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1. Introduction

From recent developments in non linear dierential Galois theory, we have now three

equivalent denitions for the Galois reducibility of a codimension one foliation dened by
a germ of holomorphic one‐form  $\omega$ :

‐ the first one is related to Godbillon‐Vey sequences: there exists a finite sequence of

lenght at most three of meromorphic one forms  $\omega$_{0}, $\omega$_{1} ,
and $\omega$_{2} such that $\omega$_{0} is an equation

of the foliation and

d$\omega$_{0}=$\omega$_{0}\wedge$\omega$_{1}, d$\omega$_{1}=$\omega$_{0}\wedge$\omega$_{2}, d$\omega$_{2}=$\omega$_{1}\wedge$\omega$_{2}.

‐ the second one is related to the existence of first integrals for the foliation with a

particular type of transcendence which belongs to a Darboux or Liouville or Riccati type
dierential extension;

‐ the last one refers to the existence of a proper Galois \mathrm{D}‐groupoid for the foliation. This

notion has been introduced by B. Malgrange in [9], (see also [10]): consider the groupoid
 J_{k}^{*}\triangle of invertible jets of order  k of maps from a polydisc \triangle to itself. A \mathrm{D}‐groupoid is

the projective limit on k of subvarieties Y_{k} of  J_{k}^{*}\triangle which are (strict) subgroupoids of

 J_{k}^{*}\triangle outside a codimension one analytic set (this condition will allow us to deal with

singularities). Each  D‐groupoid admits a D‐Lie algebra obtained by the linearization of

its equations along the identity solutions. The Galois \mathrm{D}‐groupoid \mathrm{G}\mathrm{a}1\mathcal{F} of a foliation \mathcal{F}

is the smallest one whose \mathrm{D}‐algebra contains the Lie algebra of tangents vector fields to

\mathcal{F} . It is a proper one if it doesn�t coincide with the whole groupoid \mathrm{A}\mathrm{u}\mathrm{t}\mathcal{F} of the germs
of dieomorphisms which keep invariant the foliation.

This last point of view is related ‐maybe equivalent‐ to the one developed by H.

Umemura in [18]. The equivalence of the two first points of view has been proved by
G. Casale in [3]. The equivalence between the two last ones was described by B. Mal‐

grange in manuscripted notes, and has been extensively proved by G. Casale in [5] with

some dierent arguments. In particular, the transverse rank of \mathrm{G}\mathrm{a}1\mathcal{F} (i.e. the order of its

transverse local expression) is also the minimal lenght of a Godbillon‐Vey sequence for \mathcal{F}

and characterizes the type of transcendence for first integrals, namely of Liouvillian type
for the transverse rank two, and Riccati type for the transverse rank three.

The aim of this note is to present criterions for the Galois reducibility of a germ of

foliation in the following context: \mathcal{F} is dened by a vector field  X=X_{h}+\cdots where the
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\backslash initial� hamiltonian vector field

X_{h}=\displaystyle \frac{@h}{\partial y}\frac{@}{\partial x}-\frac{@h}{\partial x}\frac{@}{\partial y}
is quasi‐homogeneous with to respect to R=p_{1}x\displaystyle \frac{@}{@x}+p_{2}y\frac{@}{@y} (p_{1}, p_{2} positive integers):
R(h)= $\delta$ h,  $\delta$=\deg_{R}(h) . The dots mean terms of higher quasihomogeneous degree.
We furthermore require that h has an isolated singularity −with Milnor number  $\mu$=

\dim_{\mathbb{C}}\mathcal{O}_{2}/(\partial h/\partial x, \partial h/\partial y)- and that X still keep invariant the analytic set h=0 . There‐

fore, X is a logarithmic vector field for the polar set h=0
,

and we have:

X=aX_{h}+bR, a\in \mathcal{O}_{2}, b\in \mathcal{O}_{2}, a(0)=1

with deg_{R}(bR)>\deg_{R}(X_{h}) . The restriction to this class of foliation is motivated by the

two following reasons:

‐ the desingularization of these foliations by blowing up�s is
\backslash 

(simple� : it is similar to

the one of the quasi‐homogeneous function h : the exceptional divisor is only a chain of

projective lines and all the strict transforms of all the irreducible components of h ‐except
the axis if they appear in h- meet the same

\backslash 

(principal� projective line C.

‐in this class of foliations, we have at our disposal formal normal forms which give us

complete formal invariants: see [16].
This will allow us to give two dierent types of criterions for the Galois reducibility of

\mathcal{F} : a geometric one which is related to the holonomy of the principal component C of the

desingularized foliation, and an algorithmic one which directly holds on the normalized

formal equation of the foliation. Such formal criterion has been previously developed
in the so‐called \backslash 

(cuspidal� case (h=y^{2}-x^{3}) in [8]. We shall furthermore describe the

relationship between these two criterions, and we shall conclude with some open questions.
An extended version of this note with complete proofs is available in [14].

