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Existence and absence of ground states for a particle
interacting through the quantized scalar field

on a static spacetime

By

C. Gérard * F. Hiroshima ** A. PANATI*** and A. Suzuki  $\dagger$

Abstract

The Nelson model describes a quantum particle interacting with a scalar Bose field on

the Minkowski spacetime. It is extended to models on a static spacetime. In a series of papers

[2, 3, 4] we prove the existence and absence of ground states of these extended models. In this

paper, we illustrate the results obtained in [3, 4] only for a special case where the boson has

a variable mass. If the variable mass decays sufficiently slowly, the ground state exists, but if

it decays sufficiently fast, it does not exist. Furthermore we prove the absence of the ground
state of the model studied in [2] under a weaker condition on a variable mass than that of [2].

§1. Introduction

We consider a confined quantum particle interacting with a scalar Bose field, whose

Hamiltonian is given by

(1.1)  H=K\otimes I+I\otimes d $\Gamma$( $\omega$)+ $\phi$($\omega$^{-1/2}$\rho$_{X}) .

Here the particle is governed by the Schrödinger operator:

(1.2) K=-\triangle x+V(X) acting on \mathcal{K}=L^{2}(; dX)

with a confining potential V:\mathbb{R}^{3}\rightarrow \mathbb{R} such that K has a compact resolvent, while one

boson Hamiltonian  $\omega$ is given by

 $\omega$=h^{1/2},
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where

(1.3) h=-\triangle_{x}+v(x) acting on \mathfrak{h}=L^{2}(; dx)

with a function v such that h is a positive operator. The constant

m_{\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}}:=\displaystyle \inf $\sigma$( $\omega$)

is viewed as the rest mass of a boson. We say that H is massless (resp. massive) if

m_{\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}}=0 (resp. m_{\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}}>0 ). The second quantization of  $\omega$, d $\Gamma$( $\omega$) ,
which acts on the

boson Fock space  $\Gamma$(\mathrm{h}) over \mathfrak{h} ,
is the free Hamiltonian of the scalar Bose field. The Segal

field operator  $\phi$(f)(f\in \mathfrak{h}) is given by  $\phi$(f)=(a(f)+a^{*}(f))/\sqrt{2} ,
where the annihilation

operator a(f) and the creation operator a^{*}(f) satisfy canonical commutation relations:

[a(f), a^{*}(g)]=\langle f, g\rangle_{\mathfrak{h}} and [a\#(f), a\#(g)]=0 (a\#=a or a^{*} ) .  $\rho$ : \mathbb{R}^{3}\rightarrow[0, \infty ) is the charge
distribution and introduces an ultraviolet cutoff. We assume that  $\rho$\in L^{1}(\mathbb{R}^{3})\cap L^{2}()
( $\rho$\not\equiv 0) . We set $\rho$_{X}(x)= $\rho$(x-X) and g:=\displaystyle \int $\rho$(x)dx>0 . Here X is the position of

the quantum particle and the charge g describes the strength of the interaction.

§1.1. The standard Nelson model

If v is a constant: v(x)\equiv m_{\mathrm{b}}^{2}(m_{\mathrm{b}}\geq 0) ,
then H becomes the Hamiltonian of the

standard Nelson model on the Minkowski spacetime. Let \mathscr{F} be the Fourier transform

on L() and \hat{ $\rho$}(k)=(\mathscr{F} $\rho$)(k) . Then H is unitarily transformed to

(1.4) H_{\mathrm{N}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{n}}=K\otimes I+I\otimes d $\Gamma$(w_{m_{\mathrm{b}}})+ $\phi$(\overline{$\psi$_{0}(\cdot,X)}w_{m_{\mathrm{b}}}^{-1/2}\hat{ $\rho$}) ,

by the second quantization of \mathscr{F},  $\Gamma$(\mathscr{F}) ,
where $\psi$_{0}(k, X)=e^{ik\cdot X} is the plane wave. Here

w_{m_{\mathrm{b}}}(k)=\sqrt{|k|^{2}+m_{\mathrm{b}}^{2}} is the dispersion relation of the boson with momentum k\in \mathbb{R}^{3}

and the mass m_{\mathrm{b}}\geq 0 . We observe that m_{\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}}=m_{\mathrm{b}} . Assumption:

