, here we only focus on the crucial roles played by stability in our studies

of zeta functions and of general class field theories.

*** *** ***

Stability has been proved to be very fundamental in algebraic geometry and differential

geometry. Comparably, this concept appears relatively new to many who are work‐

ing in arithmetic geometry and number theory. Nevertheless, in the past a decade or

so, importance of stability was gradually noticed by some working in arithmetic. For

examples, we now have

(i) Existence theorem and reciprocity law of a non‐abelian class field theory for function

fields over complex numbers, based on Seshadri�s work of semi‐stable parabolic bundles

over Riemann surfaces;
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(ii) High rank zeta functions for global fields, dened as natural integrations over moduli

spaces of semi‐stable bundles/lattices; and

(iii) Characterization of the so‐called semi‐stable representations for absolute Galois

groups of p‐adic number fields, in terms of weakly admissible filtered ( $\varphi$, N) ‐modules,
or better, semi‐stable filtered ( $\varphi$, N) ‐modules of slope zero.

Along with this line, in this paper, we explain some basic ideas and present certain

constructions on using stability to study non‐abelian aspects of arithmetic. This consists

of two aspects, one at a micro level and the other on large scale.

I) Micro Level

We, at this micro level, want to give a characterization for each individual Galois rep‐

resentation. For this, first we classify Galois representations into four types, namely,
v‐adic/adelic representations for local/global (number) fields.

In general, arbitrary Galois representations are too complicated to have clearer

structures, certain natural restrictions should be imposed:

(i) v‐adic Galois Representations for

(i.a) Local Field K_{w}:$\rho$_{w,v} : G_{K_{w}}\rightarrow GL(F) involved are for Galois group G_{K_{w}} of a

local w‐adic field K_{w} with coefficients in a v‐adic field F_{v} . Motivated by Monodromy

Theorems, we assume

(\mathrm{p}\mathrm{S}\mathrm{T})$\rho$_{w,v} is potentially semi‐stable.

(i.b) Global Field K:$\rho$_{K,v} : G_{K}\rightarrow GL(F) involved are for Galois group G_{K} of a

number field K with coefficients in a v‐adic field F_{v} . Motivated by etale cohomology

theory, we assume

(\mathrm{p}\mathrm{S}\mathrm{T}) For all local completions K_{w} ,
the associated local v ‐adic representations $\rho$_{w,v} :

G_{K_{w}}\rightarrow GL(F) satises condition \mathrm{p}\mathrm{S}\mathrm{T} of (i.a); and

(Unr) For almost all w
,

the associated v ‐adic representations $\rho$_{w,v} : G_{K_{w}}\rightarrow GL(F)
are unramied.

(ii) Adelic Galois Representations for

(ii.a) Local Field K_{w}:$\rho$_{w,\mathrm{A}_{F}} : G_{K_{w}}\rightarrow GL_{n}(\mathrm{A}_{F}) involved are for Galois group G_{K_{w}} of

a w‐adic field K_{w} with coefficients in the adelic space \mathrm{A}_{F} associated to a number field

F . Continuity of $\rho$_{w,\mathrm{A}_{F}} proves to be too loose. Motivated by etale cohomology theory,
and Deligne�s solution to the Weil conjecture when v\mathrm{t}(w , together with Katz‐Messing�s
modication when vw, we assume that

(Unr) For almost all v (in coefficients), the associated v ‐adic representation $\rho$_{w,v} :

G_{K_{w}}\rightarrow GL(F) are unramied; and

(Inv) For all v
, i.e., forv satisfy ing either v\Vert w or v\mathrm{t}(w ,

the associated characteristic

polynomials of the Frobenius induced fr om $\rho$_{w,v} are the same, particularly, independent
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of v.

We call such a representation a thick one, as the invariants do not depend on the

coefficients chosen.

Remark. The compatibility conditions stated here are standard. However, from our

point of view, the Inv condition appears to be to practical. In other words, it would

be much better if the Inv condition can be replaced by other principles, e.g., certain

compatibility from class field theory. (See e.g. [\mathrm{K}\mathrm{h}1,2,3] )

(ii.b) Global Field K:$\rho$_{K,\mathrm{A}_{F}} : G_{K}\rightarrow GL_{n}(\mathrm{A}_{F}) involved are for Galois group G_{K} of

a number field K with coefficients in the adelic space \mathrm{A}_{F} associated to a number field

F . As above, only continuity of $\rho$_{w,\mathrm{A}_{F}} appears to be too weak to get a good theory.

Certainly, there are two different directions to be considered, namely, the horizontal one

consisting of places w of K
,

and the vertical one consisting of places v of coefficients

field F . From ii.a), we assume that

(Comp) For every fixed place w of K
,

the induced representation $\rho$_{w,\mathrm{A}_{F}} :  G_{K_{w}}\rightarrow
\mathrm{G}\mathrm{L}_{n}(\mathrm{A}_{F}) forms a compatible system.
As such, the corresponding theory is a thick one. Hence, by Inv, we are able to select

good representatives for $\rho$_{w,\mathrm{A}_{F}} , e.g., the induced $\rho$_{w,v} : G_{K_{w}}\rightarrow \mathrm{G}\mathrm{L}(\mathrm{F}) where v\Vert w.
In this language, we then further assume that the admissible conditions for the other

direction v can be read from these selected $\rho$_{w,v}, v\Vert w . More precisely, we assume that

(\mathrm{d}\mathrm{R}) All $\rho$_{w,v}, v\Vert w ,
are of de Rham type;

(Crys) For almost all w and v, $\rho$_{v,w} are crystalline.
For this reason, we may form what we call the anleric ring

\displaystyle \mathrm{B}_{\mathrm{A}}:=\prod'(\mathrm{B}_{\mathrm{d}\mathrm{R}}, \mathrm{B}_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{+}) ,

where \mathrm{B}_{\mathrm{d}\mathrm{R}} denotes the ring of de Rham periods, and Bc+rys
the ring of crystalline periods,

and \displaystyle \prod' means the restricted product. As such, the final global condition we assume is

the following:

(Adm) \{$\rho$_{w,v}\}_{v\Vert w} are \mathrm{B}_{\mathrm{A}} ‐admissible.

Even this admissibility is not clearly stated due t \mathrm{o}^{} the lack of space�, one may sense it say

via determinant formalism from abelian CFT, (see e.g., the reformulation by Serre for

rank one case ([Se2]) and the conjecture of Fontaine‐Mazur on geometric representations

([FM]). For the obvious reason, we will call such a representation a thin one.

With the restrictions on Galois representations stated, let us next turn our atten‐

tion to their characterizations. Here by a characterization, we mean a certain totally

independent but intrinsic structure from which the original Galois representation can

be reconstructed. There are two different approaches, analytic one and algebraic one.

\bullet Analytic One Here the objects seeking are supposed to be equipped with analytic



190 \mathrm{L}\mathrm{i}\mathrm{n} WENG

structures such as connections and residues (at least for v‐adic representations).
\bullet Algebraic One Here the structures involved are supposed to be purely alebraic. We

will leave the details to the main text. Instead, let me point out that for local theories,
when  l\neq p ,

we should equally have l‐adic analogues \mathrm{B}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}, \mathrm{B}_{\mathrm{p}\mathrm{F}\mathrm{M}\&\mathrm{N}}, \mathrm{B}_{\mathrm{u}\mathrm{r}} of Fontaine�s

p‐adic ring of de Rham, semi‐stable, crystalline periods, namely, \mathrm{B}_{\mathrm{d}\mathrm{R}}, \mathrm{B}_{\mathrm{s}\mathrm{t}}, \mathrm{B}_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}} , respec‐

tively.
To uniform the notation, denote the corresponding rings of periods in both l‐adic theory
and p‐adic theory by \mathrm{B}_{\mathrm{d}\mathrm{R}}, \mathrm{B}_{\mathrm{s}\mathrm{t}}, \mathrm{B}_{\mathrm{u}\mathrm{r}}^{+} . Accordingly, for adelic representations of local

fields, we then can formulate a huge anleric ring \displaystyle \mathrm{B}_{\mathrm{A}}:=\prod'(\mathrm{B}_{\mathrm{d}\mathrm{R}}, \mathrm{B}_{\mathrm{u}\mathrm{r}}^{+}) , of adelic periods,

namely, the restricted product of \mathrm{B}_{\mathrm{d}\mathrm{R}} with respect to \mathrm{B}_{\mathrm{u}\mathrm{r}}^{+} . In this language, the algebraic
condition for thin adelic Galois representations of global fields along with the vertical

direction may also be stated as:

(Adm) It is \mathrm{B}_{\mathrm{A}} ‐admissible.

II) Large Scale

A characterization of each individual Galois representation in terms of pure algebraic
structures may be called a Micro Reciprocity Law, MRL for short, as it exposes an

intrinsic connection between Galois representations and certain algebraic aspects of

the base fields. Assuming such a MRL, we then are in a position to understand the

mathematics involved in a global way. There are also two different approaches, at least

when the coefficients are local. Namely, the categorical theoretic one, based on the fact

that Galois representations selected automatically form a Tannakian category, and the

moduli theoretic one, based on the fact that the associated algebraic structures admit

GIT stability interpretations. (In the case when the coefficients are global adelic spaces,

the existing standard Tannakian category theory and GIT should be extended.)

\bullet Tannakian Categories The main aim here is to offer a general Class Field Theory,
CFT for short, for the associated base field. Roughly speaking, this goes as follows, at

least when the coefficients are local fields. With the Micro Reciprocity Law, we then can

get a clone Tannakian category, consisting of certain intrinsically dened pure algebraic

objects associated to the base fields, for the Tannakian category consisting of selected

Galois representations. As a direct consequence of potentially semi‐stability, using the

so‐called finitely generated sub‐Tannakian categories and automorphism groups of the

associated restrictions of the fiber functors, one then can establish an existence theorem

and a global reciprocity law for all finite (non‐abelian) extensions of the base fields so

as to obtain a general CFT for them. As one may expect here, much rened results can

be obtained.

\bullet Moduli Spaces From the MRL, Galois representations selected can be characterized
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by intrinsically dened algebraic structures associated to based fields. These algebraic
structures are further expected to be able to put together to form well‐controlled moduli

spaces. Accordingly, we have certain geometric objects to work with. The importance
of such geometric spaces can hardly be overestimated since, with such spaces, we can

introduce intrinsic (non‐abelian) invariants for base fields.

To achieve this, we clearly need to have a good control of objects selected. As usual,
this is quite delicate: If the selection is too restrictive, then there might not be enough
information involved; on the other hand, it should not be too loose, as otherwise, it

is too complicated to see structures in a neat manner, even we know many things are

denitely there. (The reader can sense this from our current studies of the Langlands

Program.) It is for the purpose of overcoming such difficulties that we introduce the

following

Key: Stability This is supposed to be a condition which helps us to make good se‐

lections and hence to get nice portions among all possibilities. Particularly, for the

algebraic objects selected, we then expect to establish a general MRL (using them) so

that the Tannakian category formalism can be applied and a general CFT can be es‐

tablished; and to construct moduli spaces (for them) so that intrinsic invariants can be

introduced naturally. This condition is Stability. In accordance with what said above,
as a general principle of selection, the condition of stability then should be (a) algebraic,

(b) intrinsic, and (c) rigid.
This paper consists of four chapters. They are: 1. Guidances from Geometry, 2.

High Rank Zetas and Stability, 3. General CFT and Stability, and 4. Two Approaches
to Conjectural Micro Reciprocity Law.

Acknowledgement. This paper was written when I visited UCLA. I would like to thank

Hida for his keen interests and kind invitation(s). Special thanks also due to Ichikawa

for the invitation and to Nakamura for the comments.

Chapter 1. Guidances from Geometry

§1. Micro Reciprocity Law

Let  $\rho$ :  $\pi$_{1}(M^{o}, *)\rightarrow \mathrm{G}\mathrm{L}(V) be an irreducible unitary representation of the fun‐

damental group $\pi$_{1}(M^{o}, *) of an open Riemann surface M^{o} . Then  $\rho$ satises the finite

monodromy property at all punctures Pi�s. Hence there exists a finite Galois covering
 $\pi$' : M'\rightarrow M of compact Riemann surfaces ramied possibly at P_{i} �s such that  $\rho$ natu‐

rally induces a unitary representation  $\rho$' : $\pi$_{1}(M', *)\rightarrow \mathrm{G}\mathrm{L}(V) of the fundamental group

of the compact Riemann surface M' on V . As such, by the uniformization theorem, we
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obtain a unitary flat bundle over M' equipped with a natural action of the Galois group

\mathrm{G}\mathrm{a}1($\pi$') , namely, the four‐tuple

(M', E_{$\rho$'}:=($\pi$_{1}(M', *), $\rho$')\backslash (\mathfrak{H}^{(+)}\times V), \nabla_{$\rho$'};\mathrm{G}\mathrm{a}1($\pi$')) .