2. A geometric criterion FoR the Galois reducibility.

We first remark that Malgrange�s denition of a \mathrm{D}‐Galois closure not only holds for

foliations, but it still makes sense for any discrete or continous dynamical system. For

example, we can consider the Galois envelope of a subgroup G of the group Di(C,0)
of germs of dieomophism at the origin of \mathbb{C} : this is the smallest \mathrm{D}‐groupoid on a disc

around the origin of \mathbb{C} such that the elements of G are solutions of this \mathrm{D}‐groupoid.
Notice that the complete list of \mathrm{D}‐groupoids on the disc is known: see [4]. All strict sub‐

groupoid of the maximal one Aut() are generated by dierential equations of order at

most three. We shall call Liouvillian dieomorphism (resp. Riccati type dieomorphism)
a dieomorphism whose Galois closure has order at most two (resp. three).

One can easily check that the proper Galois closure of a holomorphic foliation induces

a proper one for any holonomy group of a leaf of \mathcal{F} , or for a leaf of the desingularized
foliation \overline{F} (for the processus of desingularization in this context, see [17] and [12]). Thus

the holonomy group \mathrm{H}\mathrm{o}1_{C}(\overline{F}) of the principal component C of the exceptional divisor of

\overline{F} has a proper Galois closure of finite rank. In our class of foliations, the converse holds:
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Theorem 1. The Galois groupoid of the germ of qua\mathcal{S}i-homogeneou\mathcal{S} foliation \mathcal{F} is a

proper one if and only if the Galois envelope of \mathrm{H}\mathrm{o}1_{C}(\overline{F}) is a proper one.

The main argument in the proof of this theorem is an extension of the equation which

denes the Galois closure of \mathrm{H}\mathrm{o}1_{C}(\overline{F}) to the whole exceptional divisor. This is possible,
since the elements of the holonomy group of C are solutions of this equation and therefore

keep it invariant.

This theorem reduces the initial problem to the determination of the Galois closure of a

subgroup G of Di(C,0). We shall now describe this closure. From [4], the Galois closure

of one dieomorphism h is known: if h is formally linearizable, h admits a proper Galois

closure if and only if h is analytically linearizable. If h is a resonant dieomorphism, it

admits a proper Galois closure of Liouville type (resp. Riccati type) if and only if its

analytic invariant has a very specic form, called unitary or binary: in the description of

Martinet‐Ramis [11], the cocycles only are ramication of homographies for the binary
case and alternately identities or ramication of homographies for the unitary case. \mathrm{A}

subgroup G of Di(C,0) is an exceptional one if the subgroup G_{1} of its elements tangent to

the identy is a monogeneous one. Among the non linearizable groups, the non exceptional
groups are exactly the rigid ones: their formal class coincides with the analytic one: see

[6]. One should say that an exceptional group is a unitary or binary one if G_{1} can be

generated by one element whose analytic invariant is unitary or binary.

Theorem 2. The only subgroups of Di(C,0) which have a proper Galois closure are:

(1) the analytically linearizable groups;

(2) the non exceptional solvable groups;

(3) the exceptional unitary groups;

(4) the exceptional binary groups.

Furthermore, the rank of their D‐envelope is at most one in case (1), at most two in cases

(2) and (3), and at most three in case (4).

To give an idea of the proof, we can examine the case (2): we know that if G is a

solvable group, there exists a formal vector field  $\theta$ which is invariant by each element

of the group up to a multiplicative constant (see [15]). If furthermore the group  G is a

non exceptional one, this vector field is convergent. This invariance relation gives us a

dierential equation satied by the element g . We have to derivate it in order to make

disappear the multiplicative constants, and to obtain the second order equation of the

\mathrm{D}‐groupoid satised by all the elements of G . The case (1) is similar, and the cases (3)
and (4) reduce to the study of G. Casale for monogeneous groups. In order to prove that

this list is complete, the key point is the following claim: any subgroup of \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(\mathbb{C}, 0) with

a proper Galois closure is a solvable one. This claim only holds in the local situation.

Indeed, it is related to the following fact: any proper Lie sub‐algebra of the Lie algebra
of one variable vector fields is a finite dimensional one, whose dimension is at most three.

Furthermore, if each vector field vanishes at the same point, as in the local context, this

Lie algebra is a two dimensional and solvable one.
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3. A formal criterion FoR the Galois reducibility.

