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1 Introduction

The Painlevé equation is obtained from the monodromy preserving deformation
of a linear equation [2] [4]. We call the monodromy data of the linear equation as
the linear monodromy of the Painlevé transcendent.

Jimbo[5] gave an explicit formula which specifies the asymptotic behavior of
the Painlevé transcendent at a fixed critical point from the linear monodromy [5].

Nevertheless it is generically difficult to calculate the linear monodromy itself
for a given Painlevé transcendent. Our interest is in the Painlevé transcendents
whose corresponding linear monodromy can be determined exactly. In this paper,
we call such Painlevé functions monodromy solvable.

One example of the monodromy solvable solutions is a classical solution found
by Umemura [12]. For any Umemura’s classical solution, we can calculate the lin-
ear monodromy. Here, we remark that the classical solutions exist only for some
special parameters. The class of monodromy solvable solutions is broader than the
class of Umemura’s classical solutions, and contains many important solutions.

R. Fuchs is the first who found a non-classical monodromy solvable solu-
tion [3]. He calculates the linear monodromy of Picard’s solution [11], which
satisfies the sixth Painlevé equation with a special parameter. His work is found
again in [8] recently.

Another example of the monodromy solvable solution is a symmetric solution.
For the first, second and fourth Painlevé equations, there exist symmetric solutions
which are invariant under some action of the cyclic groups. The symmetric solu-
tions are studied by A. V. Kitaev [7] for P; and Pj;, and by Kaneko [6] for Py .
In their cases, the corresponding linear equations become the confluent hyperge-
ometric equations. The symmetric solutions exist for the general parameters.



In this paper, we will construct a new example of non-classical monodromy
solvable solutions for the third Painlevé equation:
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The third Painlevé equation is invariant under the transformation (z,y) —
(—t,—y). There exist two symmetric solutions around the origin:
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These solutions are transformed each other by the Béicklund transformations. In
this paper, we will show (1) is monodromy solvable.

Since the third Painlevé equation has a singularity at the origin, its solutions
also have a singularity at the origin in most cases. Nevertheless the solution (1) is
holomorphic at the origin.

The solution (1) exists for the general parameters, and thus it is not a classi-
cal solution in most cases. However, for some special parameters, our solution
becomes a classical solution.

In this paper, we will calculate the linear monodromy of the holomorpic sym-
metric solution (1). The associated linear equation can be reduced to Whittaker’s
equation, and we can calculate the linear monodromy.

2 Symmetric Solution of P,

By some rescaling, we can normalize the parameters of Py as:
o = —40., B=4(1+6p), Y=4, o0 =—4.
Pypp is equivalent to the Painlevé system:
d
t—); = 4y 21y* — (200 + 1)y +21,

“
= —4yz® + (41y+260+ 1)z — (69 + 6.)1,
which is the Hamiltonian system
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with the Hamiltonian function
tHy = 2y*2* — 2ty + (2604 1)y — 21)z+ (60 + 6..)1y.

Since the system (3) is the Briot-Bouquet type [1], there exists a unique solu-
tion with initial data y(0) = 0 and z(0) = 0. Thus we obtain the following theorem.

Theorem 2.1 The solution of the Painlevé system (3) with initial data y(0) = 0
and z(0) = 0 is holomorphic in a neighborhood of t = 0:
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This is a symmetric solution with respect to the action of (y,z,t) — (—y, —z,—t).

3 The Linear Monodromy

In this paper, we use Okamoto’s SL-type linearization [10]:
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The compatibility condition of (5) and (6) becomes the Hamiltonian system
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which is equivalent to (3).

The monodromy data of (5) are expressed in {S1, 82, Mop,T",G1,G2, M}, where
M is a formal monodromy matrix around x = 0, M., is a formal monodromy ma-
trix around x = oo, I" is a connection matrix, and S1,S7,G1,G, are the Stokes
matrices around x = 0 and x = co defined as follows: o

Around x = oo, there exists a fundamental system Y (/) = (YI(J ), 2(1 )) of solu-
tions of (5) satisfying

Yl(j) ~ (1 +0(x—1))x—9m/2ex/27 Yz(j) ~ (1 +0()6—1)))6900/26—)«/2
asx — oo in
Si={xeC|-F(2j—-1)<argx< - (2j—-5)}.
Then the Stokes matrices are defined by
YO =vDwG, rOx)=r®xe6,=rVxe""")m".
Around x = 0, there exists a fundamental system ¥ /) = (_l(j ), —2(j )) of solutions
of (5) satisfying
Y1(j) ~g(t)(1 +O(x—l))x(3+60)/2e7:/(2x)7 -2(1‘) ~g(t)(1 _|_0(x—1))x(1—60)/2e—1'/(2x)
asx — Oin
Si={xeC|-5(2j-1)<arg(%) < -5(2j-5)}.
Then the Stokes matrices are defined by
YO =1Ows;!,  TOw=7Px)s;" =7 (xe 2V 17)m,,.
We fix a path ¥ joining o and 0. Along ¥ the connection matrix is defined as
Y (x) =@ .
Then we have the relation
'S MySTG1GaMe = .

By the isomonodromy condition, the linear monodromy of (5) is invariant for
any 7. We substitute the symmetric solution (4) into p(x,7), A(x,7) and dA/dx,
and take the limit T — 0. Then we have




The linearization (5) becomes the Whittaker equation:
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For our symmetric solution of the third Painlevé equation, we can calculate the

monodromy data, because (5) reduces to the Whittaker equation whent =0 (7 =
0).

Let us take a fundamental system of solutions of (7) as follows:
around x = 0,

Me.x, a1 (%), Mg, 6)+1(x),
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Theorem 3.1 The linear monodromy of our symmetric solution (4) is explicitly
given as follows:
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REMARK 3.2 The third Painlevé equation admits classical solutions for some
special parameters. However, our solution exists for general parameters, and thus
our solution is not classical in most cases. If 6y + 0. = 0, every element of the
linear monodromy of our solution becomes an upper triangular matrix, and our
solution becomes a Riccati solution which is represented by the Bessel function.
Our solution is not an algebraic solution for any parameters.
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