One checks that

($\pi$_{*}'(E_{$\rho$'}\otimes$\Omega$_{M'}^{1}))^{\mathrm{G}\mathrm{a}1($\pi$')}=E_{ $\rho$}\otimes$\Omega$_{M}^{1}(\log Z)
where Z=P_{1}+P_{2}+\cdots+P_{N} denotes the reduced branch divisor on M . Consequently, we

then obtain a logarithmic unitary flat bundle (E_{ $\rho$}, \nabla_{ $\rho$}(\log Z)) on the compact Riemann

surface M . Thus by using {\rm Res}_{P_{i}}\nabla_{ $\rho$}(\log Z) ,
we then obtain Seshadri�s parabolic structures

on the fibers of E_{ $\rho$} at punctures Pi�s. As such, an important discovery of Seshadri is

that the parabolic bundle obtained then is stable of degree zero. More strikingly, the

converse is correct as well. Namely, any stable parabolic bundle of degree zero can be

constructed in this manner.

\bullet Micro Reciprocity Law ( (Weil, Mumford, Narasimhan‐Seshadri,) Seshadri)
There exists a natural one‐to‐one and onto correspondence

\{ irreducible unitary representations of $\pi$_{1}(M^{o}, *)\}
\mathrm{m}

\{ stable parabolic bundles of degree zero on (M^{o}, M)\} ;

\bullet Ramications versus Parabolic Structures ((Grothendieck), Seshadri)
There exists a natural one‐to‐one and onto correspondence

\{ vector bundles W/M' with compatible action Gal(M'/M)\}
\mathrm{m}

\{ parabolic bundles E_{*}/(M^{o}, M) with compatible parabolic weights \}.

§2. Arithmetic CFT: Class Field Theory

Let us consider the category consisting of semi‐stable parabolic bundles of

(parabolic) degree zero over (M^{o}, M) . This category is in fact Tannakian. Denote

it by (\mathbb{P}\mathrm{V}_{M^{O},M}^{\mathrm{s}\mathrm{s};0};\mathrm{F}) .

Main Theorem of Arithmetic CFT ([W1])
\bullet (Existence) There exists a canonical one‐to‐one and onto correspondence

\{ Finitely Generated Sub—Tannakian Cats ( $\Sigma$, \mathrm{F}|_{ $\Sigma$}) of (\mathbb{P}\mathrm{V}_{M^{O},M}^{\mathrm{s}\mathrm{s};0};\mathrm{F})\}
 0 $\Pi$

\{ Finite Galois Coverings M'\rightarrow(M^{o}, M)\}
which induces naturally an isomorphism
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\bullet (Reciprocity Law)

\mathrm{A}\mathrm{u}\mathrm{t}^{\otimes}( $\Sigma$, \mathrm{F}|_{ $\Sigma$})\simeq Gal ( $\Pi$( $\Sigma$, \mathrm{F}|_{ $\Sigma$})) .

§3. Geometric CFT: Conformal Field Theory

For a fixed compact Riemann surface M
,

denote by \mathcal{M}_{M}(r, 0) the moduli spaces

of rank r semi‐stable bundles of degree zero on M . Over such moduli spaces, we can

construct many global invariants. Analytically we may expect that a still ill‐dened

Feymann integral would give us something interesting. We will not pursue this line

further, instead, let us start with an algebraic construction.

Since each moduli point corresponds to a semi‐stable vector bundle, it makes sense

to talk about the associated cohomology groups. As such, then we may form the so‐

called Grothendieck‐Mumford determinant line of cohomologies. Consequently, if we

move our moduli points over all moduli spaces, we obtain the so‐called Grothendieck‐

Mumford determinant line bundles $\lambda$_{M} on \mathcal{M}_{M}(r, 0) . Note that the Picard group of

\mathcal{M}_{M}(r, 0) is isomorphic to \mathbb{Z}
,

we see that a suitable multiple of $\lambda$_{M} is indeed very ample.

(For all this, we in fact need to restrict ourselves only to the stable part.) It then makes

sense to talk about the \mathbb{C}‐vector space H^{0}(\mathcal{M}_{M}(r, 0), $\lambda$_{M}^{\otimes n}) (for n sufficiently away from

0) .

The most interesting and certain a very deep point is somehow we expect that the

space itself H^{0}(\mathcal{M}_{M}(r, 0), $\lambda$_{M}^{\otimes n}) ,
also called conformal blocks, does not really very much

related with the complex structure on M used. More precisely, let us now move M in

\mathcal{M}_{g}\mapsto\overline{\mathcal{M}_{g}} , the moduli space of compact Riemann surfaces of genus g=g(M) and

its stable compactication. Denote by \triangle_{\mathrm{b}\mathrm{d}\mathrm{y}} the boundary of \mathcal{M}_{g} . Then the conformal

blocks form a natural vector bundle $\Pi$_{*}($\lambda$_{M}^{\otimes n})|_{\mathcal{M}_{g}} on (\mathcal{M}_{g}\mapsto)\overline{\mathcal{M}_{g}}.

Main Theorem in Geometric CFT: (Tsuchiya‐Ueno‐Yamada) There exists a pro‐

jectively flat logarithmic connection on the bundle $\Pi$_{*}($\lambda$_{M}^{\otimes n})|_{\mathcal{M}_{g}} over (; \triangle_{\mathrm{b}\mathrm{d}\mathrm{y}}) .

Chapter 2. High Rank Zetas and Stability

§4. High Rank Zetas for Function Fields

Let C be a regular, geometrically connected projective curve of genus g dened over

\mathrm{F}_{q} ,
the finite field with q elements, and \mathcal{M}_{C,r} the moduli space of semi‐stable bundles

of rank r over C . These spaces are projective varieties. So following Weil, we may try
to attach them with the standard Artin‐Weil zeta functions. However, there is another
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more intrinsic way. Namely, instead of simply viewing these moduli spaces as algebraic

varieties, we here want to fully use the moduli aspect by viewing rational points of

these varieties as rational bundles: This is possible at least for the stable part by a work

of Harder‐Narasimhan on Brauer groups ([HN]). Accordingly, for each rational moduli

point, we can have a very natural weighted count. All this then leads to the following

Denition. (Weng) The rank r zeta function for C/\mathrm{F}_{q} is dened by

$\zeta$_{C,\mathrm{F}_{q};r}(s):=\displaystyle \sum_{V\in[V]\in \mathcal{M}_{C,r}}\frac{q^{h^{0}(C,V)}-1}{\#\mathrm{A}\mathrm{u}\mathrm{t}(V)} . (q^{-s})^{\deg(V)}, {\rm Re}(s)>1.

Here as usual, [V] denotes the Seshadri class of (a rational) semi‐stable bundle V ,
and

Aut(V) denotes the automorphism group of V.

By semi‐stable condition, the summation above is only taken over the part of moduli

space whose points have non‐negative degrees. Thus by the duality, Riemann‐Roch and

a Clifford type lemma for semi‐stable bundles, we then can expose the following basic

properties for our zeta functions of curves.

Zeta Facts. (Weng) (0) Rank one $\zeta$_{C,1,\mathrm{F}_{q}}(s) coincides with the classical Artin zeta

function $\zeta$_{C}(s) for curve C ;

(1) $\zeta$_{C,r,\mathrm{F}_{q}}(s) is well‐dened for {\rm Re}(s)>1 ,
and admits a meromorphic continuation to

the whole complex s ‐plane;

(2) (Rationality) Set t:=q^{-s} and $\zeta$_{C,r,\mathrm{F}_{q}}(s)=:Z_{C,r,\mathrm{F}_{q}}(t) , |t|<1 . Then there exists

a polynomial P_{C,r,\mathrm{F}_{q}}(s)\in \mathrm{Q}[t] such that

Z_{C,r,\mathrm{F}_{q}}(t)=\displaystyle \frac{P_{C,r,\mathrm{F}_{q}}(t)}{(1-t^{r})(1-q^{r}t^{r})} ;

(3) (Functional Equation) Set

$\xi$_{C,r,\mathrm{F}_{q}}(s):=$\zeta$_{C,r,\mathrm{F}_{q}}(s) (q^{s})^{r(g-1)}.

Then

$\xi$_{C,r,\mathrm{F}_{q}}(s)=$\xi$_{C,r,\mathrm{F}_{q}}(1-s) .

Remarks. (1) (Count in Different Ways) The above weighted count is designed for

all rational semi‐stable bundles, motivated by Harder‐Narasimhan�s interpretation on

Siegel�s work about Tamagawa numbers ([HN]). For this reason, modications for the

denition of high rank zetas can be given, say, count only one within a fixed Seshadri

class, or count only what are called strongly semi‐stable bundles, etc
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(2) (Stratications and Cohomological Interpretations) Deninger once asked

whether there was a cohomological interpretation for our zeta functions. There is a

high possibility for it: We expect that our earlier works on rened Brill‐Noether loci

would play a key role here, since rened Brill‐Noether loci induce natural stratications

on moduli spaces.

§5. High Rank Zetas for Number Fields

Let F be a number field with usual \mathcal{O}_{F}, \triangle_{F}, r_{1} and r_{2} etc By denition, an \mathcal{O}_{F^{-}}
lattice  $\Lambda$=(P,  $\rho$) of rank r consisting of a rank r projective \mathcal{O}_{F} ‐module P and a metric

 $\rho$ on the space (\mathbb{R}^{r_{1}}\times \mathbb{C}^{r_{2}})^{r} . Recall that, being projective, there exists a fractional idea

a of F such that P\simeq \mathcal{O}_{F}^{r-1}\oplus a . Particularly, the natural inclusion O_{F}^{r-1}\oplus a\mapsto F^{r}
induces a natural embedding of P into (\mathbb{R}^{r_{1}}\times \mathbb{C}^{r_{2}})^{r} via the compositions

P\simeq O_{F}^{r-1}\oplus a\mapsto F^{r}\mapsto(\mathbb{R}^{r_{1}}\times \mathbb{C}^{r_{2}})^{r}\simeq(\mathbb{R}^{r})^{r_{1}}\times(\mathbb{C}^{r})^{r_{2}}
As such, then the image of P naturally offers us a lattice  $\Lambda$ in the metrized space

((\mathbb{R}^{r})^{r_{1}}\times(\mathbb{C}^{r})^{r_{2}},  $\rho$) .

An \mathcal{O}_{F} ‐lattice is called semi‐stable if for all \mathrm{s}\mathrm{u}\mathrm{b}-\mathcal{O}_{F} ‐lattice $\Lambda$_{1} of  $\Lambda$
,

we have

\mathrm{V}\mathrm{o}\mathrm{l}($\Lambda$_{1})^{\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}( $\Lambda$)}\geq \mathrm{V}\mathrm{o}\mathrm{l}( $\Lambda$)^{\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}($\Lambda$_{1})},

where the volume \mathrm{V}\mathrm{o}\mathrm{l}() of  $\Lambda$ is usually called the covolume of  $\Lambda$
, namely,

\mathrm{V}\mathrm{o}\mathrm{l}( $\Lambda$):=\mathrm{V}\mathrm{o}\mathrm{l}(((\mathbb{R}^{r})^{r_{1}}\times(\mathbb{C}^{r})^{r_{2}},  $\rho$)/ $\Lambda$) .

Denote by \mathcal{M}_{F,r} the moduli space of semi‐stable \mathcal{O}_{F} lattices of rank r
, i.e., the space

of isomorphism classes of semi‐stable \mathcal{O}_{F} lattices of rank r.

For an \mathcal{O}_{F} ‐lattice  $\Lambda$
,
dene its geo‐arithmetical cohomology groups by

 H^{0}(F,  $\Lambda$):= $\Lambda$ ,
and  H^{0}(F,  $\Lambda$):=(\mathbb{R}^{r_{1}}\times \mathbb{C}^{r_{2}})^{r}/ $\Lambda$.

