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Abstract

Based on three lectures given at the conference �Renormalization Group Methods in the

Mathematical Sciences� at RIMS, Kyoto University, in September 2009, we survey the results

in [13, 14, 15] addressing the kinetic scaling limits and effective Boltzmann equations for the

weakly disordered Anderson model. Moreover, we present related results for ideal Fermi gases

in random media, based on a joint work with I. Sasaki, [16], and for Fermi gases in random

media with dynamical Hartree‐Fock interactions, based on a collaboration with I. Rodnianski,

[17].

§1. Introduction

In this article, we survey the results in [13, 14, 15, 16, 17] addressing the transport

properties of charged quantum mechanical particles (electrons) in random media, such as

semiconductors. The main questions in this research area address the mathematically

rigorous understanding of electric conductivity or insulation, from first principles in

quantum mechanics. The presentation is structured as follows.

In Section 2, we discuss the Boltzmann limit for the quantum dynamics of an

electron in a random medium. A widely used model to study such a system is the

Anderson model, with Hamiltonian H_{ $\omega$}=-\triangle+ $\eta \omega$_{x} acting on \ell^{2}(\mathbb{Z}^{d}) ,
where (\triangle f)(x)=

\displaystyle \sum_{|y-x|=1}f(y) is the nearest neighbor Laplacian on \mathbb{Z}^{d}
,

and \{$\omega$_{x}\} is an i.i. \mathrm{d} . random

field of random variables which act as multiplication operators.
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The absence of electron transport (Anderson localization, electric insulators) for

large | $\eta$|\gg 1 ,
is nowadays mathematically well‐understood, [2, 33]. On the other

hand, the weak disorder regime, | $\eta$|\ll 1 , poses some very prominent open problems.

Only in dimension d=1
,

it is known that Anderson localization occurs for all values

of | $\eta$|>0 , [12]. In d=2
,

it is conjectured that even for small | $\eta$|\ll 1 ,
Anderson

localization persists. In d\geq 3 ,
it is conjectured that there exists a component of

absolutely continuous spectrum, associated to delocalized states and electric conduction.

For a kinetic scaling determined by macroscopic time and space coordinates (T, X)=
$\eta$^{2}(t, x) ,

it is proven that, as  $\eta$\rightarrow 0 ,
the semiclassical dynamics is determined by a

linear Boltzmann equation in the seminal works [26, 34, 51]; see also [13, 14, 15]. It is

proven in the breakthrough work [27, 28, 30, 29] that for d\geq 3 ,
the dynamics predicted

by the Anderson model is diffusive, in a scaling limit that corresponds to large but

finite microscopic times. It is expected that diffusive transport holds for all times, thus

explaining electric conductivity, and the delocalization of electron wave functions in the

relevant energy regimes. We also refer to the important related works [3, 9, 10, 11, 21,

25, 37, 38, 39, 40, 43, 44, 45, 47, 48, 50].
In Section 3, we discuss the results from [14] (which contains a joint result with

L. Erdös). It is proven for the same kinetic scaling limit as in Section 2 that the

macroscopic dynamics is determined by a linear Boltzmann equation, in higher mean

L^{r} with respect to the randomness, for any finite r\geq 1 . This significantly improves
the mode of convergence in [15] and in [26, 34] where convergence of the mean was

established. The complexity and number (superfactorial versus factorial) of Feynman

graphs entering this analysis is significantly higher than in the works above.

In Section 4, we discuss lower bounds on the localization lengths for the Anderson

model. In the important work [49], C. Shubin, W. Schlag, and T. Wolff proved for the

Anderson model with small Gaussian or Bernoulli randomness that with probability

one, the localization length of eigenstates is bounded below by O($\lambda$^{-2}) in d=1
,

and

by O($\lambda$^{-2+ $\delta$}) in d=2
,

outside a small exceptional energy range. A very interesting
related question was studied by J. Bourgain in [10] where the fact is established that

with large probability, the weakly disordered Anderson model on \mathbb{Z}^{2} with a random

potential decaying like |x|^{- $\sigma$} with  $\sigma$>\displaystyle \frac{1}{2} exhibits purely absolutely continuous (a.c.)
spectrum and scattering. Similar problems were studied in [32, 20, 47].

