The Lax pair for the sixth Painlevé equation arising from Drinfeld-Sokolov hierarchy

Takao Suzuki and Kenta Fuji Department of Mathematics, Kobe University Rokko, Kobe 657-8501, Japan

Introduction

In a recent work [FS], we showed that the sixth Painlevé equation arises from a Drinfeld-Sokolov hierarchy of type $D_4^{(1)}$ by a similarity reduction. We actually discuss a derivation of the symmetric representation of P_{VI} given in [Kaw].

On the other hand, P_{VI} can be expressed as the Hamiltonian system; see [IKSY, O]. Also it is known that this Hamiltonian system is equivalent to the compatibility condition of the Lax pair associated with $\widehat{\mathfrak{so}}(8)$; see [NY].

In this article, we discuss the derivation of this Lax pair from the Drinfeld-Sokolov hierarchy.

1 Lax pair for P_{VI} associated with $\widehat{\mathfrak{so}}(8)$

The sixth Painlevé equation can be expressed as the following Hamiltonian system:

$$\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q},$$
(1.1)

with the Hamiltonian

$$t(t-1)H = q(q-1)(q-t)p^{2} - \{(\alpha_{0}-1)q(q-1) + \alpha_{3}q(q-t) + \alpha_{4}(q-1)(q-t)\}p + \alpha_{2}(\alpha_{1}+\alpha_{2})q,$$
(1.2)

satisfying the relation

$$\alpha_0 + \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 = 1.$$

Let $\varepsilon_1, \ldots, \varepsilon_4$ be complex constants defined by

$$\alpha_0 = 1 - \varepsilon_1 - \varepsilon_2, \quad \alpha_1 = \varepsilon_1 - \varepsilon_2, \quad \alpha_2 = \varepsilon_2 - \varepsilon_3,$$

 $\alpha_3 = \varepsilon_3 - \varepsilon_4, \qquad \alpha_4 = \varepsilon_3 + \varepsilon_4.$

Consider the system of linear differential equations

$$(z\partial_z + M)\psi = 0, \quad \partial_t \psi = B\psi, \tag{1.3}$$

for a vector of unknown functions $\boldsymbol{\psi} = {}^{t}(\psi_1, \dots, \psi_8)$. Here we assume that the matrix M is defined as

$$M = \begin{bmatrix} \varepsilon_1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \varepsilon_2 & -p & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & \varepsilon_3 & q-1 & q & 0 & 0 & 0 \\ 0 & 0 & 0 & \varepsilon_4 & 0 & -q & 1 & 0 \\ 0 & 0 & 0 & 0 & -\varepsilon_4 & 1-q & 1 & 0 \\ -z & 0 & 0 & 0 & 0 & -\varepsilon_3 & p & 0 \\ (t-q)z & 0 & 0 & 0 & 0 & 0 & -\varepsilon_2 & -1 \\ 0 & (q-t)z & z & 0 & 0 & 0 & 0 & -\varepsilon_1 \end{bmatrix},$$

and the matrix B is defined as

$$B = \begin{bmatrix} u_1 & x_1 & y_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & u_2 & x_2 & -y_3 & -y_4 & 0 & 0 & 0 \\ 0 & 0 & u_3 & x_3 & x_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & u_4 & 0 & -x_4 & y_4 & 0 \\ 0 & 0 & 0 & 0 & -u_4 & -x_3 & y_3 & 0 \\ 0 & 0 & 0 & 0 & 0 & -u_3 & -x_2 & -y_1 \\ -z & 0 & 0 & 0 & 0 & 0 & 0 & -u_2 & -x_1 \\ 0 & z & 0 & 0 & 0 & 0 & 0 & -u_1 \end{bmatrix}.$$

Theorem 1.1 ([NY]). Under the compatibility condition for (1.3), the variables x_i , y_i and u_i are determined as elements of $\mathbb{C}(\alpha_1, \alpha_2, \alpha_3, \alpha_4, q, p, t)$. The compatibility condition is then equivalent to the Hamiltonian system (1.1) with (1.2).

Here we do not describe the explicit forms of u_i , x_i and y_i .