Unlike in algebraic geometry and/or in arithmetic geometry, cohomological groups H^{i}

are not vector spaces, but locally compact topological groups. Accordingly, we have a

topological rooted duality, and an geo‐ari Riemann Roch from Fourier analysis.

Denition. (Weng) The rank r zeta function of F is dened by

$\xi$_{F,r}(s):=(|\displaystyle \triangle_{F}|^{s})^{\frac{r}{2}}\cdot\int_{\mathcal{M}_{F,r}}(e^{h^{0}(F, $\Lambda$)}-1)\cdot(e^{-s})^{\deg( $\Lambda$)}d $\mu$( $\Lambda$) , {\rm Re}(s)>1.
Tautologically, from the duality and the geo‐arithmetical Riemann‐Roch, we obtain
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Zeta Facts. (Weng) (0) (Iwasawa) $\xi$_{F,1}(s)=$\xi$_{F}(s) ,
the completed Dedekind zeta for

F ;

(1) (Meromorphic Extension) Non‐abelian zeta function

 $\xi$_{F,r}(s):=(\displaystyle \triangle^{\frac{r}{F2}})^{s}\int_{ $\Lambda$\in \mathcal{M}_{F,r}}(e^{h^{0}(F, $\Lambda$)}-1)(e^{-s})^{\deg()}\cdot d $\mu$
converges absolutely and uniformly when {\rm Re}(s)\geq 1+ $\delta$ for any  $\delta$>0 . Moreover, $\xi$_{F,r}(s)
admits a unique meromorphic continuation to the whole complex s ‐plane;

(2) (Functional Equation) The extended $\xi$_{F,r}(s) satises the functional equation

$\xi$_{F,r}(s)=$\xi$_{F,r}(1-s) ;

(3) (Singularities) The extended $\xi$_{F,r}(s) has two singularities, all simple poles, at s=

01 ,
with

{\rm Res}_{s=0}$\xi$_{F,r}(s)={\rm Res}_{s=0}$\xi$_{F,r}(s)=\mathrm{V}\mathrm{o}\mathrm{l}(\mathcal{M}_{F,r}[\triangle^{\frac{r}{F2}}]) .

§6. Geometric Characterization of Stability

Minkowski embeddings of F into \mathbb{R}^{r_{1}}\times \mathbb{C}^{r_{2}} induces a class of natural moduli points

$\tau$_{ $\Lambda$}\in \mathcal{H}^{r_{1}}\times \mathbb{H}^{r_{2}} associated to a rank two \mathcal{O}_{F} ‐lattice  $\Lambda$=(\mathcal{O}_{F}\oplus a; $\rho$) . Here, as usual,
denote by

\mathcal{H}:=\{z=x+iy\in \mathbb{C}:x\in \mathbb{R}, y\in \mathbb{R}_{+}^{*}\},

the upper half plane, and

\mathbb{H}:=\mathbb{C}\times]0, \infty[=\{(z, r):z=x+iy\in \mathbb{C}, r\in \mathbb{R}_{+}^{*}\}
=\{(x, y, r):x, y\in \mathbb{R}, r\in \mathbb{R}_{+}^{*}\}

the 3‐dimensional hyperbolic space.

The natural embedding SL(\mathcal{O}_{F}\oplus a)\mapsto SL(2, \mathbb{R})^{r_{1}}\times SL(2, \mathbb{C})^{r_{2}} induces a natural

action of SL(\mathcal{O}_{F}\oplus a) on \mathbb{P}^{1}(F) ,
viewed as a part of the boundary \mathbb{P}^{1}(\mathbb{R})^{r_{1}}\times \mathbb{P}^{1}(\mathbb{C})^{r_{2}} of

the upper half space \mathcal{H}^{r_{1}}\times \mathbb{H}^{r_{2}}.

Recall that for a cusp  $\eta$=\left\{\begin{array}{l}
 $\alpha$\\
 $\beta$
\end{array}\right\}\in \mathbb{P}^{1}(F) , by the Cusp‐Ideal Class Correspondence of

\mathrm{M}\mathrm{a}\mathrm{a} $\beta$ ,
we obtain a natural ideal class associated to the fractional ideal \mathrm{b}:=\mathcal{O}_{F}\cdot $\alpha$+a\cdot $\beta$.

Moreover, by assuming that  $\alpha$,  $\beta$ are all contained in \mathcal{O}_{F} ,
as we may, we know that the

corresponding stablizer group $\Gamma$_{ $\eta$} is given by

A^{-1} . $\Gamma$_{ $\eta$}\cdot A=\{ $\gamma$=\left(\begin{array}{ll}
u & z\\
0 & u^{-1}
\end{array}\right)\in $\Gamma$:u\in U_{F}, z\in $\alpha$ \mathrm{b}^{-2}\},
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where A\in SL(2, F) satisfying  A\infty= $\eta$ which may be further chosen in the form

 A=\left(\begin{array}{ll}
 $\alpha$ & $\alpha$^{*}\\
 $\beta$ & $\beta$^{*}
\end{array}\right)\in SL(2, F) so that \mathcal{O}_{F}$\beta$^{*}+a^{-1}$\alpha$^{*}=\mathrm{b}^{-1}.

Now for  $\tau$=(z_{1}, \ldots, z_{r_{1}};P_{1}, \cdots, P_{r_{2}})\in \mathcal{H}^{r_{1}}\times \mathbb{H}^{r_{2}} ,
set

N( $\tau$):=N(\displaystyle \mathrm{I}\mathrm{m}\mathrm{J}( $\tau$))=\prod_{i=1}^{r_{1}}\Im(z_{i})\prod_{j=1}^{r_{2}}J(P_{j})^{2}=(y_{1}\cdot\ldots\cdot y_{r_{1}}) . (v_{1}\cdot\ldots\cdot v_{r_{2}})^{2}

Then for all  $\gamma$=\left(\begin{array}{l}
ba\\
cd
\end{array}\right)\in SL(2, F) , N(\displaystyle \mathrm{I}\mathrm{m}\mathrm{J}( $\gamma$\cdot $\tau$))=\frac{N(\mathrm{I}\mathrm{m}\mathrm{J}( $\tau$))}{\Vert N(c $\tau$+d)||^{2}} . Moreover, following

[Sie] and [W5], dene the reciprocal distance  $\mu$( $\eta$,  $\tau$) fr om the point  $\tau$\in \mathcal{H}^{r_{1}}\times \mathbb{H}^{r_{2}} to

the cusp  $\eta$=\left\{\begin{array}{l}
 $\alpha$\\
 $\beta$
\end{array}\right\} in \mathbb{P}^{1}(F) by

 $\mu$( $\eta$,  $\tau$):=N(a^{-1}\cdot(\mathcal{O}_{F} $\alpha$+a $\beta$)^{2})

\displaystyle \times\frac{=(z_{1})\cdots==(z_{r_{1}})\cdot J(P_{1})^{2}\cdots J(P_{r_{2}})^{2}}{\prod_{i=1}^{r_{1}}|(-$\beta$^{(i)}z_{i}+$\alpha$^{(i)})|^{2}\prod_{j=1}^{r_{2}}||(-$\beta$^{(j)}P_{j}+$\alpha$^{(j)})\Vert^{2}}
=\underline{1}N( $\alpha$ \displaystyle \mathrm{b}^{-2}) \frac{N(\mathrm{I}\mathrm{m}\mathrm{J}( $\tau$))}{\Vert N(- $\beta \tau$+ $\alpha$)\Vert^{2}},

and the distance of  $\tau$ to the cusp  $\eta$ by

 d( $\eta,\ \tau$_{ $\Lambda$}):=\displaystyle \frac{1}{ $\mu$( $\eta,\tau$_{ $\Lambda$})}\geq 1.
Then, with the use of a crucial result of Tsukasa Hayashi [Ha], we are ready to state

the following fundamental result, which exposes a beautiful intrinsic relation between

stability and the distance to cusps.

Theorem. (Weng) The lattice  $\Lambda$ is semi‐stable if and only if the distances of corre‐

sponding moduli point  $\tau$_{ $\Lambda$}\in \mathcal{H}^{r_{1}}\times \mathbb{H}^{r_{2}} to all cusps are all bigger or equal to 1.

§7. Algebraic Characterization of Stability

Let  $\Lambda$=$\Lambda$^{g} be a rank r lattice associated to g\in \mathrm{G}\mathrm{L}() and P a parabolic

subgroup. Denote the sublattices filtration associated to P by

0=$\Lambda$_{0}\subset$\Lambda$_{1}\subset$\Lambda$_{2}\subset. . . \subset$\Lambda$_{|P|}= $\Lambda$.

Assume that P corresponds to the partition I=(d_{1}, d_{2}, \cdots, d_{n=:|P|}) . Consequently, we

have

\mathrm{r}\mathrm{k}($\Lambda$_{i})=r_{i}:=d_{1}+d_{2}+\cdots+d_{i} ,
for i=1

, 2, \cdots, |P|.
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Let p, q : [0, r]\rightarrow \mathbb{R} be two polygons such that p(0)=q(0)=p(r)=q(r)=0 . Then

following Lafforgue, we say q is bigger than p with respect to P and denote it by q>pp,

if q(r_{i})-p(r_{i})>0 for all i=1, \cdots, |P|-1 . Moreover, using Harder‐Narasimhan

filtration type consideration, we can associate a canonical polygon \overline{p}_{ $\Lambda$} to an \mathcal{O}_{F} ‐lattice;
and for a parabolic subgroup P, p_{P}^{g} denotes the polygon induced by P for (the lattice

corresponding to) the element g\in G(\mathrm{A}) . Accordingly, introduce also the characteristic

function 1(\overline{p}^{*}\leq p) by

1 (\overline{p}^{g}\leq p)=\left\{\begin{array}{ll}
1, & \mathrm{i}\mathrm{f} \overline{p}^{g}\leq p;\\
0, & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}:
\end{array}\right.
Fundamental Relation. (Lafforgue, Weng) Let p:[0, r]\rightarrow \mathbb{R} be a fixed convex polygon
such that p(0)=p(r)=0 . Then we have

1 (\displaystyle \mathrm{p}^{g}\leq p)= \sum (-1)^{|P|-1} \sum 1 (p_{P}^{ $\delta$ g}>Pp) \forall g\in G(\mathrm{A}) .

P : stand parabolic  $\delta$\in P(F)\backslash G(F)

§8. Analytic Characterization of Stability

Let G be a reductive group dened over a number field F with usual B, P, a_{0}, \hat{ $\tau$}_{P}

etc

Denition. (Arthur) Fix a suitably regular point T\in a_{0}^{+} . If  $\phi$ is a continuous function
on  G(F)\backslash G(\mathrm{A})^{1} ,

dene Arthur�s analytic trunction ($\Lambda$^{T} $\phi$)(x) to be the function

($\Lambda$^{T} $\phi$)(x):=\displaystyle \sum_{P}(-1)^{\dim(A/Z)}\sum_{ $\delta$\in P(F)\backslash G(F)}$\phi$_{P}( $\delta$ x)\cdot\hat{ $\tau$}_{P}(H( $\delta$ x)-T) ,

where

$\phi$_{P}(x):=\displaystyle \int_{N(F)\backslash N(\mathrm{A})} $\phi$(nx)dn
denotes the constant term of  $\phi$ along  P

,
and the sum is over all (standard) parabolic

subgroups.

The main purpose for introducing analytic truncation is to give a natural way to

construct integrable functions: even from the example of GL_{2} ,
we know that automor‐

phic forms are generally not integrable over the total fundamental domain G(F)\backslash G(\mathrm{A})^{1}
mainly due to the fact that in the Fourier expansions of such functions, constant terms

are only of moderate growth (hence not integrable). Thus in order to naturally ob‐

tain integrable functions, we should truncate the original function along the cuspidal

regions by removing constant terms. Simply put, Arthur�s analytic truncation is a well‐

designed device in which constant terms are tackled in such a way that different levels of
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parabolic subgroups are suitably counted at the corresponding cuspidal region so that

the whole truncation will not be overdone while there will be no parabolic subgroups
left untackled.