Let X=X_{h}+\cdots, \mathcal{F}_{X} the foliation dened by X and F_{h} its
\backslash initial part� dened by

X_{h} . Recall the normal forms for \mathcal{F}_{X} ,
i.e. a representative of X under a formal change

of coordinate, up to a multiplication by a unity (for details, see [16]). If we want to

construct a formal conjugacy between \mathcal{F}_{X} and its initial part \mathcal{F}_{h} ,
we find obstructions in

the cokernel of the derivation X_{h} . One can prove that, in the quasi‐homogeneous context,

\mathrm{c}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}(\mathrm{X}) is a free module of rank  $\mu$ over the ring  C[[h]] of the first integrals of X_{h} . This

is the key point to obtain the following prenormal forms:

Theorem 3. Let a_{1},
\cdots

 a_{ $\mu$} be a monomial basis of \mathcal{O}_{2}/Jac(h) ,
where Jac(h) is the jacobian

ideal generated by the partial derivatives of h . There exists an element (d_{1}, \cdots d_{ $\mu$}) of
\mathbb{C}[[h]]^{ $\mu$} , a fo rmal dieomorphism  $\Phi$ which conjugates up to a unity the vector field  X to

the formal vector field

Y=X_{h}+\displaystyle \sum_{k=1}^{ $\mu$}d_{k}(h)a_{k}R.
In the previous step, there is no unicity of the prenormal form Y . One can prove that

the set of prenormal forms for \mathcal{F}_{X} is the orbit of one of them under the action of a final

reduction group of transformations of the following type:  $\Phi$=\exp b\cdot R ,
with a formal

coecient b in \mathcal{I}:b=b(h) . Such transformations satisfy the relation ho  $\Phi$= $\varphi$ oh for a

one variable formal dieomorphism  $\varphi$ . In order to study the action of this group on the

prenormal forms, it is convenient to introduce a modied expression of them. We shall

make use of the two following remarks:

i‐ Setting  $\alpha$=h^{-$\delta$_{0}/ $\delta$}
,

he have [ $\alpha$ X_{h}, R]=0 . The introduction of this multivalued

coecient will allow us to work with an abelian basis of logarithmic vector fields.

ii‐ Setting r_{i}=\displaystyle \frac{\deg( $\alpha$ a_{\dot{\mathrm{i}}})}{ $\delta$} we have R( $\alpha$ a_{i}h^{-r_{i}})=0 . This will allow us to work with

coecients which are constants for R.

Multiplying Y with  $\alpha$
,

and grouping coecients in order to transform coecients  a_{i} in

constants f_{i} for R we obtain the following
\backslash 

(adapted� prenormal forms:

(1) X_{ $\alpha$}+\displaystyle \sum_{i=1}^{ $\mu$}f_{i}$\delta$_{i}(h)R
with X_{ $\alpha$}= $\alpha$ X_{h}, f_{i}= $\alpha$ a_{i}h^{-r_{i}} and $\delta$_{i}=d_{i}(h)h^{r_{i}} . By these two tricks, any element  $\Phi$

of the final reduction group keep invariant  X_{ $\alpha$} and the coecients f_{i} . Therefore we can

immediatly check that the action of  $\Phi$ on the adapted prenormal forms reduces to the

action of  $\varphi$ on the one variable vector fields

 $\theta$_{i}(z)=d_{i}(z)z^{r_{i}+1}\displaystyle \frac{d}{dz}.
Since  r_{i}=p_{i}/ $\delta$ for a positive integer  p_{i} ,

we can uniformize these vector fields setting
t=z^{1/ $\delta$} in

$\theta$_{i}(t)=$\delta$^{-1}d_{i}(t^{ $\delta$})t^{p_{i}+1}\displaystyle \frac{d}{dt}.
We obtain:
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Corollary 4. The collection \mathcal{L}(\mathcal{F}) of these  $\mu$ vector fields  $\theta$_{i}(t) up to a common conjugacy
is a complete formal invariant of \mathcal{F}.

Furthermore, we may choose  $\varphi$ ‐and therefore  $\Phi$- in such a way that one of the vector

fields $\theta$_{i} is normalized under its usual normal form

$\delta$^{-1}\displaystyle \frac{t^{q_{\dot{\mathrm{i}}}+1}}{1+ $\lambda$ t^{q_{\dot{\mathrm{i}}}}}\frac{d}{dt} ,
with q_{i}= $\delta$ k_{i}+p_{i}

where k_{i} is the multiplicity of each series d_{i} . Going back to the non adapted prenormal
forms, we obtain the final normal forms X_{N} in which one of the coecients d(h) is a

rational function of h:d_{i}(h)=\displaystyle \frac{h^{m}}{1+ $\lambda$ h^{m+n}} . Notice that as soon as  $\mu$\geq 2 ,
these final models

are formal vector fields. We know from [1] that there are examples of analytic vector

fields with divergent such normal forms. This reference also allows us to conjecture that

they always are transversally k‐summable models.