2 Affine Lie algebra

In the notation of [Kac], $\mathfrak{g} = \mathfrak{g}(D_4^{(1)})$ is the affine Lie algebra generated by the Chevalley generators e_i , f_i , α_i^{\vee} $(i=0,\ldots,4)$ and the scaling element d

with the generalized Cartan matrix defined as

$$A = (a_{ij})_{i,j=0}^{4} = \begin{bmatrix} 2 & 0 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 \\ -1 & -1 & 2 & -1 & -1 \\ 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 2 \end{bmatrix}.$$

We denote the Cartan subalgebra of \mathfrak{g} by \mathfrak{h} . The canonical central element of \mathfrak{g} is given by

$$K = \alpha_0^{\lor} + \alpha_1^{\lor} + 2\alpha_2^{\lor} + \alpha_3^{\lor} + \alpha_4^{\lor}.$$

We consider the \mathbb{Z} -gradation $\mathfrak{g} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_k(s)$ of type s = (1, 1, 0, 1, 1) by setting

$$\deg \mathfrak{h} = \deg e_2 = \deg f_2 = 0, \quad \deg e_i = 1, \quad \deg f_i = -1 \quad (i = 0, 1, 3, 4).$$

This gradation is defined by

$$\mathfrak{g}_k(s) = \{ x \in \mathfrak{g} \mid [d_s, x] = kx \} \quad (k \in \mathbb{Z}),$$

where

$$d_s = 4d + 2\alpha_1^{\vee} + 3\alpha_2^{\vee} + 2\alpha_3^{\vee} + 2\alpha_4^{\vee} \in \mathfrak{h}.$$

Denoting by $e_{2i} = [e_2, e_i]$, we choose the graded Heisenberg subalgebra of \mathfrak{g}

$$\mathfrak{s} = \{ x \in \mathfrak{g} \mid [x, \Lambda] = \mathbb{C}K \},$$

of type s = (1, 1, 0, 1, 1) with

$$\Lambda = e_0 - e_1 + e_3 - e_{20} + e_{23} + e_{24}.$$

The positive part of \mathfrak{s} has a graded basis $\{\Lambda_{2k-1,1}, \Lambda_{2k-1,2}\}_{k=1}^{\infty}$ such that

$$\Lambda_{1,1} = \Lambda, \quad \Lambda_{1,2} = e_0 - e_3 + e_4 + e_{20} + e_{21} + e_{23},
[d_s, \Lambda_{2k-1,i}] = (2k-1)\Lambda_{2k-1,i}, \quad [\Lambda_{2k-1,i}, \Lambda_{2l-1,j}] = 0.$$

Let \mathfrak{n}_+ be the subalgebra of \mathfrak{g} generated by e_j $(j=0,\ldots,4)$, and let \mathfrak{b}_+ be the borel subalgebra of \mathfrak{g} defined by $\mathfrak{b}_+ = \mathfrak{h} \oplus \mathfrak{n}_+$. Then the compatibility condition for (1.3) is equivalent to the system on \mathfrak{b}_+

$$\partial_t(M) = [B, d_s + M], \tag{2.1}$$

with

$$M = h(\varepsilon) + (q - t)e_0 + e_1 - pe_2 + (q - 1)e_3 + qe_4 - e_{20} - e_{23} - e_{24},$$

$$B = h(\mathbf{u}) + e_0 + x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + y_1e_{21} + y_3e_{23} + y_4e_{24},$$

where $\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ and $\boldsymbol{u} = (u_1, u_2, u_3, u_4)$. Here we set

$$h(\boldsymbol{\varepsilon}) = (1 - \varepsilon_1 - \varepsilon_2)\alpha_0^{\vee} + (\varepsilon_1 - \varepsilon_2)\alpha_1^{\vee} + (\varepsilon_2 - \varepsilon_3)\alpha_2^{\vee} + (\varepsilon_3 - \varepsilon_4)\alpha_3^{\vee} + (\varepsilon_3 + \varepsilon_4)\alpha_4^{\vee}.$$

We derive the system (2.1) from the Drinfeld-Sokolov hierarchy associated with the Heisenberg subalgebra \mathfrak{s} by a similarity reduction.

3 Drinfeld-Sokolov hierarchy

In the following, we use the notation of infinite dimensional groups

$$G_{<0} = \exp(\widehat{\mathfrak{g}}_{<0}), \quad G_{\geq 0} = \exp(\widehat{\mathfrak{g}}_{\geq 0}),$$

where $\widehat{\mathfrak{g}}_{<0}$ and $\widehat{\mathfrak{g}}_{\geq 0}$ are completions of $\mathfrak{g}_{<0}=\bigoplus_{k<0}\mathfrak{g}_k(s)$ and $\mathfrak{g}_{\geq 0}=\bigoplus_{k\geq 0}\mathfrak{g}_k(s)$ respectively.