(1.5) \displaystyle \int dk(w_{m_{\mathrm{b}}}(k)^{-1}+w_{m_{\mathrm{b}}}(k)^{-2})|\hat{ $\rho$}(k)|^{2}<\infty, j=1, 2 ,

yields that H_{\mathrm{N}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{n}} is \mathrm{a} (well‐defined) self‐adjoint operator bounded below. In [9], Nelson

proved that the ultraviolet cutoff can be removed at the expense of infinite energy

renormalization, i.e., H_{\mathrm{N}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{n}} can be defined in the point charge limit  $\rho$(x)\rightarrow g $\delta$(x) by

subtracting an infinite energy.

Assuming the ultraviolet cutoff, Lórinczi, Minlos and Spohn [6] studied the infrared

behavior. This is of interest only for massless case m_{\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}}=m_{\mathrm{b}}=0 ,
since the strictly

positive mass m_{\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}}=m_{\mathrm{b}}>0 plays the role of an infrared cutoff, i.e.,

\displaystyle \int_{\mathbb{R}^{3}}\frac{|\hat{ $\rho$}(k)|^{2}}{w_{m_{\mathrm{b}}}(k)^{3}}dk<\infty.
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They showed that the massless Nelson model is infrared divergent, i.e., H_{\mathrm{N}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{n}} has no

ground state, which is done from

(1.6) \displaystyle \int_{\mathbb{R}^{3}}\frac{|\hat{ $\rho$}(k)|^{2}}{w_{0}(k)^{3}}dk=\infty.
Note that \hat{ $\rho$}(0)=(2 $\pi$)^{-3/2}g>0 and w_{0}(k)=|k| . Then (1.5) and (1.6) imply that

(a) $\rho$_{X}\in D(w_{0}^{-j/2}) and \displaystyle \sup_{X\in \mathbb{R}^{3}}\Vert w_{0}^{-j/2}\hat{ $\rho$}_{X}\Vert<\infty for  j=1 , 2;

(b) $\rho$_{X}\not\in D(w_{0}^{-3/2}) .

The condition (a) ensures the self‐adjointness of H_{\mathrm{N}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{n}} and the condition (b) is equal
to (1.6).

§1.2. Extensions of the Nelson model on a static spacetime

In [3, 4], the ultraviolet and infrared behavior of a general class of Hamiltonians,

(1.7) H_{\mathrm{G}}=K_{\mathrm{G}}\otimes I+I\otimes d $\Gamma$($\omega$_{\mathrm{G}})+ $\phi$($\omega$_{\mathrm{G}}^{-1/2}$\rho$_{X})

is studied, where both K_{\mathrm{G}} and h_{\mathrm{G}}=$\omega$_{\mathrm{G}}^{2} are the second order elliptic operators. \mathrm{A}

typical example of (1.7) is a Hamiltonian of a quantum particle interacting with a

scalar Bose field on a static spacetime. In this case, the function v is determined by the

mass of the boson and the metric of a given static spacetime (see [1, 2, 3] for details).
The Hamiltonian

(1.8) H=K\otimes I+I\otimes d $\Gamma$( $\omega$)+ $\phi$($\omega$^{-1/2}$\rho$_{X})

defined in (1.1) is included as a special case of H_{\mathrm{G}} . In this paper, we review the results

obtained in [3, 4] for a simple version (1.8). Recall that  $\omega$=(-\triangle_{x}+v(x))^{1/2} . We call

the function

m(x)=|v(x)|^{1/2}
the variable mass. In this paper, imposing an ultraviolet cutoff, we treat only the

infrared behavior of H . We also assume that the function v satisfies 0\leq v\in L_{1\mathrm{o}\mathrm{c}}^{2}(\mathbb{R}^{3})
and decays at infinity: \displaystyle \lim_{|x|\rightarrow\infty}v(x)=0 . Then v is relatively compact with respect

to h_{0}=-\triangle_{x} and the essential spectrum of h_{0} is invariant under the perturbation v.