We discuss results from [14]; it is proven for decay exponents 0< $\sigma$\displaystyle \leq\frac{1}{2} that if

 $\sigma$=\displaystyle \frac{1}{2} (a marginal renormalization problem), the localization length of eigenfunctions

is bounded below by 2^{$\lambda$^{-1}}4^{+ $\eta$}
,

while for 0< $\sigma$<\displaystyle \frac{1}{2} (a relevant renormalization problem),
the lower bound is $\lambda$^{-\frac{2- $\eta$}{1-2 $\sigma$}}

,
for any  $\eta$>0 . These estimates �interpolate� between the

lower bound $\lambda$^{-2+ $\eta$} of Schlag‐Shubin‐Wolff for  $\sigma$=0 ,
and \infty corresponding to pure a.c.

spectrum for  $\sigma$>\displaystyle \frac{1}{2} as established by Bourgain (see also [11]). In particular, we discuss
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how the localization conjecture for the weakly disordered Anderson model in d=2 can,

in this setting, be interpreted in the context of renormalization group theory.
In Section 5, we discuss the dynamics of an ideal Fermi gas in a random medium,

based on joint work with I. Sasaki, [16]. The Anderson model neglects the repulsion
between the electrons due to Coulomb interactions, and the Pauli principle. In [16],
we consider some basic aspects of the question about the extent to which manybody
effects influence the predictions of the Anderson model at small disorders. In [16],
we analyze the dynamics of an ideal (i.e.,  $\lambda$=0 ) homogenous Fermi gas in a weak

random potential. We derive the kinetic scaling limit for the momentum distribution

function with a translation invariant initial state and prove that it is determined by
a linear Boltzmann equation. We prove that if the initial state is quasifree, then the

time evolved state, averaged over the randomness is not quasifree, but has a quasifree
kinetic limit. We show that the momentum distributions determined by the Gibbs states

of a free fermion field are stationary solutions of the linear Boltzmann equation; this

includes the limit of zero temperature. We note that recently, important results on the

persistence of localization in fermionic manybody models at strong disorders (a topic
which is not addressed here) have been established in [4, 18, 19].

In section 6, we discuss thejoint work [17] with I. Rodnianski, which investigates the

dynamics of a Fermi gas in a random medium where the particle interactions between

the fermions are modeled in dynamical Hartree‐Fock theory. We derive Boltzmann

equations in kinetic scaling limits for scaling regimes determined by different ratios

between the strengths of the randomness, and of the particle interactions. Central to

this work is the development of methods to control the nonlinear self‐interactions of

the quantum field, combined with Feynman graph expansion methods to govern the

randomness.

Acknowledgment

It is a great pleasure to thank Prof. K.R. Ito and the Research Institute for Math‐

ematical Sciences at Kyoto University for their wonderful hospitality, and for the invi‐

tation to present three lectures at the conference �Renormalization Group Methods in

the Mathematical Sciences� in September 2009. I am deeply grateful to K.R. Ito and I.

Ojima for their continued kindness, generosity, and interest, and for uniquely inspiring
discussions. The work presented in this review was supported by the US NSF grants

DMS‐0407644/DMS‐0524909 and DMS‐0704031 /DMS‐0940145.



66 T. Chen

§2. Kinetic limit for the weakly disordered Anderson model

In this section, we address the derivation of linear Boltzmann equations as the

kinetic scaling limit of the Schrodinger dynamics in the weakly disordered Anderson

model on the lattice, \mathbb{Z}^{3}
, [13]. The results are closely related to the pioneering work of

L. Erdös and H.‐T. Yau, [34], in which the weak coupling and kinetic limit has been

derived for a random Schrödinger equation in the continuum \mathbb{R}^{d}, d=2
, 3, for a Gaussian

random potential, globally in macroscopic time. The corresponding local in macroscopic
time result was first proved by H. Spohn [51]. In [13], the results of [34] are extended

to the lattice, and to non‐Gaussian randomness.