Introducing the time variables $t_{k,i}$ (i = 1, 2; k = 1, 3, 5, ...), we consider the *Sato equation* for a $G_{<0}$ -valued function $W = W(t_{1,1}, t_{1,2}, ...)$

$$\partial_{k,i}(W) = B_{k,i}W - W\Lambda_{k,i} \quad (i = 1, 2; k = 1, 3, 5, \ldots),$$
 (3.1)

where $\partial_{k,i} = \partial/\partial t_{k,i}$ and $B_{k,i}$ stand for the $\mathfrak{g}_{\geq 0}$ -component of $W\Lambda_{k,i}W^{-1} \in \widehat{\mathfrak{g}}_{<0} \oplus \mathfrak{g}_{\geq 0}$. The Zakharov-Shabat equation

$$[\partial_{k,i} - B_{k,i}, \partial_{l,j} - B_{l,j}] = 0 \quad (i, j = 1, 2; k, l = 1, 3, 5, \ldots),$$
(3.2)

follows from the Sato equation (3.1). Let

$$\Psi = W \exp(\xi), \quad \xi = \sum_{i=1,2} \sum_{k=1,3,...} t_{k,i} \Lambda_{k,i}.$$

Then the Zakharov-Shabat equation (3.2) can be regarded as the compatibility condition of the Lax form

$$\partial_{k,i}(\Psi) = B_{k,i}\Psi \quad (i = 1, 2; k = 1, 3, 5, \ldots).$$
 (3.3)

Assuming that $t_{k,1} = t_{k,2} = 0$ for $k \geq 3$, we require that the following similarity condition is satisfied:

$$d_s(\Psi) = (t_{1,1}B_{1,1} + t_{1,2}B_{1,2})\Psi. \tag{3.4}$$

The compatibility condition for (3.3) and (3.4) is expressed as

$$[d_s - t_{1,1}B_{1,1} - t_{1,2}B_{1,2}, \partial_{1,i} - B_{1,i}] = 0 \quad (i = 1, 2). \tag{3.5}$$

We regard the systems (3.2) and (3.5) as a similarity reduction of the Drinfeld-Sokolov hierarchy of type $D_4^{(1)}$.

Let $S \subset \mathbb{C}^2$ be an open subset with coordinates $\boldsymbol{t} = (t_{1,1}, t_{1,2})$. Also let

$$\mathcal{M} = d_s - t_{1,1} B_{1,1} - t_{1,2} B_{1,2} \in \mathcal{O}(S; \mathfrak{g}_{\geq 0}),$$

$$\mathcal{B} = B_{1,1} dt_{1,1} + B_{1,2} dt_{1,2} \in \Omega^1(S; \mathfrak{g}_{\geq 0}).$$

Then the similarity reduction is expressed as

$$d_t \mathcal{M} = [\mathcal{B}, \mathcal{M}], \quad d_t \mathcal{B} = \mathcal{B} \wedge \mathcal{B}.$$
 (3.6)

4 Derivation of P_{VI}

The operator $\mathcal{M} \in \mathfrak{g}_{\geq 0}$ is expressed as

$$\mathcal{M} = (\text{terms of degree } 0) - t_{1,1}\Lambda_{1,1} - t_{1,2}\Lambda_{1,2}.$$

We consider the gauge transformation for the Lax form (3.4) such that $\mathcal{M} \to \widetilde{\mathcal{M}} \in \mathcal{O}(S; \mathfrak{b}_+)$.

We first consider a gauge transformation $\widehat{\Psi} = \exp(\zeta) \exp(\xi e_2) \Psi$, where $\zeta = \sum_{j=0,1,3,4} \zeta_j \alpha_j^{\vee}$. This is lifted to the transformation on $\mathfrak{g}_{\geq 0}$:

$$\widehat{\mathcal{M}} = \exp(\operatorname{ad}(\zeta)) \exp(\operatorname{ad}(\xi e_2)) \mathcal{M},$$

$$d_t - \widehat{\mathcal{B}} = \exp(\operatorname{ad}(\zeta)) \exp(\operatorname{ad}(\xi e_2)) (d_t - \mathcal{B}).$$

We look for gauge parameters ζ and ξ such that

$$\widehat{\mathcal{M}}$$
 = (terms of degree 0) $-c_0e_0 - e_1 - c_3e_3 - c_4e_4 - e_{20} - e_{23} - e_{24}$.

where $c_j \in \mathbb{C}(t)$ (j = 0, 3, 4). Such gauge parameters are determined uniquely as $\xi = t_{1,2}/t_{1,1}$ and

$$\zeta_0 = \frac{1}{2} \log\{(t_{1,1}^2 + 2t_{1,1}t_{1,2} - t_{1,2}^2)(t_{1,1}^2 + t_{1,2}^2)t_{1,1}^{-2}\},
\zeta_1 = -\frac{1}{2} \log(-t_{1,1}),
\zeta_3 = \frac{1}{2} \log\{(-t_{1,1}^2 + 2t_{1,1}t_{1,2} + t_{1,2}^2)(t_{1,1}^2 + t_{1,2}^2)t_{1,1}^{-2}\},
\zeta_4 = \frac{1}{2} \log\{(t_{1,1}^2 + 2t_{1,1}t_{1,2} - t_{1,2}^2)(-t_{1,1}^2 + 2t_{1,1}t_{1,2} + t_{1,2}^2)t_{1,1}^{-2}\}.$$