We also see that  $\omega$ has no zero eigenvalue and that the spectrum of the one‐boson

Hamiltonian  $\omega$ is

 $\sigma$( $\omega$)=[0, \infty) , $\sigma$_{\mathrm{p}}( $\omega$)\ni 0.

In particular, although the boson has a variable mass m(x) , m_{\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}}=0 and hence H is

massless. We clarify whether the infrared divergence occurs or not, i.e., whether H has a
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ground state or not. See Lemmas 2.1 and 3.1 below. For sufficiently fast decaying m(x) ,

the one‐boson Hamiltonian  $\omega$ satisfies the same condition as (b) above. This derives the

infrared divergence. On the other hand, for sufficiently slowly decaying  m(x) ,
 $\omega$ has a

nice property such that  $\rho$_{X}\in D($\omega$^{-3/2}) and \Vert$\omega$^{-3/2}$\rho$_{X}\Vert_{\mathfrak{h}} grows at most polynomially
in X . This yields the existence of the ground state of H . Indeed, we have the results

below (see Theorems 2.2 and 3.2):

1. If m(x) decays like O(|x|^{-1- $\epsilon$})( $\epsilon$>0) ,
then H has no ground state;

2. If m(x) decays like O(|x|^{-1+ $\epsilon$})(0\leq $\epsilon$<1) ,
then H has a ground state.

§1.3. Alternate extension

There is an alternate extension of the standard Nelson model onto a static space‐

time. We define the Hamiltonian \tilde{H} by

(1.9) \tilde{H}=K\otimes I+I\otimes d $\Gamma$(w_{0})+ $\phi$(\overline{ $\psi$(\cdot,X)}w_{0}^{-1/2} $\chi$) ,

where  $\psi$(k, x) is a distorted plane wave that is a solution to the Schrödinger equation:

(-\triangle_{x}+v(x)) $\psi$(k, x)=|k|^{2} $\psi$(k, x) ,

and  $\chi$ is a smooth function. If  v\equiv 0 and  $\chi$=\hat{ $\rho$} , then \tilde{H} becomes H_{\mathrm{N}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{n}} and hence

is unitarily transformed to H by the Fourier transform. Under suitable conditions on v

decaying at infinity one can define the generalized Fourier transform

\displaystyle \mathscr{F}_{\#}:f\mapsto(2 $\pi$)^{-3/2}\int dx\overline{ $\psi$(\cdot,x)}f(x)
such that \mathscr{F}_{\#} is unitary and \mathscr{F}_{\#} $\omega$ \mathscr{F}_{\#}^{-1}=w_{0} . It is noticed that \tilde{H} can not be unitar‐

ily transformed to H by \mathscr{F}_{\#} in general. Indeed, the generalized Fourier transform of

$\omega$^{-1/2} $\rho$ x is equal to w_{0}^{-1/2}\mathscr{F}_{\#} $\rho$ x but

w_{0}^{-1/2}\mathscr{F}_{\#}$\rho$_{X}\neq\overline{ $\psi$(\cdot,X)}w_{0}^{-1/2}\mathscr{F}_{\#} $\rho$.

We are also interested in the infrared behavior of \tilde{H} . Note that, in the standard

Nelson model, the infrared divergence comes from (1.6). In [2] we assume that  $\chi$(0)>0
and prove that \tilde{H} has no ground state if m(x)=O(|x|^{-3/2- $\epsilon$}) with  $\epsilon$>0 and m(x) is

sufficiently shallow. In this paper we weaken this condition. From (ii) above we deduce

that \tilde{H} has no ground if m(x) decays like O(|x|^{-1- $\epsilon$})( $\epsilon$>0) . We prove it for sufficiently
shallow v.

