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Generalized Laplacians on classical domains

By

Atsushi YAMAMORI*

Abstract

In [6], the generalized Poisson-Cauchy kernel function, which includes as special cases the
Poisson kernel function and the Cauchy kernel function, was defined. Moreover the explicit
formula of the generalized Poisson-Cauchy kernel function was given. In [3], we defined the gen-
eralized Laplacians on the classical domains and showed that the generalized Poisson-Cauchy
transforms give rise to eigenfunctions of the generalized Laplacians. In this article, we carry
out a direct computation to obtain an explicit formula of the eigenvalues.

Introduction

In this article, we consider the only classical domain of type I for simplicity. For
the details of the other types and the computation, see [4], [8].

We denote by D (resp. S) the classical domain of type I (resp. the Shilov boundary
of type I). In [2], Hua gave the explicit formulas of the Laplace-Beltrami operator, the
Poisson kernel function and the Cauchy kernel function for D. In [6], the authors gave
the definitions of the generalized Poisson-Cauchy transform and the generalized Poisson-
Cauchy kernel function. The Poisson-Cauchy kernel function includes as special cases
the Poisson kernel function and the Cauchy kernel function. In [3], the definition of the
generalized Laplacian was given and it was proved that the generalized Poisson-Cauchy
transforms give us eigenfunctions of the generalized Laplacian.

In the present article, an explicit formula of eigenvalues is given by following the
calculation used in [8]. All computation is executed out by elementary calculus.

In section 1, we review the basic definitions and the facts. Then in section 2
we introduce the notion of the generalized Poisson-Cauchy transform and the Poisson-
Cauchy kernel function. Moreover we give basic facts proved in [6]. In section 3 we
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introduce the notion of the generalized Laplacian which includes as a special case, the
Laplace-Beltrami operator and give some basic properties. The most important fact is
that the generalized Poisson-Cauchy transform gives us eigenfunctions of the generalized
Laplacian. In section 4, we give explicit expressions of eigenvalues.

In this paper we follow the notation in [1],[6] and [4].

§1. Preliminaries

Let m < nand D ={z € My, ,(C) ; I, — z*z > 0}. Here “ > 0”7 means “is pos-
itive definite”. The Shilov boundary of this domain is S = {u € M, ,,(C) ; u*u = L, }.
Let

G =SU(n,m),

K=SU(n)xU(m)) {(kl O) € SLim+n,C) ; k1 € U(n), ko EU(m)}.

0 ko
The group G acts holomorphically on D by g[z] = (az+b)(cz+d)~! for € D and g =
ab

cd
Furthermore put

€ SU(n,m) with a € M,, ,,(C),b € My, ,»n(C),c € M,, »(C) and d € M,, ,,(C).

G.=SL(m+n,C),

K. = {(aO) € SLim+n,C) ;e GL(n,C), § € GL(m,C’)},

00
I, z \ . I, 0\ .
P+:{<0Im> 7Z€Mn’m(0)}’P_:{<wIm> ,wEMn,m(C)},
I, 0 I,
U=K.P., p=|01ILm 0|, P=GnuUpy* .
0 0 I,

Then we have G/K 2 GU/U = D and G/P = GuyU/U = S.

§2. The generalized Poisson-Cauchy transform

In [6], the notion of the generalized Poisson-Cauchy transform was introduced. This
transform includes as special cases the Poisson kernel function and the Cauchy kernel
function. Before giving the definition of the Poisson-Cauchy transform, we begin with
introducing following characters. Let 7, and 7, s be characters of U, and & s a character
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of P defined as follows:

T0:U > (aO) — (det(8)) € C*,

¢o
. a0 det(0) ¢ s .
Nes:U > (C 5) — (|det(5)|> |det(d)|” € C~,

€051 P2 pr— mes(po ppo) € CF,

where ¢ € Z and s € C. We shall write 7,7 and ¢ instead of 7, ¢, s and &g s respectively
for simplicity.

We regard the complex Lie group G, as the principal fiber bundle over the complex
homogeneous space G./U. We denote by E, the holomorphic line bundle over G./U
associated to 7. We denote by E, the restriction of E, to the open submanifold G /K =
GU/U of G./U. Then the space of all C*-sections of E is identified with

C*(E;) ={h € C*(GU) ; h(wu) = 7(v) "h(w) (w € GU, ue U)}.

We denote by f/n the C*-line bundle on G./U associated to . We denote by L,,
the restriction of L, to the compact submanifold G/P = Gu,U/U of G./U. Then the
space of all C*-sections of L, is identified with

C™(Ly) = {¥ € C¥(Gu,U) ; d(wn) = n(w) " "$(w) (€ GuoU, u € U)}.
Put

C™(G), ={f € C®@G); f(gk)
C™(G)e={¢ € C™(G) ; ¢(gp)

(k)" flg) (9€G, keK)},
Ep)'olg) (9€G, peP)}.

Then we obtain the following four onto-isomorphisms :
C™(E;) > hr— f€CT(G)r, f(g)=h(g) (9€G),
C®(E,)>h— FeC®D), F(z)= (Ig I;) (z € D),
C*(Ly) 2¢+— ¢ € CT(G)e, o(9) =v¢(gpo) (9€G),

C=(Ly) 3% — & € C(S), @(u):¢<(%1“>uo) (ue S).