§2.1. The Anderson Model

Let $\Lambda$_{L} :=[-L, L]^{d}\cup \mathbb{Z}^{d} be a box with side length L\ll 1 which we will eventually
send to infinity. Let $\Lambda$_{L}^{*} :=\displaystyle \frac{1}{L}$\Lambda$_{L} denote the associated dual lattice.

The Anderson model on $\Lambda$_{L} is defined by the Hamiltonian

(2.1) H_{ $\omega$}=\triangle+ $\eta$ V_{ $\omega$}

acting on the Hilbert space \ell^{2}($\Lambda$_{L}) . For concreteness, we shall assume periodic boundary
conditions. Here, \triangle denotes the centered nearest neighbor Laplacian,

\displaystyle \triangle $\psi$(x)= \sum  $\psi$(y) .

|x-y|=1

Its spectrum is given by spec \displaystyle \triangle=[-2d, 2d]\cap\frac{1}{L^{d}}\mathbb{Z} . Furthermore, V_{ $\omega$} denotes a random

potential which acts as a multiplication operator in position space, (V_{ $\omega$} $\psi$)(x)=$\omega$_{x} $\psi$(x) ,

x\in$\Lambda$_{L} ,
where \{$\omega$_{x}\}_{x\in$\Lambda$_{L}} is a field of centered i.i. \mathrm{d} . random variables. That is, \mathrm{E}[$\omega$_{x}]=0,

\mathrm{E}[$\omega$_{x}^{2}]=1 . The parameter  $\eta$>0 accounts for the disorder strength. We assume the

moment bounds

(2.2) \mathrm{E}[$\omega$_{x}^{2m}]=:\tilde{c}_{2m}\leq(2m)!c_{ $\omega$} , \tilde{c}_{2}=1, \forall x\in \mathbb{Z}^{3}, \forall m\geq 1,

hold where the constant  c_{ $\omega$}<\infty is independent of  m . For any L<\infty, H_{ $\omega$} is almost

surely selfadjoint on \ell^{2}($\Lambda$_{L}) .

For the Fourier transform, we use the convention

(2.3) \displaystyle \hat{f}(p) :=\sum_{x\in$\Lambda$_{L}}e^{-2 $\pi$ ip\cdot x}f(x) ,

where p\in$\Lambda$_{L}^{*} ,
and

(2.4) f(x)=\displaystyle \frac{1}{L^{d}}\sum_{p\in$\Lambda$_{L}^{*}}e^{2 $\pi$ ip\cdot x}\hat{f}(p)
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for its inverse. For brevity, we will use the notation

(2.5) \displaystyle \int dp\equiv\frac{1}{L^{d}}\sum_{p\in$\Lambda$_{L}^{*}}
in the sequel, which recovers its usual meaning in the thermodynamic limit L\rightarrow\infty.

The nearest neighbor lattice laplacian is a Fourier multiplication operator

\overline{\triangle $\psi$}(k)=e_{\triangle}(k)\hat{ $\psi$}(k)

whose symbol

e_{\triangle}(k)=\displaystyle \sum_{i=1}^{d}2\cos(2 $\pi$ k_{i})
is the kinetic energy of the quantum mechanical electron.

In the Anderson model, the dynamics of an electron in a random medium is deter‐

mined by the Schrödinger equation on \ell^{2}($\Lambda$_{L}) ,

i\partial_{t}$\psi$_{t}(x)=H_{ $\omega$}$\psi$_{t}(x)

$\psi$_{0}\in\ell^{2}($\Lambda$_{L})
The solution to this Cauchy problem is given by the unitary flow generated by H_{ $\omega$} ,

that

is, $\psi$_{t}=e^{-itH_{ $\omega$}}$\psi$_{0}.