This paper is organized as follows: In Section 2, we show that H has no ground
state for m(x)=O(|x|^{-1- $\epsilon$})( $\epsilon$>0) . Section 3 is devoted to proving that H has a
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ground state if m(x) decays like O(|x|^{-1+ $\epsilon$})(0\leq $\epsilon$<1) . Finally in Section 4 we prove

that \tilde{H} has no ground state for m(x)=O(|x|^{-1- $\epsilon$})( $\epsilon$>0) .

§2. Absence of the ground state of H

For the particle Hamiltonian K we suppose the following:

(K) V\in L_{1\mathrm{o}\mathrm{c}}^{2}(\mathbb{R}^{3}) and V(X)\geq c_{0}|X|^{2q}-c_{1} with some c_{0}>0, c_{1}\geq 0 and q>0.

Then K=-\triangle x+V(X) is essentially self‐adjoint on C_{0}^{\infty}(\mathbb{R}^{3}) with a compact resolvent

and hence K has a ground state $\varphi$_{K}:K$\varphi$_{K}=E_{K}$\varphi$_{K} with E_{K}:=\displaystyle \inf $\sigma$(K) . Moreover the

ground state $\varphi$_{K} is unique, i.e., dimker (K-E_{K})=1 ,
and strictly positive $\varphi$_{K}(x)>0.

Let \langle x\rangle=\sqrt{1+|x|^{2}} . We also introduce the following condition for the one‐boson

Hamiltonian  $\omega$=h^{1/2} :

(QD1) 0\leq v\in L_{1\mathrm{o}\mathrm{c}}^{2}(\mathbb{R}^{3}) and

m(x)\displaystyle \leq\frac{a}{\langle x\rangle^{1+ $\epsilon$}} for |x|\geq R

with some R\geq 0, a>0 and  $\epsilon$>0.

Under the condition (\mathrm{Q}\mathrm{D}) we observe that h=-\triangle_{x}+v(x) is a positive self‐adjoint

operator on D() with the spectrum  $\sigma$( $\omega$)=[0, \infty ). Moreover  h has no zero eigen‐
value. Indeed, if 0 is assumed to be an eigenvalue with an eigenvector  $\varphi$\in \mathfrak{h} ,

then

0\geq-\langle $\varphi$, v $\varphi$\rangle_{\mathfrak{h}}=\langle $\varphi$, (-\triangle_{x}) $\varphi$\rangle_{\mathfrak{h}}\geq 0 ,
which implies that  $\varphi$=0 . In particular, $\omega$^{-1} is an

unbounded operator.

For the charge distribution  $\rho$ we assume that

(\mathrm{I}\mathrm{R}_{1})0\leq $\rho$\in C_{0}^{\infty}(\mathbb{R}^{3}) .

Lemma 2.1. Assume (QD) and (IR1). Then

(a) forj=1 , 2, we have $\rho$_{X}\in D($\omega$^{-j/2}) and

\displaystyle \sup_{X\in \mathbb{R}^{3}}\Vert$\omega$^{-j/2} $\rho$ x\Vert_{\mathfrak{h}}<\infty ;

(b) $\rho$_{X}\not\in D($\omega$^{-3/2}) .

Proof. By the Laplace transform we observe that for j=1 , 2, 3,

(2.1) $\omega$^{-j/2}=$\gamma$_{j}\displaystyle \int_{0}^{\infty}e^{-t$\omega$^{2}}t^{(j-4)/4}dt
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with some $\gamma$_{j}>0 . For the integral kernel e^{-th}(x, y) of the Schrödinger semigroup e^{-th},
it holds that

(2.2) Ce^{-t(-\triangle_{x})}(x, y)\leq e^{-th}(x, y)\leq e^{-t(-\triangle_{x})}(x, y)

with some C>0 ,
where e^{-t(-\triangle_{x})}(x, y) is the integral kernel of the semigroup e^{-t(-\triangle_{x})}.