Now, we define the generalized Poisson-Cauchy transform.
Definition 2.1. We define

P.c: C®(GQ)>¢r— feC®Q),
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fo) = [ rislak)ar (5 €6,
Moreover we define P; ,, in such a way that the following diagram is commutative.

C*(G)e = C™(S)
PT,& l l Pf,n
C*(G), = C™(D)

We call P, ,, the generalized Poisson-Cauchy transform (with respect to the pair (D, S)).
The following theorem was proved in [6].

Theorem 2.2.  For any ® € C*(S), we have

(Prn(®)) (2) = /SKT’U(Z,U)(I)(U)d’UJ (z€ D,ueS),

where

n—(¢+s)/2
K., (2 0) = 1 det(l,, — z*z) )/
e (det(Lm —u*2))" \ |det(1,,, — u*z)|” '

In [2], Hua gave explicit expressions of the Poisson kernel function and the Cauchy
kernel function for the classical domains.

Comparing our formula with [2], we check immediately that the generalized Poisson-
Cauchy kernel function coincides with the Poisson kernel function (resp. the Cauchy
kernel function) in the case £ = s =0 (resp. £ = s =n).

§3. The generalized Laplacian

We begin with the definitions of representations 7, and T’ of G.
Definition 3.1. For any g € G and h € C*(E;), we define
(7 (9)h)(w) = h(g™'w) (w € GU).

For any g € G, we define T (g) in such a way that the following diagram is commutative:

Then we have
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Lemma 3.2. Forany g € G and F € C* (D) we have

T7(9)F(2) = (det(cz +d)) " F(g~"[2]),

where g~ = (ail) eqG.
c

In [4], the canonical Riemannian metrics g on the classical domains are introduced.
For our domain D, it is defined by g.(u,v) = 2 Tr((I, — 22*) *u(l,, — 2*2) " 1v*) where
z € D,u,v € M,(C). We modify the Laplace-Beltrami operator with respect to this
metric so that modified operator is invariant with respect to the representation 7... The
outline of the method is explained as follows (for details see [4]).
Firstly we show that the Laplace-Beltrami operator A can be written as the form
1 9zn

N x N matrix valued function which satisfies the following assumption (here the symbol

43 2

D, - h(z) - D%, where D, = (8%1,~~ 0 ),N = MN, Zit(j—1)n = Zij and h(z) is an

means that any function between two dots should not be differentiated! ).
Assumption 1. Forany g€ G and z € D,

rw) = 530 (5) (=l

where % is the Jacobian matrix.

Secondly, we assume a non-zero C™ function r, satisfies the following assumption.
Assumption 2. Forany g€ G and z € D,

re(w) =lpr(g,2)| re(z)  (w=g""[2),
where p,(g,z) = det(cz + d)* (see Lemma 1 in [4]).
Then we define the generalized Laplacian A, by
AL (2) =r.(2)"'D.r.(2) - h(z) - D;.

Actually it can be shown that the function r,(z) always exists and is unique up to
constant multiple. Thus A, is uniquely determined by the definition above.

The operator A, is invariant with respect to the representation 7. In fact, from
the definition of A, we have

A (w) =717 (w) P Dyrr(w) - h(w) - D,
=p+(g.2)|* 1+ (2) ' D |pr(g,2)| 7 (2)
(AT (2T
<(am) @ ((55)) »
= pr(9, 2)re(2) " Do (2) - (z) - DZp-(g, 2)7t

LIf the reader is unfamiliar with this, see Appendix.
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Thus for any g € G and F € C°°(D), we obtain
(T-(9)ArF)(2) = pr(g,2) " Ar(w) F(w) = Ar ()T (9) F (2).
The generalized Laplacian for D is given explicitly as follows (see [3],[4]):

Ar(z)=Tr (det (L — z*z)_e (I, — 2%2) 0, det (I, — z*z)e (L, —z22") - 8;‘) )

where 9, is the matrix valued differential operator 9, =* (%)
ij
In [2], Hua considered the invariant differential operator

A=Tr((ly—2"2)0, (I, —zz")-0%),

which turned out to be the Laplace-Beltrami operator A with respect to canonical
Riemannian metric (see [4, section 3]). The expression of A, makes clear the rela-
tion between Hua’s A and our generalized Laplacian A,. Namely, if /£ = 0, then the
generalized Laplacian coincides with the Laplace-Beltrami operator.

In the following section we prove that the Poisson-Cauchy kernel function is an
eigenfunction of the generalized Laplacian and also compute the corresponding eigen-

value.

§4. Eigenvalues of the generalized Laplacian

To compute the eigenvalue we use the following proposition.

Proposition 4.1.  Putc,, = A K, ,(2,u)|.=0 . If ey is independent of u € S.
Then A K- p(z,u) = crn K 1 5(2,u).