As an example, we may consider Authur�s analytic truncation for the constant

function 1. For a sufficiently regular T\in a_{0} ,
introduce the truncated subset  $\Sigma$(T) :=

(Z_{G(\mathrm{A})}G(F)\backslash G(\mathrm{A}))_{T} of the space G(F)\backslash G(\mathrm{A})^{1} by

 $\Sigma$(T) :=(Z_{G(\mathrm{A})}G(F)\backslash G(\mathrm{A}))_{T} :=\{g\in Z_{G(\mathrm{A})}G(F)\backslash G(\mathrm{A}) : $\Lambda$^{T}1(g)=1\}.
Lemma. (Arthur) For sufficiently regular T\in a_{0}^{+},  $\Sigma$(T) is compact.

Moreover, we have the following:
Global Bridge. (Lafforgue, Weng) For a fixed normalized convex polygon  p:[0, r]\rightarrow
\mathbb{R}

,
let T(p)\in a_{0} be the associated vector dened by

(p(1),p(2)-p(1), \cdots,p(i)-p(i-1), \cdots

;  p(r-1)-p(r-2), -p(r-1)) .

If T(p) is sufficiently positive, then

1 (\overline{p}^{g}\leq p)=($\Lambda$^{T(p)}1)(g) .

§9. Non‐Abelian L‐Functions

Recall that the rank r non‐abelian zeta function $\xi$_{\mathbb{Q},r}(s) of \mathbb{Q} is given by

$\xi$_{\mathbb{Q},r}(s)=\displaystyle \int_{\mathcal{M}_{\mathbb{Q},r}}(e^{h^{0}(\mathbb{Q}, $\Lambda$)}-1)\cdot(e^{-s})^{\deg( $\Lambda$)}d $\mu$( $\Lambda$) , {\rm Re}(s)>1,
with e^{h^{0}(\mathbb{Q}, $\Lambda$)}:=\displaystyle \sum_{x\in $\Lambda$}\exp(- $\pi$|x|^{2}) and \deg( $\Lambda$)=-\log \mathrm{V}\mathrm{o}\mathrm{l}(\mathbb{R}^{r}/ $\Lambda$) .

Introduce the completed Epstein zeta function for  $\Lambda$ by

Ê(  $\Lambda$ ;  s ) :=$\pi$^{-s} $\Gamma$(s) \displaystyle \sum |x|^{-2s}
x\in $\Lambda$\backslash \{0\}

One checks that

Proposition. (Weng) (Eisenstein Series and High Rank Zetas)

$\xi$_{\mathbb{Q},r}(s)=\displaystyle \frac{r}{2}\int_{\mathcal{M}_{\mathbb{Q},r}[1]} Ê ( $\Lambda$, \displaystyle \frac{r}{2}s)d$\mu$_{1}( $\Lambda$) .

Motivated by this, we next introduce general non‐abelian L‐functions as follows:

For a fixed convex polygon p:[0, r]\rightarrow \mathbb{R} ,
we obtain compact moduli spaces

\mathcal{M}_{F,r}^{\leq p}[\triangle^{\frac{r}{F2}}] :=\{g\in GL_{r}(F)GL() : \deg g=0,\overline{p}^{g}\leq p\}.
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For example, \mathcal{M}_{\mathbb{Q},r}^{\leq 0}[1]=\mathcal{M}_{\mathbb{Q},r}[1] , (the adelic inverse image of) the moduli space of rank

r semi‐stable \mathbb{Z}‐lattices of volume 1.

As usual, we fix the minimal parabolic subgroup P_{0} corresponding to the partition

(1, \cdots

; 1) with  M_{0} consisting of diagonal matrices. Then P=P_{I}=U_{I}M_{I} corresponds
to a certain partition I=(r_{1}, \cdots, r_{|P|}) of r with M_{I} the standard Levi and U_{I} the

unipotent radical. Fix also an irreducible automorphic representation  $\pi$ of  M_{I}

Denition. (Weng) The rank r non‐abelian L ‐function L_{F,r}^{\leq p}( $\phi$,  $\pi$) associated to the

L^{2} ‐automorphic form  $\phi$\in A^{2}(U_{I}(\mathrm{A})M_{I}(F)\backslash G(\mathrm{A}))_{ $\pi$} for the number field F is dened by
the following integration

L_{F,r}^{\leq p}( $\phi$,  $\pi$):=\displaystyle \int_{\mathcal{M}_{F,r}^{\leq p}[\triangle^{\frac{r}{F2}}]}E( $\phi$,  $\pi$)(g)dg, {\rm Re} $\pi$\in C.
For w\in W the Weyl group of G=GL_{r} ,

fix once and for all representative w\in G(F)
of w . Set M':=wMw^{-1} and denote the associated parabolic subgroup by P'=U'M'

As usual, dene the associated intertwining operator M(w,  $\pi$) by

(M(w,  $\pi$) $\phi$)(g):=\displaystyle \int_{U'(F)\cap wU(F)\backslash U'(\mathrm{A})}w-1 $\phi$(w^{-1}n'g)dn', \forall g\in G(\mathrm{A}) .

Basic Facts of Non‐Abelian L‐Functions. (Langlands, Weng)
\bullet (Meromorphic Continuation)  L_{F,r}^{\leq p}( $\phi$,  $\pi$) foor {\rm Re} $\pi$\in C is well‐dened and admits a

unique meromorphic continuation to the whole space \mathfrak{P} ;
\bullet (Functional Equation) As meromorphic functions on \mathfrak{P},

L_{F,r}^{\leq p}( $\phi$,  $\pi$)=L_{F,r}^{\leq p}(M(w,  $\pi$) $\phi$, w $\pi$) , \forall w\in W.
\bullet (Holomorphicity) (i) When {\rm Re} $\pi$\in C, L_{F,r}^{\leq p}( $\phi$,  $\pi$) is holomorphic;

(ii) L_{F,r}^{\leq p}( $\phi$,  $\pi$) is holomorphic at  $\pi$ where {\rm Re} $\pi$=0 ;

\bullet (Singularities) Assume further that  $\phi$ is a cusp form. Then

(i) There is a locally finite set of root hyperplanes  D such that the singularities of

L_{F,r}^{\leq p}( $\phi$,  $\pi$) are supported by D ;

(ii) Singularities of L_{F,r}^{\leq p}( $\phi$,  $\pi$) are without multiplicities at  $\pi$ if \langle{\rm Re} $\pi$, $\alpha$^{\vee}\rangle\geq 0, \forall $\alpha$\in\triangle_{M}^{G} ;
(iii) There are only finitely many of singular hyperplanes of L_{F,r}^{\leq p}( $\phi$,  $\pi$) which intersect

\{ $\pi$\in \mathfrak{P}:\langle{\rm Re} $\pi,\ \alpha$^{\vee}\rangle\geq 0, \forall $\alpha$\in\triangle_{M}\}.

§10. Symmetries and the Riemann Hypothesis

Characterizations of stability in terms of geometric, algebraic and analytic struc‐

tures open new dimensions for the study of our high rank zeta functions. Here, we

briey recall how the analytic one enables us to use powerful techniques from trace
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formulas to expose the abelian zeta functions associated to pairs of reductive groups

and their maximal parabolic subgroups.
For simplicity, assume that we are now working only over the field of rational. Then

high rank zetas can be written as integrations of Epstein zetas over moduli spaces of

semi‐stable lattices. But Epstein zetas are special kinds of Eisenstein series, namely,
the Eisenstein series E^{SL_{r}/P_{r-1,1}}(1;s;g_{ $\Lambda$}) induced from the constant function 1 over the

maximal parabolic subgroup P_{r-1,1} of SL_{r} corresponding to the partition r=(r-1)+1.
Thus, via the analytic and algebraic approaches, we can further express our non‐abelian

zetas as integrations of truncated Eisenstein series $\Lambda$^{0}E^{SL_{r}/P_{r-1,1}}(1;s;g_{ $\Lambda$}) over the total

fundamental domain of SL(r, \mathbb{Z}) . In this way, we deduce our non‐abelian zetas to what

we call Eisenstein periods.
In general, Eisenstein periods associated to L^{2} ‐automorphic forms such as these

associated to our high rank zetas, are very difficult to be calculated. However, us‐

ing techniques from trace formula, particularly, what we call an advanced version of

Rankin‐Selberg & Zagier method, see e.g. [\mathrm{J}\mathrm{L}\mathrm{R}]/[\mathrm{W}4] ,
we know that Eisenstein periods

associated to cusp forms can be evaluated. This, together with our earlier down‐to‐earth

works on SL_{3} ,
then leads to calculations of Eisenstein periods associated to constant

function 1 over the Borels, since, following Siegel and Langlands, (details are given by
Diehl [D]), Epstein zetas can be realized as residues of these Eisenstein series coming
from Borels. All in all, the up‐shot is the following:

Denition. (Weng) Let G be a reductive group and B a fixed Borel, both dened over

a number field F. Denote by \triangle_{0} the corresponding set of simple roots, and W the

associated Weyl group. The period of G over F is dened by

$\omega$_{F}^{G}( $\lambda$):=\displaystyle \sum_{w\in W}(\frac{1}{\prod_{ $\alpha$\in\triangle 0}\langle w $\lambda$- $\rho,\alpha$^{\vee}\rangle}\cdot\prod_{ $\alpha$>0,w $\alpha$<0}\frac{$\xi$_{F}(\langle $\lambda,\alpha$^{\vee}\rangle)}{$\xi$_{F}(\langle $\lambda,\alpha$^{\vee}\rangle+1)})
for  $\lambda$ in a suitable positive chamber of the root space. Here, as usual,  $\alpha$^{\vee} denotes the

co‐root corresponding to  $\alpha$,  $\rho$:=\displaystyle \frac{1}{2}\sum_{ $\alpha$>0} $\alpha$ , and  $\xi$_{F}(s) denotes the completed Dedekind

zeta function of F.

The above periods for G are several variables. To get a single variable one, say these

corresponding to, but not coinciding with, our non‐abelian zetas, as said above, we need

to first properly choose singular hyper‐planes and then take residues along them. In

the cases of SL and Sp associated to high rank zetas, all this can be completed with

the work of Diehl; but general cases are still quite complicated. To see structures more

clearly, we decided to choose G_{2} to test. This proves to be very crucial as it singles
out the crucial role played by maximal parabolic subgroups. As a result, we have the

following:

Denition. (Weng) Let (G, P) be a pair of reductive group G and its maximal parabolic



202 \mathrm{L}\mathrm{i}\mathrm{n} WENG

subgroup dened over a number field F. Denote by $\alpha$_{P} the single element of \triangle_{0} corre‐

sponding to P and s:=\langle $\lambda$- $\rho$, $\alpha$_{P}^{\vee}\rangle . Then we dene

(i) the period of (G, P) over F by

$\omega$_{F}^{G/P}(s):={\rm Res}_{\langle $\lambda$- $\rho,\alpha$^{\vee}\rangle=0, $\alpha$\in\triangle 0\backslash \{$\alpha$_{P}\}}($\omega$_{F}^{G}( $\lambda$)) .

(ii) the abelian zeta function associated to (G, P)/F to be the function obtained fr om the

period of (G, P) over F by making the following normalizations: clearing up Dedekind

zetas appeared in the denominators and making a possible parallel shift of s :

$\xi$_{\mathbb{Q}}^{G/P}(s) := Norm [{\rm Res}_{\langle $\lambda$- $\rho,\alpha$^{\vee}\rangle=0, $\alpha$\in\triangle 0\backslash \{$\alpha$_{P}\}}($\omega$_{F}^{G}( $\lambda$))]
where as above,

$\omega$_{F}^{G}( $\lambda$):=\displaystyle \sum_{w\in W}\frac{1}{\prod_{ $\alpha$\in\triangle 0}\langle w $\lambda$- $\rho,\alpha$^{\vee}\rangle} \prod_{ $\alpha$>0,w $\alpha$<0}\frac{$\xi$_{F}(\langle $\lambda,\alpha$^{\vee}\rangle)}{$\xi$_{F}(\langle $\lambda,\alpha$^{\vee}\rangle+1)}.
As such, then easily, $\xi$_{\mathbb{Q}}^{G/P}(s) is a well‐dened meromorphic function on the whole

complex s‐plane. And strikingly, the structures of all this zetas can be summarized by
the following

Main Conjecture. (i) (Functional Equation) $\xi$_{\mathbb{Q}}^{G/P}(1-s)=$\xi$_{\mathbb{Q}}^{G/P}(s) ;

(ii) (The Riemann Hypothesis)

$\xi$_{\mathbb{Q}}^{G/P}(s)=0 implies that {\rm Re}(s)=\displaystyle \frac{1}{2}.
Remarks. (i) Even when (G, P)= (SLr, P_{r-1,1}) ,

these new abelian zetas are not rank

r zetas. In fact, abelain zetas here are related with the so‐called constant terms of

Eisenstein series E^{SL_{r}/B}(1,  $\lambda$, g) only, while non‐abelian high rank zetas are related to

all parts;

(ii) Functional equation is first checked in [W7] for 10 examples listed in the ap‐

pendix there, namely for the groups SL(2,3,4,5) , Sp(4) and G_{2} ; then by Kim‐Weng
for (SLr, P_{r-1,1} ). Recently, Komori [Ko] is able to establish the following basic

Functional Equation: $\xi$_{\mathbb{Q}}^{G/P}(1-s)=$\xi$_{\mathbb{Q}}^{G/P}(s) .