§2.2. Kinetic scaling limits for small disorders  $\eta$\ll 1

We will now discuss [13] (which contains ajoint result with Erdös and Yau), which

generalizes the results in [26, 34] to the lattice and non‐Gaussian case. It is shown that

the kinetic scaling limit of the quantum dynamics in the weakly disordered Anderson

model is governed by a linear Boltzmann equation. A key technical problem is posed

by frequency space resolvent integrals which are singular on overlapping, non‐convex

surfaces. Its solution involves considerations related to restriction theory in Harmonic

Analysis, [13, 27, 28, 29, 53]; see also [39, 40].
We consider the Wigner transform of $\psi$_{t}=e^{-itH_{ $\omega$}}$\psi$_{0}

W_{t}(x, v)= 8\displaystyle \sum_{y,z\in$\Lambda$_{L} ,y+z=2x}\overline{$\psi$_{t}(y)}$\psi$_{t}(z)e^{2 $\pi$ iv(y-z)},
and the associated rescaled Wigner transform

W_{T}^{( $\eta$)}(X, V)=(\displaystyle \frac{1}{$\eta$^{2}})^{3}W_{T/$\eta$^{2}}(X/$\eta$^{2}, V)
according to the kinetic scaling (T, X)=$\eta$^{2}(t, x) . Then, the Boltzmann limit holds in

the sense of weak convergence in distribution.
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Theorem 2.1. [34, 13] For  $\mu$>0 ,
let

(2.6) $\phi$_{0}^{ $\mu$}(x) :=$\mu$^{\frac{3}{2}}\displaystyle \frac{h( $\mu$ x)e^{2 $\pi$ i\frac{s( $\mu$ x)}{ $\mu$}}}{\Vert h\Vert_{\ell^{2}( $\mu$ \mathbb{Z}^{3})}} ,

with h, S\in S(\mathbb{R}^{3}, \mathbb{R}) of Schwartz class, and \Vert h\Vert_{L^{2}(\mathbb{R}^{3})}=1 . Assume L sufficiently large

that $\phi$_{0}^{ $\mu$}|_{$\Lambda$_{L}}=$\phi$_{0}^{ $\mu$} . Let $\phi$_{t}^{ $\mu$} be the solution of the random Schrödinger equation

(2.7) i\partial_{t}$\phi$_{t}^{ $\mu$}=H_{ $\omega$}$\phi$_{t}^{ $\mu$}

on \ell^{2}($\Lambda$_{L}) with initial condition $\phi$_{0}^{ $\mu$} , and let

(2.8) W_{T}^{( $\mu$)}(X, V) :=W_{$\phi$_{ $\mu$-1_{T}}^{ $\mu$}}^{ $\mu$}(X, V)
denote the corresponding rescaled Wigner transfO rm.

Choosing

(2.9)  $\mu$=$\eta$^{2},

where  $\eta$ is the coupling constant in (2.1), it follows that

(2.10) \displaystyle \lim_{ $\eta$\rightarrow 0}\lim_{L\rightarrow\infty}\mathrm{E}[\langle J, W_{T}^{($\eta$^{2})}\rangle]=\langle J, F_{T}\rangle,
where F_{T}(X, V) solves the linear Boltzmann equation

\partial_{T}F_{T}(X, V)+2 $\pi$\nabla_{V}e_{\triangle}(V)\cdot\nabla_{X}F_{T}(X, V)

(2.11) =\displaystyle \int_{\mathrm{T}^{3}}dU $\sigma$(U, V)[F_{T}(X, U)-F_{T}(X, V)]
with initial condition

F_{0}(X, V)=w-\displaystyle \lim W^{ $\mu$} $\mu$\rightarrow 0 $\phi$_{0}^{ $\mu$}

(2.12) =|h(X)|^{2} $\delta$(V-\nabla S(X)) ,

and where

 $\sigma$(U, V) :=2 $\pi \delta$(e_{\triangle}(U)-e_{\triangle}(V))

denotes the collision kernel.

§2.3. Main ingredients of the proof

As a starting point, we represent the solution $\psi$_{t} of the random Schrodinger equation
as a truncated resolvent expansion,

$\psi$_{t}=\displaystyle \frac{1}{2 $\pi$ i}\int_{\mathbb{R}+i $\epsilon$}dze^{-itz}\frac{1}{H_{ $\omega$}-z}$\psi$_{0}
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$\psi$_{t}=\displaystyle \sum_{n=0}^{N}$\psi$_{t}^{(n)}+R_{t}^{(N)}

$\psi$_{t}^{(n)}=\displaystyle \frac{(- $\eta$)^{n}}{2 $\pi$ i}e^{ $\epsilon$ t}\int_{\mathbb{R}}dEe^{-itE}(\frac{1}{\triangle-E-i $\epsilon$}V_{ $\omega$})^{n}\frac{1}{\triangle-E-i $\epsilon$}$\psi$_{0}
This induces a decomposition of the Wigner transform into

W_{t}=\displaystyle \sum_{n,\overline{n}=0}^{N+1}W_{t}^{(n,\overline{n})},
and we consider its pairing with a rescaled test function, \langle  W_{t},  J_{$\eta$^{2}}\rangle ,

where we define

 J_{ $\mu$}(x, v):=$\mu$^{-3}J( $\mu$ x, v) .