Proof. 'We prove this proposition, making use of the representation 7). as follows.
For any z € D and u € S, we choose g € G such that g~![z] = 0. Then

TT(Q)AT(Z)KT,W(Za u) = p‘r(ga Z)_IAT (w)K‘r,n(w, u)
= Cr,npr(ga z)_lKT’n(w, U)
= CT,nTT(g)KT,n(Za u)a

where we use the change of variable w = g~—![z]. If we apply T;(g~ ') to the both sides
of this equation, the proposition follows. O

In the rest of the paper, we give an explicit expression of the eigenvalue c; .
We first observe

ArK ;o (2,u)] =0 = Tr (0.07) K+ ,(2,u)|2=0-
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Therefore we need to calculate az K rn(z,1)|:=0. By straightforward calculation
we have

0 w \tlnta O [det(Ip, —z%2)
N — Im —
(ﬁij KT’W(Z’ U) det ( b Z) 851‘]‘ (det([m — Z*U)

= (n— a)det(I,, — u*z) " det(L,,, — 2%2) 1T det (L, — 25 u) T,
j

where oo = (£ + s)/2 and

0 0
i = I, — z*u) — det(L,, — z* — det([,, — z* )
Yij (8,2” det (I, z)) det( z"u) — det( 2" 2) (8Zij et( z u))
Furthermore
82

K- ’ z=

82”82” ,n(z U)| 0

= (n — Oz) (det([m — U*Z)_g_n_Fa det(Im — Z*Z)_1+n_a’yij) |z=0

822‘]‘

9 . 9
= (n — Oé) {(—é —-n+ Oé) (82@' det(Im —Uu Z)> Vij + 871']'7”} |z:0'

After the following lemma, we obtain an explicit formula of the eigenvalue. Since the
proof of the lemma is straightforward, we omit it.

Lemma 4.2. For z € D,u € S we have the following formulas:

(1) 2 det(I — 2*2)|2=0 = 0,

(2) W det( - Z*Z)|z=0 = _17
(3) 525 det(Im = u"2)l-=0 = =T,
(4) 87‘9” det(I,, — 2*u)| =0 = —uj,
(5) 6i det(I,, — 2*2)|,=0 = 0,

(6)  Vijlz=0 = wij,

(7) %%ﬂz:o =—1L

By this lemma and the computation of 75— azw s K (2, u)|2=0, we have

MK y(zu)lmo = 3 (n—a) {(~€—n+a) (~Tyuy) - 1}

1<i<m
1<j<n

To apply Proposition 4.1 we need to prove that the right-hand side of this equation is
independent of u € S. It is shown as follows. By taking trace of the both sides of the
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condition u*u = I, we get »_ 1Sigm U;ju;j = m. Therefore we finally obtain
SJsn

AK o (z,u).m0o=(n—a)] ({+n—a) Z WijUij — Z 1

1<i<m 1<i<m
1<5<n 1<5<n

=n—a){m(l+n—a)—mn}
=m(n—a){l—a)
:m(Qn—E—s)(E—s)

1 :

Combining Proposition 4.1 and the calculation above, we get

m(2n — {0 —s)(¢ — s)
Crp = 1 :

The computation for each type of the classical domain proceeds along the same line as
that of type I. The following is our main theorem:

Theorem 4.3 ([4, Theorem 2|).  For each type of the classical domain, the eigen-

value crq is given as follows:
m(2n — 4 —s)(l — s)

(type 1) 1 :

' nn—1—£0—3s)({—2s)
(type 11, n.even)( N 21 » ),
(type 11, n:ozid)—i_ ey (% | ,
(type 111) 1 )

(type IV) (n — € —s) (£ — s).

§5. Remarks

We have seen that the computation of the eigenvalue ¢, , is carried out by direct
way. There is another way to obtain the formula for the eigenvalue c; . In fact, A, is
equal to the operator o dT;(2) + 3¢ (p), where € is the Casimir operator of su(n,m),
and o, 3 are constants explicitly given in [4, section 6]. Therefore the calculation of ¢, ,,
is reduced to the observation of the infinitesimal character of the generalized principal
series representation realized on C*°(G)¢ (see Shimeno [7] and also Okamoto-Ozeki [5]).

In 1935, E. Cartan proved that there exist only six types of irreducible homogeneous
bounded symmetric domains. Besides the classical four types, there exist only two;
their dimensions are 16 and 27. In this paper, we gave the formulas of ¢;, for the
four types. We do not know any explicit expressions of the generalized Poisson-Cauchy
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kernel functions and the generalized Laplacians for the exceptional cases. It may be
interesting problem to give them.

§6. Appendix

We explain the meaning of the dot “” here (see §3). As mentioned in §3, this
symbol means that any function between two dots should not be differentiated. Let us
illustrate with following matrix example. Put

a11 e 6111 All(z) Anl(z)
=1 - 1 AR = S
8177/ e 6,m Aln(z) e Ann(z)

If each entry of A(z) is differentiated by 0., then the (i, j)-entry of 0,A(2)0 becomes
Z Z(aliAlk(z))gkj + Z Z A (2)01101.
Ik Ik

If we add two dots as 0, - A(z) - 0%, then it signifies the omission of underlined terms.
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