(iii) Based on symmetries, the RH for the above 10 examples is solved partially by

Lagarias‐Suzuki, particularly by Suzuki, and fully by Ki. Ki�s method is expected to

have more applications. For details, please go to ([LS], [Su1,2], [SW], [\mathrm{K}\mathrm{i}1,2] ).

Chapter 3. General CFT and Stability

The study of the so‐called Hodge‐Tate, de Rham, semi‐stable and crystalline rep‐

resentations plays a central role in Fontaine�s theory of p‐adic Galois representations.
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These representations are closely related with p‐adic Hodge theory. Main results here

are

(i) A characterization of semi‐stable representations in terms of weakly admissible fil‐

tered ( $\varphi$, N) ‐modules ([CF]);
(ii) Monodromy Theorem for p‐adic Galois representations ([B]); and

(iii) Semi‐stable conjecture in p‐adic Hodge ( [Tsu], [Ni], [\mathrm{F}\mathrm{a}\mathrm{l}1,2]) .

In this chapter, based on (i) and (ii), we will first introduce what we call  $\omega$‐structures

to tackle ramications, then formulate a conjectural Micro Reciprocity Law characteriz‐

ing de Rham representations in terms of semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules of slope

zero, and finally establish a general CFT for p‐adic number fields using Tannakian

category theory.

§11. Filtered ( $\varphi$, N)‐Modules & Semi‐Stable Reps

Let K be a p‐adic number field with k the residue field and K_{0}:=\mathrm{F}\mathrm{r}W(k) . Denote

by \mathrm{B}_{\mathrm{H}\mathrm{T}}, \mathrm{B}_{\mathrm{d}\mathrm{R}}, \mathrm{B}_{\mathrm{s}\mathrm{t}}, \mathrm{B}_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}} Fontaine�s rings of Hodge‐Tate, de Rham, semi‐stable, crystalline

periods, respectively.
Let  $\rho$ :  G_{K}\rightarrow \mathrm{G}\mathrm{L}(V) be a p‐adic Galois representation. Following Fontaine, dene

the associated spaces of periods by

\mathrm{D}_{\mathrm{H}\mathrm{T}}(V):=(\mathrm{B}_{\mathrm{H}\mathrm{T}}\otimes_{\mathbb{Q}_{p}}V)^{G_{K}},

\mathrm{D}_{\mathrm{s}\mathrm{t}}(V):=(\mathrm{B}_{\mathrm{s}\mathrm{t}}\otimes_{\mathbb{Q}_{p}}V)^{G_{K}},

\mathrm{D}_{\mathrm{d}\mathrm{R}}(V):=(\mathrm{B}_{\mathrm{d}\mathrm{R}}\otimes_{\mathbb{Q}_{p}}V)^{G_{K}},

\mathrm{D}_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}(V):=(\mathrm{B}_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}\otimes_{\mathbb{Q}_{p}}V)^{G_{K}}
In particular, if V is semi‐stable, then \mathrm{D}(V) :=(\mathrm{D}_{\mathrm{s}\mathrm{t}}(V), \mathrm{D}_{\mathrm{d}\mathrm{R}}(V)) admits a natural

filtered ( $\varphi$, N) ‐module structure. Hence it makes sense to talk about the correspond‐

ing Hodge‐Tate slope $\mu$_{\mathrm{H}\mathrm{T}} and Newton slope $\mu$_{N} . Along with this line, an important

discovery of Fontaine is the following basic:

Theorem. (Fontaine) Let  $\rho$ :  G_{K}\rightarrow \mathrm{G}\mathrm{L}(V) be a semi‐stable p ‐adic representation of
G_{K} and set \mathrm{D}:=(D_{0}, D) with

D:=\mathrm{D}_{\mathrm{d}\mathrm{R}}(V) and D_{0}:=\mathrm{D}_{\mathrm{s}\mathrm{t}}(V) .

Then

(i) $\mu$_{\mathrm{H}\mathrm{T}}(\mathrm{D})=$\mu$_{\mathrm{N}}(\mathrm{D}) ; and

(ii) $\mu$_{\mathrm{H}\mathrm{T}}(\mathrm{D}')\leq$\mu$_{\mathrm{N}}(\mathrm{D}') for any saturated filtered ( $\varphi$, N) ‐submodule \mathrm{D}'=(D\'{O}, D') of

\mathrm{D}=(D_{0}, D) .

If a filtered ( $\varphi$, N) ‐module (D_{0}, D) satises the above two conditions (i) and (ii), we,

following Fontaine, call it a weakly admissible filtered ( $\varphi$, N) ‐module. So the above result
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then simply says that for a semi‐stable V ,
its associated periods \mathrm{D}:=(\mathrm{D}_{\mathrm{s}\mathrm{t}}(V), \mathrm{D}_{\mathrm{d}\mathrm{R}}(V))

is weakly admissible. More surprisingly, the converse holds correctly. That is to say, we

have also the following

Theorem. (FontaineColmez‐Fontaine) If (D_{0}, D) is a weakly admissible filtered

( $\varphi$, N) ‐module. Then there exists a semi‐stable p ‐adic Galois representation  $\rho$ :  G_{K}\rightarrow

\mathrm{G}\mathrm{L}(V) such that

D=\mathrm{D}_{\mathrm{d}\mathrm{R}}(V) and D_{0}=\mathrm{D}_{\mathrm{s}\mathrm{t}}(V) .

Remark. (AB), for contributors, means that the assertion is on one hand conjectured

by A and on the other proved by B.

§12. Monodromy Theorem for p‐adic Galois Reps

We have already explained one of three fundamental results for p‐adic Galois rep‐

resentations. Here we introduce another one, the so‐called Monodromy Theorem for

p‐adic Galois Representations.
To explain this, let us recall that a p‐adic Galois representation  $\rho$ :  G_{K}\rightarrow \mathrm{G}\mathrm{L}(V)

is called potentially semi‐stable, if there exists a finite Galois extension L/K such that

the induced Galois representation  $\rho$|_{G_{L}} : G_{L}(\mapsto G_{K})\rightarrow \mathrm{G}\mathrm{L}(V) is semi‐stable. One

checks easily that every potentially semi‐stable representation is de Rham. As a p‐adic

analogue of the Monodromy Theorem for l ‐adic Galois Representations, we have then

the following fundamental:

Monodromy Theorem for p‐adic Galois Reps. (FontaineBerger)
All de Rham representations are potentially semi‐stable.

Started with Sen�s theory for \mathrm{B}_{\mathrm{d}\mathrm{R}} of Fontaine, bridged by overconvergence of p‐adic

representations due to (CherbonnierCherbonnier‐Colmez), Berger�s proof is based on

the so‐called p‐adic monodromy theorem (for p‐adic differentials equations) of (Crew,
TsuzukiCrew, Tsuzuki, Andre, Kedelaya, Mebkhout). For more details, please refer to

Ch. 4.

§13. Semi‐Stability of Filtered ( $\varphi$, N; $\omega$) ‐Modules

§13.1. Weak Admissibility = Stability & of Slope Zero

With the geometric picture in mind, particularly the works of Weil, Grothendieck,

Mumford, Narasimhan‐Seshadri and Seshadri, we then notice that weakly admissible

condition for filtered ( $\varphi$, N) ‐module \mathrm{D}=(D_{0}, D) is an arithmetic analogue of the con‐

dition on semi‐stable bundles of slope zero. Indeed, if we set

$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(\mathrm{D}):=$\mu$_{\mathrm{H}\mathrm{T}}(D)-$\mu$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}(D_{0})
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then the first condition of weak admissibility, namely,

(i) $\mu$_{\mathrm{H}\mathrm{T}}(D)=$\mu$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}(\mathrm{D})
is equivalent to the slope zero condition that

(i) $\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(\mathrm{D})=0 ;

and the second condition

(ii) $\mu$_{\mathrm{H}\mathrm{T}}(D')=$\mu$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}} (DÓ) for any saturated filtered ( $\varphi$, N) ‐submodule (DÓ, D' ) of

(D_{0}, D) ,

is equivalent to the semi‐stability condition that

(ii)� $\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(\mathrm{D}')\leq$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}() =0 for all saturated filtered ( $\varphi$, N) ‐submodule \mathrm{D}' of D.

As such, then the above correspondence between semi‐stable Galois representations and

weakly admissible filtered ( $\varphi$, N) ‐modules may be understood as an arithmetic analogue
of the Narasimhan‐Seshadri correspondence between (irreducible) unitary representa‐

tions and stable bundles of degree zero over compact Riemann surfaces.

Accordingly, in order to establish a general class field theory for p‐adic number

fields, motivated by what we saw in algebraic geometry explained in Ch. 1, we need to

introduce some new structures to tackle ramications. Recall that in algebraic geom‐

etry, there are two parallel theories for this purpose, namely, the  $\pi$‐bundle one on the

covering space at the top using Galois groups; and the parabolic bundle one on the base

space at the bottom using parabolic structures. Hence, in arithmetic setting now, we

would like to develop corresponding theories. The  $\pi$‐bundle analogue is easy based on

Monodromy theorem for  p‐adic Galois Representations. In fact, we have the following
orbifold version:

Theorem. (FontaineFontaine, Colmez‐Fontaine, Berger)
There exists a natural one‐to‐one and onto correspondence

\{de Rham Galois representations of G_{K}\}
\mathrm{m}

\{ semi‐stable filtered ( $\varphi$, N;G_{L/K}) ‐modules of slope zero: \exists L/K finite Galois \}.
§13.2. Ramications

In geometry, parabolic structures take care of ramications. Recall that if M^{0}\mapsto M

is a punctured Riemann surface, then around the punctures P_{i}\in M\backslash M^{0}, i=1
, 2, . .

:; N,
the associated monodromy groups generated by parabolic elements S_{i} are isomorphic
to \mathbb{Z}

,
an abelian group. Thus for a unitary representation  $\rho$ :  $\pi$_{1}(M^{0};*)\rightarrow \mathrm{G}\mathrm{L}(V) ,

the

images of  $\rho$(S) are given by diagonal matrices with diagonal entries \exp(2 $\pi$\sqrt{-1}$\alpha$_{i;k}) ,

that is to say, they are determined by unitary characters \exp(2 $\pi$\sqrt{-1} $\alpha$) ,  $\alpha$\in \mathbb{Q} . As such,
to see the corresponding ramications, one usually chooses a certain cyclic covering with

ramications around P_{i} �s such that the orbifold semi‐stable bundles can be characterized



206 \mathrm{L}\mathrm{i}\mathrm{n} WENG

by semi‐stable parabolic bundles on (M^{0}, M) .

However, in arithmetic, the picture is much more complicated since there is no

simple way to make each step abelian. By contrast, the good news is that there is a

well‐established theory in number theory to measure ramications, namely, the theory
of high ramication groups.

Accordingly, let then G_{K}^{(r)} be the upper‐indexed high ramication groups of G_{K},

parametrized by non‐negative reals r\in \mathbb{R}_{\geq 0} . (See e.g., [Se2].) Denote then by V^{(r)}:=

V^{G_{K}^{(r)}} the invariant subspace of V under G_{K}^{(r)} ,
and K^{(r)}:=\overline{K}^{G_{K}^{(r)}} . For a p‐adic Galois

representation V ,
dene the associated r‐th gra/ed piece by

Gr (r)V:=\displaystyle \bigcap_{s:s\geq r}V^{(s)}/\bigcup_{s:s<r}V^{(s)},
and its Swan conductor by

\displaystyle \mathrm{S}\mathrm{w}( $\rho$):=\sum_{r\in \mathbb{R}_{\geq 0}}r\cdot\dim_{\mathrm{Q}_{\mathrm{p}}}\mathrm{G}\mathrm{r}^{(r)}V.
Proposition. Let  $\rho$ :  G_{K}\rightarrow \mathrm{G}\mathrm{L}(V) be a de Rham representation.

