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Introduction

In a recent work [FS], we showed that the sixth Painlevé equation arises

from a Drinfeld-Sokolov hierarchy of type Dfll) by a similarity reduction. We
actually discuss a derivation of the symmetric representation of Pyy given in
[Kaw].

On the other hand, Py can be expressed as the Hamiltonian system; see
[IKSY, O]. Also it is known that this Hamiltonian system is equivalent to
the compatibility condition of the Lax pair associated with 50(8); see [NY].

In this article, we discuss the derivation of this Lax pair from the Drinfeld-
Sokolov hierarchy.

1 Lax pair for Py; associated with 50(8)

The sixth Painlevé equation can be expressed as the following Hamiltonian

system:
@ _ 0oH d_p _ OH

dt — ap’ dt g’ (L)
with the Hamiltonian
t(t—1)H = q(qg—1)(q — t)p* — {(c0 — 1)q(q — 1)

+ azq(q—1t) + au(qg— 1)(qg — t)}p + o1 + as)q, (1.2)

satisfying the relation

ao—l-a1—|-2a2+a3—|—a4:1.



Let &1, ...,e4 be complex constants defined by

apg=1—¢e1—¢€3, a;=¢1— &, Qy=¢&y—e3,

Q3 = £3 — &4, oy = €3+ €4.
Consider the system of linear differential equations
(20, + M)yp =0, Opp = By, (1.3)

for a vector of unknown functions ¥ = *(¢1,...,15). Here we assume that
the matrix M is defined as

G 1 0 0 0 0 0 0]
0 €9 -»p -1 -1 0 0 0
0 0 e3 q—1 ¢ 0 0 0
0 0 0 €4 0 —q 1 0
M= 0 0 0 0 —eg4 1—¢q 1 0|’
—z 0 0 0 0 —&3 p 0
(t—q)z 0 0 0 0 0 —& -1
0 (g—1t)z =z 0 0 0 0 —e]
and the matrix B is defined as
-Ul 1 U 0 0 0 0 0 i
0 wuy 2 —ys —ys O 0 0
0 0 Uz T3 Ty 0 0 0
B— 0 0 0 Uy 0 —Ty Ya 0
0O 0 0 0 —uy —x3 Y3 0
0 0 0 0 0 —Uus —T2 —UY1
—z 0 0 0 0 0 —uy —x
[0 2 0 0 0 0 0 —uy]

Theorem 1.1 ([NY]). Under the compatibility condition for (1.3), the vari-
ables x;, y; and u; are determined as elements of C(aq, oo, a3, 4, q, p, t). The
compatibility condition is then equivalent to the Hamiltonian system (1.1)

with (1.2).

Here we do not describe the explicit forms of u;, x; and y;.

2 Affine Lie algebra

In the notation of [Kac], g = g(D{") is the affine Lie algebra generated by

the Chevalley generators e;, f;, ) (i = 0,...,4) and the scaling element d

(2
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with the generalized Cartan matrix defined as

2 0 -1 0 0
0 2 -1 0 0
A=(aj)jmo=|-1 -1 2 -1 -1
0 0 -1 2 0
0 0 -1 0 2

We denote the Cartan subalgebra of g by . The canonical central element
of g is given by
K=oy +aof +2a5 + ay + .

We consider the Z-gradation g = @, ., gx(s) of type s = (1,1,0,1,1) by
setting

degh =degey, =deg fo =0, dege; =1, degfi=-1 (i=0,1,3,4).
This gradation is defined by
ge(s) ={zr€g | ds, 2] = kx} (k€ Z),

where
ds = 4d + 2a + 3ay + 20 + 2a) € b.

Denoting by ey; = [es, €;], we choose the graded Heisenberg subalgebra of g
s={zeg|[z,A] = CK},
of type s = (1,1,0,1,1) with
A =ey—e;+e3 — ey + ez + €.
The positive part of s has a graded basis {Aog—11, Aog—12}5>, such that

Aig=A, Aip=eg—e3+es+ e+ e + e,
[ds, Aok—14] = (2k — 1) Aog—14,  [Aok—1,i, Ao—15] = 0.

Let n; be the subalgebra of g generated by e; (j =0,...,4), and let by
be the borel subalgebra of g defined by b, = h@n,. Then the compatibility
condition for (1.3) is equivalent to the system on b,

O(M) = [B,ds + M|, (2.1)
with

M = h(e) + (¢ —t)eog + €1 — pea + (¢ — 1)es + geq — €a9 — €23 — €24,
B = h(u) + ep + x1€1 + o€ + T3€3 + T4€4 + Y1621 + Ys€23 + Yaeou,
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where € = (€1, e9,e3,24) and w = (uq, ug, uz, uy). Here we set

h(e) = (1 —e1 —e)ag + (61 — e2)af
+ (g3 —e3)ay + (g3 —eq)ay + (€3 + 1))

We derive the system (2.1) from the Drinfeld-Sokolov hierarchy associated
with the Heisenberg subalgebra s by a similarity reduction.