The right hand side of (2.2) is derived from the positivity of v
,

and the left hand side

from the condition (\mathrm{Q}\mathrm{D}) (see [12]). Combining (2.1) and (2.2) and using the condition

(IR), we obtain the desired result. \square 

For a self‐adjoint operator L bounded below, we say that L has a ground state if

 E_{0}:=\displaystyle \inf $\sigma$(L)>-\infty is an eigenvalue of  L and that L has no ground state if E_{0} is not

an eigenvalue of L.

Theorem 2.2. Suppose (K) , (QD) and (IR1). Then

(i) H is a self‐ adjoint operator bounded below;

(ii) H has no ground state.

Proof. In a similar way to the standard Nelson model, (i) is proven by (a) in

Lemma 2.1. (ii) is shown in [4] by means of functional integral methods. \square 

§3. Existence of the ground state of H

In this section we assume (K) and show the existence of ground state. Instead of

(QD), we introduce the condition:

(SD) v\in L_{1\mathrm{o}\mathrm{c}}^{2}(\mathbb{R}^{3}) , \displaystyle \lim_{|x|\rightarrow\infty}v(x)=0 and

(3.1) m(x)\displaystyle \geq\frac{a}{\langle x\rangle}
with some a>0.

Remark. (1) We note that if m(x)\displaystyle \geq\frac{a}{\langle x\rangle^{ $\beta$}} with some a>0 and 0< $\beta$<1 ,
then

m satisfies (3.1).
(2) Under the condition (SD), h=-\triangle_{x}+v(x) is a positive self‐adjoint operator

on D() with the spectrum  $\sigma$( $\omega$)=[0, \infty ) and does not have zero eigenvalue. Hence

$\omega$^{-1} is an unbounded operator.

The following lemma gives a difference between (\mathrm{Q}\mathrm{D}) and (SD), and compare with

Lemma 2.1.
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Lemma 3.1. Assume (SD) and (IR1). Then

(a) forj=1 , 2, we have  $\rho$ x\in D($\omega$^{-j/2}) and

\displaystyle \sup_{X\in \mathbb{R}^{3}}\Vert$\omega$^{-j/2} $\rho$ x\Vert_{\mathfrak{h}}<\infty ;

(b) $\rho$_{X}\in D($\omega$^{-3/2}) and

\Vert$\omega$^{-3/2} $\rho$ x\Vert_{\mathfrak{h}}\leq C\langle X\rangle^{ $\mu$}

for any  $\mu$>3/2 and some C\geq 0 depending only on  $\mu$.

Proof. We note that the upper bound in (2.2) still holds because of v\geq 0 . Hence

we can see (a) in a similar way to the proof of (a) in Lemma 2.1.

By (SD), we have

(3.2) e^{-th}(x, y)\leq C$\Phi$_{ $\alpha$}(x, t)$\Phi$_{ $\alpha$}(y, t)e^{-ct(-\triangle_{x})}(x, y)

with some constants C and c\geq 0 . Here the function $\Phi$_{ $\alpha$} is given by

$\Phi$_{ $\alpha$}(x, t)=[\displaystyle \frac{\langle x\rangle^{2}}{t+\langle x\rangle^{2}}]^{ $\alpha$}
with some strictly positive  $\alpha$>0 . Using (2.1) and (3.2) we obtain (b). \square 

Remark. In [11], Zhang obtains a similar bound to (3.2) but  $\alpha$=0 and for

sufficiently small a>0 . Using an abstract theorem in [8] we obtain (3.2) with strictly

positive  $\alpha$>0 . Moreover one can take  $\alpha$>0 sufficiently small. See [3] for details.