(i) (Hasse‐Arf Lemma) All jumps of \mathrm{G}\mathrm{r}^{(r)}V are rational;

(ii) (Artin, Fontaine) There exists a Swan representation $\rho$_{\mathrm{S}\mathrm{w}}:G_{K}\rightarrow \mathrm{G}\mathrm{L}(V_{\mathrm{S}\mathrm{w}}) such

that

\langle$\rho$_{\mathrm{S}\mathrm{w}},  $\rho$\rangle=\mathrm{S}\mathrm{w}( $\rho$) .

In particular, \mathrm{S}\mathrm{w}( $\rho$)\in \mathbb{Z}_{\geq 0}.
In fact, Monodromy Theorem for p‐adic Galois representations can be rened as

follows:

Theorem�. Ap‐adic Galois representation  $\rho$ :  G_{K}\rightarrow \mathrm{G}\mathrm{L}(V) is de Rham if and only

if there exists a finite Galois extension L/K such that for all r\in \mathbb{R}_{\geq 0},  $\rho$|_{G_{L\cap K(r)}} :

G_{L\cap K(r)}\rightarrow \mathrm{G}\mathrm{L}(V^{(r)}) is semi‐stable.

§13.3.  $\omega$‐structures

Recall that in geometry ([MY]), parabolic structures, taking care of ramications,
can also be characterized via an \mathbb{R}‐index filtration

E_{t}:=(p_{*}(W\otimes \mathcal{O}_{Y}(-[\# $\Gamma$\cdot t]D)))^{ $\Gamma$},
and its associated parabolic degree is measured by

\displaystyle \sum_{i}$\alpha$_{i}\cdot\dim_{\mathbb{C}}\mathrm{G}\mathrm{r}^{i}V.
Moreover, it is known that the filtration E_{t} is
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(i) left continuous;

(ii) has jumps only at t=$\alpha$_{i}-$\alpha$_{i-1}\in \mathbb{Q} ; and

(iii) with parabolic degree in \mathbb{Z}_{\geq 0}.

Even we have not yet checked with geometers whether their ramication filtration

constructions are motivated by the arithmetic one related to the filtration of upper

indexed high ramication groups, the similarities between both constructions are quite

apparent. Indeed, it is well‐known that, for the filtrations on Galois groups G and on

representations V induced from that of high ramication groups G_{K}^{(r)},
(i) by denition, G_{K}^{(r)} and hence V^{(r)} are left continuous;

(ii) from the Hasse‐Arf Lemma, all jumps of G_{K}^{(r)} and hence of V^{(r)} are rational; and

(iii) according to essentially a result of Artin, the Artin/Swan conductors are non‐

negative integers.

Motivated by this, we make the following
Denition. Let D be a finite dimensional K ‐vector space. Then, an  $\omega$ ‐filtration \mathrm{F}\mathrm{i}1_{ $\omega$}^{r}D
on D is by denition an \mathbb{R}_{\geq 0} ‐indexed increasing but exhaustive filtration of finite di‐

mensional K ‐vector subspaces of D satisfy ing the following properties:

(i) (Continuity) it is left continuous;

(ii) (Hasse‐Arf�s Rationality) it has all jumps at rationals;
Dene then the associated r‐th graded piece by

\displaystyle \mathrm{G}\mathrm{r}_{ $\omega$}^{(r)}D:=\bigcap_{s:s\geq r}\mathrm{F}\mathrm{i}1_{ $\omega$}^{(s)}D/\bigcup_{s:s<r}\mathrm{F}\mathrm{i}1_{ $\omega$}^{(s)}D,
and its  $\omega$ ‐slope by

 $\mu$_{ $\omega$}(D):=\displaystyle \frac{1}{\dim_{K}D}\cdot\sum_{r\in \mathbb{R}_{\geq 0}}r\cdot\dim_{\mathrm{Q}_{\mathrm{p}}}\mathrm{G}\mathrm{r}_{ $\omega$}^{(r)}D.
(iii) (Artin�s Integrality) The  $\omega$ ‐degree

\displaystyle \deg_{ $\omega$}(D):=\sum_{r\in \mathbb{R}_{\geq 0}}r\cdot\dim_{K}\mathrm{G}\mathrm{r}_{ $\omega$}^{(r)}D=\dim_{K}D\cdot$\mu$_{ $\omega$}(D)
is a non‐negative integer.

§13.4. Semi‐Stability of Filtered ( $\varphi$, N; $\omega$) ‐Modules

By the monodromy theorem of p‐adic Galois representations, for a de Rham rep‐

resentation V of G_{K} ,
there exists a finite Galois extension L/K such that V ,

as a rep‐

resentation of G_{L} ,
is semi‐stable. As such, then, over the extension field L

,
the weakly

admissible filtered ( $\varphi$, N) ‐structure on (\mathrm{D}_{\mathrm{s}\mathrm{t},L}(V), \mathrm{D}_{\mathrm{d}\mathrm{R},L}(V)) is equipped with a com‐

patible Galois action of G_{L/K} . On the other hand, instead of working over L
,

from the
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original base field K
, we, motivated by algebraic geometry, expect that the  $\omega$‐structure

would play the role of parabolic structures. Accordingly, we make the following

Denition. (i)  A filtered ( $\varphi$, N; $\omega$) ‐module \mathrm{D}:=(D_{0}, D;\mathrm{F}\mathrm{i}1_{ $\omega$}^{r}D) is by denition a

filtered ( $\varphi$, N) ‐module (D_{0}, D) equipped with a compatible  $\omega$ ‐structure on  D ;

(ii) Ta utologically, we have the notion of saturated filtered ( $\varphi$, N; $\omega$) ‐submodule \mathrm{D}' :=

(DÓ, D';\mathrm{F}\mathrm{i}1_{ $\omega$}^{r}D') of \mathrm{D}=(D_{0}, D;\mathrm{F}\mathrm{i}1_{ $\omega$}^{r}D) ;

(iii) Dene the total slope of a filtered ( $\varphi$, N; $\omega$) ‐module \mathrm{D}:=(D_{0}, D;\mathrm{F}\mathrm{i}1_{ $\omega$}^{r}D) by

$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(\mathrm{D}):=$\mu$_{\mathrm{H}\mathrm{T}}(D)-$\mu$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}(D_{0})-$\mu$_{ $\omega$}(D) .

(iv) A filtered ( $\varphi$, N; $\omega$) ‐module \mathrm{D}=(D_{0}, D;\mathrm{F}\mathrm{i}1_{ $\omega$}^{r}D) is called semi‐stable of slope zero

if

(a) (Slope 0) it is of total slope zero, i.e.,

$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(\mathrm{D})=0 ;

(b) (Semi‐Stability) For every saturated filtered ( $\varphi$, N; $\omega$) ‐module \mathrm{D}' of \mathrm{D}
,

we have

$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(\mathrm{D}')\leq$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(\mathrm{D}) .

§14. General CFT for p‐adic Number Fields

With all these preparations, we are now ready to make the following:

Conjectural Micro Reciprocity Law. There exists a canonical one‐to‐one and onto

correspondence

\{\mathrm{d}\mathrm{e} Rham representations of G_{K}\}
\mathrm{m}

\{ semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules of slope zero over K\}.
Denote the category of semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules of slope zero over

K by \mathrm{F}\mathrm{M}_{K}^{\mathrm{s}\mathrm{s};0}( $\varphi$, N; $\omega$) . Assuming the MRL, i.e., the micro reciprocity law, then we

can show easily that, with respect to natural structures, \mathrm{F}\mathrm{M}^{\mathrm{s}\mathrm{s};0}( $\varphi$, N; $\omega$) becomes a

Tannakian category. Denote by \mathrm{F} the natural fiber functor to the category of finite

\mathbb{Q}_{p} ‐vector spaces. Then, from the standard Tannakian category theory, we obtain the

following

General CFT for p‐adic Number Fields.

\bullet Existence Theorem There exists a canonical one‐to‐one and onto correspondence
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\{ Finitely Generated Sub‐Tannakian Categories ( $\Sigma$, \mathrm{F}|_{ $\Sigma$}) of \mathrm{F}\mathrm{M}_{K}^{\mathrm{s}\mathrm{s};0}( $\varphi$, N; $\omega$)\}
\mathrm{m} $\Pi$

\{ Finite Galois Extensions \mathrm{L}/\mathrm{K}\} ;

Moreover,
\bullet Reciprocity Law The above canonical correspondence induces a natural isomorphism

\mathrm{A}\mathrm{u}\mathrm{t}^{\otimes}( $\Sigma$, \mathrm{F}|_{ $\Sigma$})\simeq Gal ( $\Pi$( $\Sigma$, \mathrm{F}|_{ $\Sigma$})) .

In fact much rened result remains correct: By using !-ltration, for all r\in \mathbb{R}_{\geq 0},
we may form sub‐Tannakian category ($\Sigma$^{(r)}, \mathrm{F}|_{ $\Sigma$(r)}) of (; \mathrm{F}| $\Sigma$) , consisting of objects

admitting trivial \mathrm{F}\mathrm{i}1_{ $\omega$}^{r'} for all r'\geq r.

\bullet Rened Reciprocity Law The natural correspondence  $\Pi$ induces, foor all  r\in \mathbb{R}_{\geq 0},
canonical isomorphisms

\mathrm{A}\mathrm{u}\mathrm{t}^{\otimes}($\Sigma$^{(r)}, \mathrm{F}|_{ $\Sigma$(r)})\simeq Gal ( $\Pi$( $\Sigma$, \mathrm{F}|_{ $\Sigma$}))/\mathrm{G}\mathrm{a}1^{(r)}( $\Pi$( $\Sigma$, \mathrm{F}|_{ $\Sigma$})) .

§15. Moduli Spaces and Polarizations

Let \mathrm{D}:= (D_{0}, D;\mathrm{F}\mathrm{i}1_{ $\omega$}^{r}(D)) be a filtered ( $\varphi$, N; $\omega$) ‐module of rank d over K,

P($\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}) and P($\kappa$_{\mathrm{H}\mathrm{T}}) be the corresponding parabolic subgroups of GL(D) and of

GL(D) . Dene the character L_{$\kappa$_{\mathrm{H}\mathrm{T}}} of P($\kappa$_{\mathrm{H}\mathrm{T}}) by

L_{$\kappa$_{\mathrm{H}\mathrm{T}}}:=\displaystyle \bigotimes_{i\in \mathbb{Z}}(\det \mathrm{G}\mathrm{r}_{\mathrm{H}\mathrm{T}}^{i}(D))^{\otimes-i}
Similarly, dene the (rational) character L_{$\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}} of P($\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}) by

L_{$\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}}:=\displaystyle \bigotimes_{l\in \mathbb{Q}}(\det \mathrm{G}\mathrm{r}_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}^{l}(D_{0}))^{\otimes-l}
(Unlike L_{$\kappa$_{\mathrm{H}\mathrm{T}}} ,

which is an element of the group X^{*}(P_{$\kappa$_{\mathrm{H}\mathrm{T}}}) of characters of P_{$\kappa$_{\mathrm{H}\mathrm{T}}} , being

rationally indexed, L_{$\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}} is in general not an element of X^{*}(P_{$\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}}) ,
but a rational

character, i.e., it belongs to X^{*}(P_{$\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}})\otimes \mathbb{Q}. )
Moreover, since all jumps of an  $\omega$‐structure are rationals, it makes sense to dene

the associated parabolic subgroup  P($\kappa$_{ $\omega$}) and \mathrm{a} (rational) character L_{$\kappa$_{ $\omega$}} of P($\kappa$_{ $\omega$}) by

L_{$\kappa$_{ $\omega$}}:=\displaystyle \bigotimes_{r\in \mathbb{R}_{\geq 0}}(\det \mathrm{G}\mathrm{r}_{ $\omega$}^{r}(D))^{\otimes-r}
As usual, identify L_{$\kappa$_{\mathrm{H}\mathrm{T}}} with an element of \mathrm{P}\mathrm{i}\mathrm{c}^{\mathrm{G}\mathrm{L}(D)}(\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{g}($\kappa$_{\mathrm{H}\mathrm{T}})) ,

where Flag()
denotes the partial flag variety consisting of all filtrations of D with the same graded