3 Drinfeld-Sokolov hierarchy

In the following, we use the notation of infinite dimensional groups
G = eXP(§<o), G>o = eXP(ﬁzo),

where g and g>¢ are completions of g = @, _, g(s) and g0 = P~ 9k (s)
respectively. -

Introducing the time variables ¢; (i = 1,2;k = 1,3,5,...), we consider
the Sato equation for a G .¢-valued function W = W (ty1,t1,...)

(9k,l(W) = Bk,ZW — WAkJ (Z = 1, 2; k= 1, 3, 5, - .), (31)

where Of; = 0/0tx; and By, stand for the gso-component of WA, W~ €
<0 @ g>0- The Zakharov-Shabat equation

[8k,i - Bk,ia 81,,7' - Bl,j] =0 (Za] = 1) 27 kal = 1a 37 57 .- ')7 (32)

follows from the Sato equation (3.1). Let

U =Wexp(§), &= Z Z thil\i-

i=1,2 k=1,3,...

Then the Zakharov-Shabat equation (3.2) can be regarded as the compati-
bility condition of the Lax form

Oki(V) =B,V (i=1,2;k=1,3,5,...). (3.3)

Assuming that ¢, = tx2 = 0 for £ > 3, we require that the following
similarity condition is satisfied:

ds(V) = (t11B11 + t12B12) V. (3.4)
The compatibility condition for (3.3) and (3.4) is expressed as

[ds —t11B11 —t12B12,01, — B1;] =0 (i=1,2). (3.5)

4



We regard the systems (3.2) and (3.5) as a similarity reduction of the Drinfeld-

Sokolov hierarchy of type Dil).
Let S C C? be an open subset with coordinates ¢t = (t;1,%;2). Also let

M=d;—t11B11 —t12B12 € O(S; g>0),
B = Bydt; ) + Biadtis € Q1(S; g>0).

Then the similarity reduction is expressed as

dM = [B,M], dB=BAB. (3.6)

4 Derivation of Py
The operator M € g is expressed as
M = (terms of degree 0) — 1 1A11 — t12A1 2.

We consider the gauge transformation for the Lax form (3.4) such that M —
We first consider a gauge transformation ¥ = exp(() exp(£e2)¥, where
(=2 014G This is lifted to the transformation on g>o:
M = exp(ad(¢)) exp(ad(Ees)) M,

~

dy — B = exp(ad(()) exp(ad(&eq))(dy — B).
We look for gauge parameters ¢ and & such that
M= (terms of degree 0) — coeg — €1 — 363 — C4€4 — €99 — €23 — €a4.

where ¢; € C(t) (j = 0, 3,4). Such gauge parameters are determined uniquely
as 5 = tl,?/tl,l and

1
Go = 2 log{(t7 1 + 2t1,1t12 — 15 5) (111 + 1)1},
1
G = —§log(—t1,1),

1
(3= 3 log{(—t7 1 + 2t11t12 +t1,)(t1 1 + 15 )t 1)

1 —
G = 5 log{(f}) + 20 at10 — 1] ,) (=11 4 + 201t + 87 ) 7).



Here each ¢; is described explicitly as

1
Co=—7— (11 + t2) (87 4 20ty — £ 5) (1 + 11 ),
1,1

1
C3 — —E(tl,l — tLg)(—til + 2t1,1t1,2 + t%,Q)(t%,l + t%,Q)’

1
e = ——ta(f] ) + 2tiatia — 8,)(—8 + 2t + ).
1,1

We next consider a gauge transformation W = exp(—Af;)W. This is lifted
to the transformation on g>:

M = exp(ad(=Afo))M, dy — B = exp(ad(—=Afy))(dy — B).

Denoting by 7+ ez + 1 f2 and u+ zez + y fo the terms of degree 0 of M and
B respectively, we look for a gauge parameter A such that M € O(S;b.)
and B € Q(S; b, ), namely

ON2+ (e = =0,  deh = 22?4 (u|ay)\ — v, (4.1)

where (|) stands for the normalized invariant form. We can verify that the
second equation of (4.1) follows from the first equation. Hence the gauge
parameter A = A(t) can be determined and we obtain

M =K+ HE2 + ()\ — 60)60 — €1 + ()\ — 63)63 + ()\ — C4)€4 — €90 — €23 — €94,

where € h and p = p(t). Note that dgx = 0. By definition, it is clear that
the operators M and B satisfy

dM = [B, M]. (4.2)

Finally, we consider a transformation of time variables (¢ 1,%12) — (t1,%2)
such that
81(00 — C4) = —4, 81(03 — C4) = 0

Then by setting

A—c¢ 1 1 Co— C
Lop= 1(03 —ca)p, ;= Z('ﬂ%v), t=——"

q:

03—04’ 03—04’

we arrive at

Theorem 4.1. Under the specialization to = 1, the system (4.2) is equivalent
to the compatibility condition of (1.3) that gives the sixth Painlevé equation.
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