Here each c_i is described explicitly as

$$c_{0} = -\frac{1}{t_{1,1}}(t_{1,1} + t_{1,2})(t_{1,1}^{2} + 2t_{1,1}t_{1,2} - t_{1,2}^{2})(t_{1,1}^{2} + t_{1,2}^{2}),$$

$$c_{3} = -\frac{1}{t_{1,1}}(t_{1,1} - t_{1,2})(-t_{1,1}^{2} + 2t_{1,1}t_{1,2} + t_{1,2}^{2})(t_{1,1}^{2} + t_{1,2}^{2}),$$

$$c_{4} = -\frac{1}{t_{1,1}}t_{1,2}(t_{1,1}^{2} + 2t_{1,1}t_{1,2} - t_{1,2}^{2})(-t_{1,1}^{2} + 2t_{1,1}t_{1,2} + t_{1,2}^{2}).$$

We next consider a gauge transformation $\widetilde{\Psi} = \exp(-\lambda f_2)\widehat{\Psi}$. This is lifted to the transformation on $\mathfrak{g}_{\geq 0}$:

$$\widetilde{\mathcal{M}} = \exp(\operatorname{ad}(-\lambda f_2))\widehat{\mathcal{M}}, \quad d_t - \widetilde{\mathcal{B}} = \exp(\operatorname{ad}(-\lambda f_2))(d_t - \widehat{\mathcal{B}}).$$

Denoting by $\eta + \varphi e_2 + \psi f_2$ and $u + x e_2 + y f_2$ the terms of degree 0 of $\widehat{\mathcal{M}}$ and $\widehat{\mathcal{B}}$ respectively, we look for a gauge parameter λ such that $\widetilde{\mathcal{M}} \in \mathcal{O}(S; \mathfrak{b}_+)$ and $\widetilde{\mathcal{B}} \in \Omega^1(S; \mathfrak{b}_+)$, namely

$$\varphi \lambda^2 + (\eta | \alpha_2^{\vee}) \lambda - \psi = 0, \quad d_t \lambda = x \lambda^2 + (u | \alpha_2^{\vee}) \lambda - y, \tag{4.1}$$

where (|) stands for the normalized invariant form. We can verify that the second equation of (4.1) follows from the first equation. Hence the gauge parameter $\lambda = \lambda(t)$ can be determined and we obtain

$$\widetilde{\mathcal{M}} = \kappa + \mu e_2 + (\lambda - c_0)e_0 - e_1 + (\lambda - c_3)e_3 + (\lambda - c_4)e_4 - e_{20} - e_{23} - e_{24},$$

where $\kappa \in \mathfrak{h}$ and $\mu = \mu(t)$. Note that $d_t \kappa = 0$. By definition, it is clear that the operators $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{B}}$ satisfy

$$d_{t}\widetilde{\mathcal{M}} = [\widetilde{\mathcal{B}}, \widetilde{\mathcal{M}}]. \tag{4.2}$$

Finally, we consider a transformation of time variables $(t_{1,1},t_{1,2}) \rightarrow (t_1,t_2)$ such that

$$\partial_1(c_0 - c_4) = -4, \quad \partial_1(c_3 - c_4) = 0.$$

Then by setting

$$q = \frac{\lambda - c_4}{c_2 - c_4}, \quad p = \frac{1}{4}(c_3 - c_4)\mu, \quad \alpha_j = \frac{1}{4}(\kappa | \alpha_j^{\vee}), \quad t = \frac{c_0 - c_4}{c_2 - c_4},$$

we arrive at

Theorem 4.1. Under the specialization $t_2 = 1$, the system (4.2) is equivalent to the compatibility condition of (1.3) that gives the sixth Painlevé equation.

References

- [FS] K. Fuji and T. Suzuki, The sixth Painlevé equation arising from $D_4^{(1)}$ hierarchy, J. Phys. A: Math. Gen. **39** (2006) 12073-12082.
- [IKSY] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé A Modern Theory of Special Functions, Aspects of Mathematics **E16** (Vieweg, 1991).
- [Kac] V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press (1990).
- [Kaw] H. Kawamuko, Symmetrization of the sixth Painlevé equation, Funkcial. Ekvac. **39** (1996), 109-122.
- [NY] M. Noumi and Y. Yamada, A new Lax pair for the sixth Painlevé equation associated with $\widehat{\mathfrak{so}}(8)$, in Microlocal Analysis and Complex Fourier Analysis, ed. T.Kawai and K.Fujita, (World Scientific, 2002) 238-252.
- [O] K. Okamoto, The Hamiltonians associated with the Painlevé equations, The Painlevé property: One Century Later, ed. R. Conte, CRM Series in Mathematical Physics, (Springer, 1999).