210 \mathrm{L}\mathrm{i}\mathrm{n} WENG

piece dimensions \dim_{K}\mathrm{G}\mathrm{r}_{\mathrm{H}\mathrm{T}}^{k}(D) . (We have identied Flag() with \mathrm{G}\mathrm{L}(D)/P_{$\kappa$_{\mathrm{H}\mathrm{T}}}. )
Similarly, we get an element L_{$\kappa$_{ $\omega$}} of \mathrm{P}\mathrm{i}\mathrm{c}^{\mathrm{G}\mathrm{L}(D)}(\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{g}($\kappa$_{ $\omega$}))\otimes \mathbb{Q} , with Flag() the partial

flag variety consisting of all filtrations of D with the same \dim_{K}\mathrm{G}\mathrm{r}_{ $\omega$}^{r}(D) . Thus, it makes

sense to talk about the rational line bundle (L_{$\kappa$_{\mathrm{H}\mathrm{T}}}\otimes L_{$\kappa$_{ $\omega$}})\otimes L_{$\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}} on the product

variety Flag() \times Flag ( $\kappa$_{ $\omega$}) . Moreover, dene J=J_{K} be an algebraic group whose

\mathbb{Q}_{p} ‐rational points consist of automorphisms of the filtered ( $\varphi$, N; $\omega$) ‐module \mathrm{D} over

K . As such, then essentially following Langton, Mehta‐Seshadri, Rapoport‐Zink, and

particularly, Totaro, we can manage to have the following:

Proposition. Assume k is algebrically closed. Then (D_{0}, D;\mathrm{F}\mathrm{i}1_{ $\omega$}^{r}(D)) is semi‐stable

of slope zero if and only if the corresponding point

(\mathrm{F}\mathrm{i}1_{\mathrm{H}\mathrm{T}}^{i}(D), \mathrm{F}\mathrm{i}1_{ $\omega$}^{r}(D))\in \mathrm{F}\mathrm{l}\mathrm{a}\mathrm{g}($\kappa$_{\mathrm{H}\mathrm{T}})\times \mathrm{F}\mathrm{l}\mathrm{a}\mathrm{g}()
is semi‐stable with respect to all one‐parameter subgroups \mathbb{G}_{m}\rightarrow J dened over \mathbb{Q}_{p} and

the rational J ‐line bundle

(L_{$\kappa$_{\mathrm{H}\mathrm{T}}}\otimes L_{$\kappa$_{ $\omega$}})\otimes L_{$\kappa$_{\mathrm{D}\mathrm{i}\mathrm{e}\mathrm{u}}}
on Flag() \times \mathrm{F}\mathrm{l}\mathrm{a}\mathrm{g}($\kappa$_{ $\omega$}) .

As a direct consequence, following Mumford�s Geometric Invariant Theory ([M]),
we then obtain the moduli space \mathfrak{M}_{K;d,0}^{ $\varphi$,N; $\omega$} of rank d semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules

of slope zero over K . In particular, when there is no  $\omega$‐structure involved, we denote

the corresponding moduli space simply by \mathfrak{M}_{K;d,0}^{ $\varphi$,N}.
Remark. The notion of semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules of slope s and the asso‐

ciated moduli space \mathfrak{M}_{K;r,s}^{ $\varphi$,N; $\omega$} for arbitrary s can also be introduced similarly. We leave

the details to the reader.

With moduli spaces of semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules built, next we want

to introduce various invariants (using these spaces). Recall that in (algebraic) geometry
for semi‐stable vector bundles, this process is divided into two: First we construct

natural polarizations via the so‐called Mumford‐Grothendieck determinant line bundles

of cohomologies; then we study the cohomologies of these polarizations.
Moduli spaces of semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules, being projective, admit

natural geometrized polarizations as well. However, such geometric polarizations, in

general, are quite hard to be used arithmetically, due to the fact that it is difficult to

reinterpret them in terms of arithmetic structures involved. To overcome this difficulty,
we here want to use Galois cohomologies of p‐adic representations, motivated by the

(\mathfrak{g}, K) ‐modules interpretations of cohomology of (certain types of) vector bundles over

homogeneous spaces.

On the other hand, as said, such polarizations, or better, determinant line bundles,
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if exist, should be understood as arithmetic analogues of Grothendieck‐Mumford deter‐

minant line bundles constructed using cohomologies of vector bundles. Accordingly, if

we were seeking a perfect theory, we should first develop an analogue of sheaf cohomol‐

ogy for filtered ( $\varphi$, N; $\omega$) ‐modules. We will discuss this elsewhere, but merely point out

here the follows:

(i) a good cohomology theory in the simplest abelian case of r=1 is already very

interesting since it would naturally lead to a true arithmetic analogue of the theory
of Picard varieties, an understanding of which is expected to play a key role in our

intersectional approach to the Riemann Hypothesis proposed in our Program paper

[W2];
(ii) the yet to be developed cohomology theory would help us to build up p‐adic

L‐functions algebrically. This algebraically dened L‐function for filtered ( $\varphi$, N; $\omega$)-
modules then should be compared to p‐adic L‐functions for p‐adic representations de‐

fined using Galois cohomology ([PR]). We expect that these two different types of L �s

correspond to each other in a canonical way and further can be globalized within the

framework of the thin theory of adelic Galois representations proposed in the introduc‐

tion.

Chapter 4. Two Approaches to Conjectural MRL

§16. Algebraic Method

There are two different approaches to establish the conjectural Micro Reciprocity
Law. Namely, algebraic one and geometric one.

Let us start with algebraic approach. Here, we want to establish a correspondence
between filtered ( $\varphi$, N;G) ‐modules M and filtered ( $\varphi$, N; $\omega$) ‐modules D . Obviously, this

is an arithmetic analogue of Seshadri�s correspondence between  $\pi$‐bundles and parabolic
bundles over Riemann surfaces. Therefore, we expect further that our correspondence
satises the following two compatibility conditions:

(i) it induces a natural correspondence between saturated subobjects  M' and D' of M

and D ; and

(ii) it scales the slopes by a constant multiple of \# G . Namely,

$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(M')=\# G\cdot$\mu$_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1}(D') .

Assume the existence of such a correspondence. Then, as a direct consequence

of the compatibility conditions, semi‐stable filtered ( $\varphi$, N;G) ‐modules M of slope zero

correspond naturally to semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules D of slope zero.
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In this way, via the MRL with limited ramications and the Monodromy Theorem

for p‐adic Galois Representations, we are able to establish the conjectural MRL.

So the problem is what is this correspondence? For this, we propose the follows:

Let then \mathrm{D}_{L}:=(D_{0}, D) be a filtered ( $\varphi$, N;G_{L/K}) ‐module. So D_{0} is dened over

L_{0} and D is over L . By the compactness of the Galois groups, there exists a lattice

version of (D_{0}, D) which we denote by (;  $\Lambda$) . In particular, $\Lambda$_{0} is an \mathcal{O}_{L_{0}} ‐lattice with a

group action G_{L_{0}/K_{0}} . Consider then the finite covering map $\pi$_{0} : Spec \mathcal{O}_{L_{0}}\rightarrow Spec \mathcal{O}_{K_{0}}.
We identify $\Lambda$_{0} with its associated coherent sheaf on Spec \mathcal{O}_{L_{0}} . Set

$\Lambda$_{0,K}:=(($\pi$_{0})_{*}$\Lambda$_{0})^{\mathrm{G}\mathrm{a}1(L_{0}/K_{0})}
Clearly, there is a natural ( $\varphi$, N) ‐structure on $\Lambda$_{0,K}.

Moreover, for the natural covering map  $\pi$ : Spec \mathcal{O}_{L}\rightarrow Spec \mathcal{O}_{K} ,
view  $\Lambda$ as a

coherent sheaf on Spec \mathcal{O}_{L} and form the coherent sheaf \mathcal{O}_{L}(-[\deg( $\pi$)\cdot t]\mathfrak{m}_{L}) ,
where

t\in \mathbb{R}_{\geq 0} and \mathfrak{m}_{L} denotes the maximal idea of \mathcal{O}_{L} . Consequently, it makes sense to talk

about

$\Lambda$_{K}(t):=($\pi$_{*}( $\Lambda$\otimes \mathcal{O}_{L}(-[\deg( $\pi$)\cdot t]\mathfrak{m}_{L})))^{\mathrm{G}\mathrm{a}1(L/K)}
Or equivalently, in pure algebaric language,

$\Lambda$_{K}(t):=( $\Lambda$\otimes \mathfrak{m}_{L}[t\cdot\# G_{L/K}])^{\mathrm{G}\mathrm{a}1(L/K)}
Even we can read ramication information involved from this decreasing filtration

consisting of invariant \mathcal{O}_{K} ‐lattices, unfortunately, we have not yet been able to obtain

its relation with  $\omega$‐structure wanted.

§17. Innitesimal, Local and Global

In this section, we briey recall how micro arithmetic objects of Galois representa‐

tions are naturally related with global geometric objects of the so‐called overconvergent
 F‐isocrystals.
From Arithmetic to Geometry: The shift from arithmetic to geometry is carried out via

Fontaine‐Winterberger�s fields of norms.

Let then K be a p‐adic number field with \overline{K} a fixed separable closure and K_{\infty}=

\displaystyle \bigcup_{n}K_{n} with K_{n} :=K() the cyclotomic extension of K by adding pn‐th root of

unity. Denote by k:=k_{K} its residue field, and K_{0}:=\mathrm{F}\mathrm{r}W(k) the maximal unramied

extension of \mathbb{Q}_{p} contained in K . Set  $\epsilon$:=($\epsilon$^{(n)}) with $\epsilon$^{(n)}\in$\mu$_{p^{n}} satisfying $\epsilon$^{(1)}\neq
 1, ($\epsilon$^{(n+1)})^{p}=$\epsilon$^{(n)} ,

and introduce the base field E_{K_{0}}:=k_{K}(( $\epsilon$-1 Then, from the
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theory of fields of norms, associated to K
,

there exists a finite extension E_{K} of E_{K_{0}} in

a fixed separated closure E_{K_{0}}^{\mathrm{s}\mathrm{e}\mathrm{p}} such that we have a canonical isomorphism

H_{K}:= Gal (\overline{K}/K_{\infty})\simeq Gal (E_{K}^{\mathrm{s}\mathrm{e}\mathrm{p}}/E_{K}) ,

\text{∪
where, in particular, E_{K}^{\mathrm{s}\mathrm{e}\mathrm{p}} :=\displaystyle \bigcup_{L/K:\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{G}\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{i}\mathrm{s}}E_{L} is then a separable closure of E_{K} . In

this way, the arithmetically dened Galois group H_{K} for p‐adic field K_{\infty} is tranformed

into the geometrically dened Galois group Gal (E_{K}^{\mathrm{s}\mathrm{e}\mathrm{p}}/E_{K}) for the field E_{K} of power

series dened over finite field.

From Innitesimal to Global: Let  $\rho$ :  G_{K}\rightarrow GL(V) be a p‐adic representation of

G_{K} . Then, following Fontaine, we obtain an etale ( $\varphi$,  $\Gamma$) ‐module \mathrm{D}(V) . Moreover, by
a result of Cherbonnier‐Colmez, \mathrm{D}(V) is overconvergent. Note that now $\Gamma$_{K} , being the

Galois group of K_{\infty}/K ,
is abelian which may be viewed as an open subgroup of \mathbb{Z}_{p} via

cyclotomic character. Hence, following Sen, we can realize the action of $\Gamma$_{K} by using a

certain natural operator, or better, a connection. In this way, we are able to transform

our initial arithmetic objects of Galois representations into the corresponding structures

in geometry, namely, that of p‐adic differential equations with Frobenius structure,

following Berger. However, despite of this successful transformation, we now face a new

challenge—In general, the p‐adic differential equations obtained are singular. It is for

the purpose to remove these singularities that we are naturally led to the category of

de Rham representations, thanks to the works of Fontaine and Berger.
On the other hand, contrast to this local, or better, innitesimal theory, thanks to

the works of Levelt and Katz ([Le], [Ka2]), we are led to a corresponding global theory,
the framework of which was first built up by Crew based on Berthelot�s overconvergent

isocrystals ([Ber], [BO]). For more details, see the discussion below. Simply put, the

up‐shot is the follows: If X^{0}\mapsto X is a marked regular algebraic curve dened over \mathrm{F}_{q},
then, Crew (for rank one) and Tsuzuki (in general) show that there exists a canonical

one‐to‐one and onto correspondence between p‐adic representations of $\pi$_{1}(X^{0}, *) with

finite monodromy along Z=X\backslash X^{0} and the so‐called unit‐root F‐isocrystals on X^{0}

overconvergent around Z . This result is an arithmetic‐geometric analogue of the result

of Weil on correspondence between complex representations of fundamental groups and

flat bundles over compact Riemann surfaces, at least when Z is trivial.