We now make use of this algorithmic invariant \mathcal{L}(\mathcal{F}) to characterize the Galois reducible

foliations. We first restrict our study to the non exceptional foliations, i.e. foliations whose

holonomy group of its principal component is a non exceptional one.

Theorem 5. Consider a non exceptional quasi‐homogeneous foliation \mathcal{F} . The Galois

groupoid of \mathcal{F} is proper if and only if the explicit invariant \mathcal{L}(\mathcal{F}) generates a finite di‐

mensional Lie algebra.
In this case, \mathcal{L}(\mathcal{F}) is always of dimension one, and the foliation is at most Liouvillian

(its transverse rank is at most two).

It is easy to check that if \mathcal{L}(\mathcal{F}) generates a finite dimensional Lie algebra of one variable

vector fields, the dimension of this one is at most three, here at most two since all the

vector fields vanishes at the origin, and finally at most one since it doesn�t contain any

element of order one. Therefore, the final normal form X_{N} here becomes a rational one,

and denes an analytic foliation \mathcal{F}_{N} . Setting $\delta$_{i}(h)=c_{i} $\delta$(h) ,
one can easily check that

$\omega$_{0}=$\omega$_{N} (dual logarithmic form of X_{N} ) and $\omega$_{1}=$\delta$'(h)/h (the logarithmic derivative of

 $\delta$) denes a Godbillon‐Vey sequence of lenght two for the foliation \mathcal{F}_{N} ,
which therefore

is a Liouvillian one. Since, in the non exceptional case, the foliation \mathcal{F} is analytically
conjugated to \mathcal{F}_{N}, \mathcal{F} is also a Liouvillian foliation. On the converse, if \mathcal{F} is a Galois

reducible foliation, one can prove that the vector fields $\theta$_{i} are all solutions of a linear

dierential equation induced by the Godbillon‐Vey sequence.

In the exceptional cases, which are always formally Liouvillian, we can only characterize

the analytic Galois reducibility with the geometric previous criterion. In this case, the

foliation will be a Liouvillian one for unitary invariant, or of Riccati type, (transverse rank

three) for binary invariants. Notice that in the local context, the foliations which are of

Riccati type but non Liouvillian are very rare: they reduce to the class of exceptional
foliations with binary non unitary invariants.
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4. Comparison between the geometric and algorithmic criterions.

The first criterion involves a geometric transcendental invariant −a holonomy group‐
which cannot be computed in the general situation. On the other hand, the second crite‐

rion involves an algorithmic invariant \mathcal{L}(\mathcal{F}) ,
which does not have a geometric meaning. It

is a remarkable fact that, for Galois reducible non exceptional foliations, we can compute
the first one from the second one.

In order to do this, it is more appropriate to introduce the relative holonomy of \mathcal{F} with

respect to its initial part \mathcal{F}_{h} (see also [13]): one can dene the holonomy h_{i}, i=1, \cdots

 $\mu$
of any

\backslash horizontal� family of evanescent cycles in the fibers of h . If  $\theta$ is a generator of

the one dimensional Lie algebra \mathcal{L}(\mathcal{F}) ,
one can prove that

 h_{i}=\exp[T_{i}] $\theta$, i=1,  $\mu$

where the  T_{i} �s are periods of a relatively closed one form induced by the dual normal form

of \mathcal{F} on each horizontal family of evanescent cycles.
Notice that the relative holonomy depends on the choice of the initial part \mathcal{F}_{h} of the

foliation \mathcal{F} . This initial part is a particular case of a notion introduced by N. Corral in [7]
(see also [2] for the dicritical case). In our quasi‐homogeneous case, this initial foliation

is unique up to conjucacy. It is not clear that we still can dene a unique initial part for

any germ of foliation.

5. Open problems.

Here are some problems directly motivated by the present study:

(1) Find the relation between geometric and algorithmic invariants of a quasi‐homoge‐
neous foliation outside the Galois reducible case. In the general case, this tran‐

scendental relation will not reduce to the integration of a one‐variable vector field.

We shall probably have to introduce Campbell‐Hausdorff type formulae.

(2) Prove the k‐summability of the final normal forms in the quasi‐homogeneous case,

and find the geometric or dynamical meaning of the order k.

(3) Construct formal normal forms for any non dicritical germ of foliation, having
in mind the present motivations: a good representative of a holomorphic folia‐

tion may allow us to determine its Galois closure, and to compute its geometric
invariants. Nevertheless we agree divergent models in order to get the previous
conditions.

(4) What about the dicritical case (the projective line of the desingularization are not

yet invariants components)?
(5) (suggested by B. Malgrange) Does the general study of codimension one germs of

foliation reduces to the dimension two case?

(6) Develop a similar study for an algebraic foliation on the projective plane, near an

algebraic invariant set.
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