Let h_{l $\nu$}:=h+v^{2} and $\omega$_{l $\nu$}=h_{l $\nu$}^{1/2} . We define the operator H_{l $\nu$} by replacing  $\omega$ in (1.1)
with  $\omega$_{l $\nu$} . Then, by a standard argument, one can show that H_{l $\nu$} has a normalized ground
state $\Psi$_{l $\nu$} . Since the unit ball in a Hilbert space is compact under the weak topology,
there exists a sequence v_{j}\rightarrow 0(j\rightarrow\infty) and a vector $\Psi$_{0} such that $\Psi$_{l$\nu$_{j}} tends weakly to

$\Psi$_{0} . To prove that H has a ground state, it suffices to show that

(3.3) $\Psi$_{0}\neq 0.

(3.3) is derived from the so‐called boson number bound: \displaystyle \sup_{l $\nu$}\langle$\Psi$_{ $\nu$},  N$\Psi$_{l\text{ノ}}\rangle<\infty . This is

shown by (b) in Lemma 3.1 and by the fact that \Vert\langle X\rangle^{q}(K+ $\eta$)^{-1/2}\Vert\leq C with some

 $\eta$>0 and C>0.

Theorem 3.2. Assume (K) , (SD) and (IR1). Then

(i) H is a bounded below self‐ adjoint operator;

(ii) in addition, if (K) holds for some q>3/2 ,
then H has a ground state.
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Proof. (i) is obtained from (a) of Lemma 3.1 and (ii) is proven in [3]. \square 

§4. Absence of the ground state of \tilde{H}

We assume (K) throughout this section. We introduce the following condition:

(QD2) v(x)=v(x) satisfies

|v_{a}(x)|\displaystyle \leq\frac{a}{\langle x\rangle^{2+ $\epsilon$}}
with some  $\epsilon$>0 and a\geq 0.

We set m_{a}(x) :=\sqrt{|v_{a}(x)|} and hence m_{a}(x)=O(|x|^{-1- $\epsilon$})( $\epsilon$>0) . By [5], the condition

(\mathrm{Q}\mathrm{D}) yields that

(i) there exists a generalized eigenfunction  $\psi$(k, x)=$\psi$_{a}(k, x) satisfying

(4.1) (-\triangle_{x}+v_{a}(x)-|k|^{2})$\psi$_{a}(k, x)=0,

(4.2) $\psi$_{a}(k, x)=e^{ik\cdot x}-\displaystyle \frac{1}{4 $\pi$}\int_{\mathbb{R}^{3}}\frac{e^{i|k||x-y|}v_{a}(y)}{|x-y|}$\psi$_{a}(k, x)dy ;

(ii) there is no positive eigenvalues.

Moreover, by the Lieb‐Thirring inequality [7], we see that

(iii) for sufficiently small a>0,  $\sigma$(h)=[0, \infty ) and  0\not\in$\sigma$_{\mathrm{p}}(h) .

Although (\mathrm{Q}\mathrm{D}) does not require the positivity of v
,

the condition (\mathrm{Q}\mathrm{D}) is somewhat

stronger than (QD). We have the following lemma which is the key to prove the absence

of ground state of \tilde{H}.

Lemma 4.1. Assume (QD2). Then there exist positive constants a_{0}>0 and

C_{ $\epsilon$}>0 such that, for any a\leq a_{0},

(4.3) \displaystyle \sup_{x,k\in \mathbb{R}^{3}}|e^{ik\cdot x}-$\psi$_{a}(k, x)|\leq aC_{ $\epsilon$}.
In particular, \displaystyle \sup_{x,k\in \mathbb{R}^{3}}|$\psi$_{a}(k, x)|<\infty.

Proof. In general, for any  $\alpha$>0 and  $\beta$>0 satisfying  $\alpha$<n and  $\alpha$+ $\beta$>n ,
it

holds that

(4.4) \displaystyle \sup_{x\in \mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{dy}{|x-y|^{ $\alpha$}\langle y\rangle^{ $\beta$}}<\infty.
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Indeed, since |x-y|<\langle x\rangle/2 implies that 1+2|y|\leq|x| and \langle x\rangle^{2}<8\langle y\rangle^{2} ,
we have