Conversely, to go from global overconvergent isocrystals to micro p‐adic Galois

representations, aiming at establishing the conjectural MRL relating de Rham repre‐

sentations to semi‐stable filtered ( $\varphi$, N; $\omega$) ‐modules, additional works should be done.

To sense it, we suggest the reader to go to the papers [Ts2] and [Mar].
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§18. Convergent F‐isocrystals and Rigid Stable F‐Bundles

Recall that the p‐adic Monodromy Theorem is built up on Crew and Tsuzuki�s

works about overconvergent unit‐root F‐isocrystals. To understand it, in this section,
we make some preparations following [Cre]. Along with this same line, we also offer a

notion called semi‐stable rigid F‐bundles of slope zero in rigid analytic geometry, which

is the key to our algebraic characterization of p‐adic representations of fundamental

groups of complete, regular, geometrically connected curves dened over finite fields.

Assume the language of formal, rigid analytic geometry, particularly, usual nota‐

tions X, \mathrm{X}, \mathrm{X}^{\mathrm{a}\mathrm{n}} , ] X[ etc

Theorem. (Crew) Let X/k be a smooth k ‐scheme and suppose that \mathrm{F}_{q}\subset k . Then

there exists a natural equivalence of categories \mathbb{G} : \mathbb{R}\mathrm{e}\mathrm{p}_{K}($\pi$_{1}(X))\simeq \mathrm{I}\mathrm{s}\mathrm{o}\mathrm{c}^{F;\mathrm{u}\mathrm{r}}(X/K)
where \mathbb{R}\mathrm{e}\mathrm{p}_{K}($\pi$_{1}(X)) denotes the category of K ‐representations of the fundamental group

$\pi$_{1}(X) of X ,
and \mathrm{I}\mathrm{s}\mathrm{o}\mathrm{c}^{\mathrm{F};\mathrm{u}\mathrm{r}}(X/K) denotes the category of unit‐root F ‐isocrystals on X/K.

This result is based on Katz�s work on the correspondence between K‐represen‐
tations of $\pi$_{1}(X) and the so‐called unit‐root F‐lattices on \mathrm{X}/R ([Ka1]).

The above result of Crew may be viewed as an arithmetic analogue of Weil�s result

on the correspondence between representations of fundamental groups and flat bundles

over compact Riemann surfaces. However now the context is changed to curves dened

over finite fields of characteristic p ,
the representations are p‐adic, and, accordingly

the flat bundles are replaced by unit‐root F‐isocrystals. In fact, the arithmetic result

is a bit more rened: since the associated fundamental group is pro‐finite, the actural

analogue in geometry is better to be understood as the one for unitary representations
and unitary flat bundles.

With this picture in mind, it is then very naturally to ask whether an arithmetic

structure in parallel with Narasimhan‐Seshadri correspondence between unitary rep‐

resentations and semi‐stable bundles of slope zero can be established in the current

setting. This is our next topic.
With the same notationa as above, assume in addition that X is completed. Then

it makes sense to talk about locally free F‐sheaves \mathcal{E} of \mathcal{O}_{]X[} ‐modules. If X=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k) ,

then \mathcal{E} is nothing but a finite‐dimensional K‐vector space V endowed with a  $\sigma$ auto‐

morphism  $\Phi$ :  $\sigma$^{*}V\simeq V . Similarly, we can talk about its associated Dieudonne slope.

Consequently, for general X
,
if \mathcal{E} is a locally free F‐sheaves \mathcal{E} of \mathcal{O}_{]X[} ‐modules, then we

can talk above its fibers at points of X with values in a perfect field. By denition, \mathrm{a}

locally free F‐sheaves \mathcal{E} of \mathcal{O}_{]X[} ‐modules is called of slope s\in \mathbb{Q} ,
denoted by  $\mu$(\mathcal{E})=s,

if all its fibers have slope s ; and \mathcal{E} is called semi‐stable if for all saturated F‐submodules

\mathcal{E}' ,
we have all slopes of the fibers of \mathcal{E}' is at most  $\mu$(\mathcal{E}) . As usual, if the slopes satisfy

the strict inequalities, then we call \mathcal{E} stable. For simplicity, we call such locally free

objects semi‐stable (resp. stable) rigid F‐bundles on X/K of slope s.
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Conjectural MRL in Rigid Analytic Geometry. Let X be a regular projective
curve dened over k . There is a natural one‐to‐one and onto correspondence between

absolutely irreducible K ‐representations of $\pi$_{1}(X) and stable rigid F ‐bundles on X/K
of slope zero.

Remark. It is better to rename the above as a Working Hypothesis: Unlike previous
a few conjectures, there are certain points here which have not yet been completed
understood due to lack of time. (For example, in terms of intersection, the so‐called

Hodge polygon is better than Newton polygon adopted here, etc See however [Ked].

§19. Overconvergent F‐Isocrystals, {\rm Log} Geometry & Stability

From now on assume that X/k is a regular geometrically connected curve with

regular compatication \overline{X} . Let Z:=\overline{X}-X . By denition, a p‐adic representation

 $\rho$ :  $\pi$_{1}(X)\rightarrow GL(V) is called having finite (local) monodromy around Z if for each

x\in Z ,
the image under  $\rho$ of the inertia group at  x is finite. Denote by \mathbb{R}\mathrm{e}\mathrm{p}_{K}($\pi$_{1}(X))^{\mathrm{f}\mathrm{i}\mathrm{n}}

the associated Tannakian category and by \mathrm{O}\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{c}^{F;\mathrm{u}\mathrm{r}}(X/K) the category of the so‐called

unit‐root overconvergent F‐isocrystals on X/K.

Theorem. (CrewCrew for rank one, Tsuzuki in general) The restriction of the Crew

equivalence \mathbb{G} induces a natural equivalence

\mathbb{G} $\dagger$ : \mathbb{R}\mathrm{e}\mathrm{p}_{K}($\pi$_{1}(X))^{\mathrm{f}\mathrm{i}\mathrm{n}}\rightarrow \mathrm{O}\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{c}^{F;\mathrm{u}\mathrm{r}}(X/K) .

Remarks. (i) More generally, instead of unit‐root condition, there is a notion of quasi‐

unipotency. In this language, then the p‐adic Monodromy Theorem is nothing but the

following

p‐adic Monodromy Theorem. (Crew, TsuzukiCrew, Tsuzuki, Andre, Kedlaya,

Mebkhout) Every overconvergent F ‐isocrystal is quasi‐unipotent.

(ii) Quasi‐unipotent overconvergent F‐isocrystal has been beautifully classied by Mat‐

suda ([Mat]). Simply put, we now have the following structural

Theorem. (Crew, Tsuzuki, MA(C)K, Matsuda) Every overconvergent F ‐isocrystal is

Matsudian, i.e., admits a natural decomposition to the so‐called Matsuda blocks dened

by tensor products of etale and unipotent objects.
In a certain sense, while unit‐root objects are coming from representations of fundamen‐

tal groups, quasi‐unipotent objects are related with representations of central extension

of fundamental groups.

(iii) Finally, we would like to recall that overconvergent isocrystals have been used by
Shiho to dene crystalline fundamental groups for high dimensional varieties ([Sh1,2]).

The above result of Crew & Tsuzuki is built up from the open part X of \overline{X}
,

a kind of

arithmetic analogue of local constant systems over \mathbb{C} . As we have already seen, in Ch. 1,
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to have a complete theory, it is even better if such a theory can be studied over the whole

\overline{X} : After all, for representation side, \mathbb{R}\mathrm{e}\mathrm{p}_{K}($\pi$_{1}(X))^{\mathrm{f}\mathrm{i}\mathrm{n}} really means \mathbb{R}\mathrm{e}\mathrm{p}_{K}($\pi$_{1}(X))^{Z},
that is, p‐adic representations of $\pi$_{1}(X) with finite local monodromy around every mark

P\in Z . For doing so, we propose two different approaches, namely, analytic one and

algebraic one.

Let us start with the analytic approach. Recall that the analytic condition of unit‐

root F‐isocrystals on X overconvergent around Z is dened over (innitesmal neigh‐
borhood of) X . We need to extend it to the total space \overline{X} . As usual, this can be

done if we are willing to pay the price, i.e., allowing singularities along the boundary.

Certainly, in general terms, singularities are very hard to deal with. However, with our

experience over \mathrm{C}
, particularly, the work of Deligne on local constant systems ([De1]),

for the case at hands, fortunately, we expect that singularities involved are very mild

‐ There are only logarithmic singularities appeared. This then leads to the notion of

logarithmic convergent F‐isocrystals \mathcal{E} over (\overline{X}, Z) : Simply put, it is an overconvergent
F‐isocrystal that can be extended and hence realized as a locally free sheaf of \mathcal{O}_{]X^{-}[}-
module \mathcal{E} , endowed with an integral connection \nabla with logarithmic singularities along
 Z

\nabla:\mathcal{E}\rightarrow \mathcal{E}\otimes$\Omega$_{]X^{-}[}^{1}(\log Z) ,

not only dened over the first innitesimal neighborhood but over all levels of innites‐

imal neighborhoods.
Let us next turn to algebraic approach. With the notion of semi‐stable rigid F‐

bundles introduced previously, it is not too difficult to introduce the notion of what

should be called semi‐stable parabolic rigid F‐bundles.

Even we understand that additional work has to be done here using what should

be called logarithmic formal, rigid analytic geometry, but with current level of under‐

standing of mathematics involved, we decide to leave the details to the ambitious reader.

Nevertheless, we would like to single out the following

Correspondence I. There is a natural one‐to‐one and onto correspondence between

unit‐root F ‐isocrystals on X overconvergent around Z:=\overline{X}-X and what should be

called unit‐root logarithmic overconvergent F ‐isocrystals on (X; Z)/K.
Correspondence II. There is a natural one‐to‐one and onto correspondence between

unit‐root F ‐isocrystals on X overconvergent around Z:=\overline{X}-X and what should be

called semi‐stable parabolic rigid F ‐bundles of slope zero on (\mathrm{X}^{\mathrm{a}\mathrm{n}}, \mathfrak{Z}^{\mathrm{a}\mathrm{n}}) . Here (X; \mathfrak{Z} )
denotes a logarithmic formal scheme associated to (X; Z) .

Moreover, by comparing the theory to be developed here with that for  $\pi$‐bundles

of algebraic geometry for Riemann surfaces recalled in Ch. 1, for a fixed finite Galois

covering  $\pi$ :  Y\rightarrow X ramied at Z
,

branched at W:=$\pi$^{-1}(Z) ,
it is also natural for us

to expect the following
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Correspondence III. There is a natural one‐to‐one and onto correspondence between

orbifold rigid F ‐bundles on (\mathfrak{Y}^{\mathrm{a}\mathrm{n}}, \mathrm{W}^{\mathrm{a}\mathrm{n}}) and rigid parabolic F ‐bundles on (\mathrm{X}^{\mathrm{a}\mathrm{n}}, \mathfrak{Z}^{\mathrm{a}\mathrm{n}})
satisfy ing the following compatibility conditions:

(i) it induces a natural correspondences among saturated sub‐objects; and

(ii) it scales the slopes by a constant multiple \deg( $\pi$) .

Assuming all this, then we can obtain the following
Micro Reciprocity Law in {\rm Log} Rigid Analytic Geometry. There is a natural

one‐to‐one and onto correspondence

\{ irreducible p‐adic representations of $\pi$_{1}(X, *)

with finite monodromy along Z:=\overline{X}\backslash X\}
\mathrm{m}

\{ stable parabolic rigid F‐bundles of slope 0 on (\mathrm{X}^{\mathrm{a}\mathrm{n}}, \mathfrak{Z}^{\mathrm{a}\mathrm{n}})\}.
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