(4.5) I_{1}\displaystyle \equiv\int_{|x-y|<\langle x\rangle/2}\frac{dy}{|x-y|^{ $\alpha$}\langle y\rangle^{ $\beta$}}\leq\frac{C_{ $\beta$}}{\langle x\rangle^{ $\beta$}}\int_{|y|<\langle x\rangle/2}|y|^{- $\alpha$}dy=C_{ $\alpha,\ \beta$,n}\langle x\rangle^{n-( $\alpha$+ $\beta$)},
where constant C_{ $\beta$}>0 (resp. C_{ $\alpha.\ \beta$,n}>0 ) depends only on  $\beta$ (resp. on  $\alpha$,  $\beta$ and  n). On

the other hand, since |x-y|\geq\langle x\rangle implies that |x-y|\geq|x|/2 and 5|x-y|\geq|x|+|y|
from |x-y|\geq|y|-|x| ,

we have 5^{ $\alpha$}|x-y|^{ $\alpha$}\geq|x|^{ $\alpha$- $\epsilon$}|y|^{ $\epsilon$} for  $\epsilon$\in[0,  $\alpha$] and

I_{2}\displaystyle \equiv\int_{|x-y|\geq\langle x\rangle/2}\frac{dy}{|x-y|^{ $\alpha$}\langle y\rangle^{ $\beta$}}\leq\frac{C_{ $\alpha$}}{|x|^{ $\alpha$- $\epsilon$}}\int|y|^{- $\epsilon$}\langle y\rangle^{- $\beta$}dy
for  $\epsilon$\in[0,  $\alpha$] satisfying  $\epsilon$+ $\beta$>n ,

with some positive C_{ $\alpha$}>0 depending only on  $\alpha$ . In

particular, taking  $\epsilon$= $\alpha$
,

we observe that

(4.6)  I_{2}\leq C_{ $\alpha,\ \beta$,n}'

with some positive C_{ $\alpha,\ \beta$,n}'>0 . Combining (4.5) and (4.6) we have (4.4).
Iterating (4.2), we see that by (\mathrm{Q}\mathrm{D})

|e^{ik\cdot x}-$\psi$_{a}(k, x)|\displaystyle \leq\sum_{n=1}^{\infty}(\frac{a}{4 $\pi$})^{n}\int\cdots\int\frac{dy_{1}\cdots dy_{n}}{\prod_{j=1}^{n}|y_{j}-y_{j-1}|\langle y_{j}\rangle^{2+ $\epsilon$}}\leq\frac{aC}{4 $\pi$-aC}
for a<4 $\pi$/C ,

where C>0 is a constant depending on  $\epsilon$ and we have used (4.4) in the

last inequality. This completes the lemma. \square 

For the coupling function  $\chi$ we suppose that

(IR2)  $\chi$\in C_{0}^{\infty}(\mathbb{R}^{3}) is real‐valued and satisfies  $\chi$(0)>0.

Lemma 4.2. Suppose (QD) and (IR2). Then for sufficiently small a we have

(a) $\psi$_{a}(, X)w_{0}^{-j/2} $\chi$\in L^{2}(\mathbb{R}^{3};dk)(j=1,2) and

\displaystyle \Vert\overline{$\psi$_{a}(\cdot,X)}w_{0}^{-j/2} $\chi$\Vert^{2}\leq C_{a}\int_{\mathbb{R}^{3}}\frac{| $\chi$(k)|^{2}}{w_{0}(k)^{j}}dk<\infty, j=1, 2 ;

(b) \overline{$\psi$_{a}(\cdot,X)}w_{0}^{-3/2} $\chi$\not\in L^{2}(\mathbb{R}^{3};dk) .

We are now in a position to state the main result in this section.

Theorem 4.3. Suppose (K) , (QD) and (IR2). Then for sufficiently small a>

0,

(i) \tilde{H} is a self‐ adjoint operator bounded below;
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(ii) \tilde{H} has no ground state.

Proof. (i) is proven by (a) of Lemma 4.2, and (ii) by Lemma 4.1 in a similar way

to that of [2, Theorem 4.7]. \square 
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