Taking the expectation with respect to the random potential, one obtains an ex‐

pansion of the form

\displaystyle \mathrm{E}[\langle W_{t}, J_{$\eta$^{2}}\rangle]=\sum_{n,\overline{n}=0}^{N+1}\mathrm{E}[\langle W_{t}^{(n,\overline{n})}, J_{$\eta$^{2}}\rangle]
=\displaystyle \sum_{n,\overline{n}=0}^{N+1} $\pi$\in$\Gamma$_{n,\overline{n}}\displaystyle \sum \mathrm{A}\mathrm{m}\mathrm{p}_{J_{$\eta$^{2}}}( $\pi$)

where the resulting terms are organized by use of Feynman graphs. By $\Gamma$_{n,\overline{n}} ,
we are

denoting the set of Feynman graphs on n+\overline{n} vertices corresponding to copies of V_{ $\omega$},
and one distinguished vertex corresponding to J_{$\eta$^{2}} ,

see the next section.

The number of graphs is given by |$\Gamma$_{n,\overline{n}}|\sim(n+\overline{n})!

2.3.1. Graph expansion
The elements of the set of Feynman graphs $\Gamma$_{n,\overline{n}} ,

with n+\overline{n}\in 2\mathbb{N} ,
are defined

as follows. We consider two horizontal solid lines, which we refer to as particle lines,

joined by a distinguished vertex which we refer to as the J‐vertex (corresponding to

the the integration against the rescaled test function J_{$\eta$^{2}} . On the line on its left, we

introduce n vertices, and on the line on its right, we insert \overline{n} vertices. We refer to those

vertices as interaction vertices, and enumerate them from 1 to 2\overline{n} starting from the left.

The edges between the interaction vertices are referred to as propagator lines. We label

them by the momentum variables u_{0}, u_{2\overline{n}+1} , increasingly indexed starting from the

left. To the j‐th propagator line, we associate the resolvent \displaystyle \frac{1}{E(u_{j})- $\alpha$-i $\epsilon$} if 0\leq j\leq n,
and \displaystyle \frac{1}{E(u_{j})-\overline{ $\alpha$}+i $\epsilon$} if n+1\leq j\leq 2\overline{n}+1 . To the \ell‐th interaction vertex (adjacent to the

edges labeled by  u_{\ell-1} and u_{\ell} ), we associate the random potential \hat{V}_{ $\omega$}(u_{\ell}-u_{\ell-1}) ,
where

1\leq\ell\leq 2\overline{n}+1.
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A contraction graph associated to the above pair of particle lines joined by the $\rho$_{0^{-}}

vertex, and decorated by n+\overline{n} interaction vertices, is the graph obtained by pairwise

connecting interaction vertices by dashed contraction lines. We denote the set of all

such contraction graphs by $\Gamma$_{n,\overline{n}} ; it contains

(2\overline{n})!
(2.13) |$\Gamma$_{n,\overline{n}}|=(2\overline{n}-1)(2\overline{n}-3)\cdots 3\cdot 1= =O(\overline{n}!)\overline{\overline{n}!2^{\overline{n}}}

elements.

If in a given graph  $\pi$\in$\Gamma$_{n,\overline{n}} ,
the \ell‐th and the \ell'‐th vertex arejoined by a contraction

line, we write

(2.14) \ell\sim_{ $\pi$}\ell',

and we associate the delta distribution

(2.15)  $\delta$(u_{\ell}-u_{\ell-1}-(u_{\ell'}-u_{\ell'-1}))=\mathrm{E}[\hat{V}_{ $\omega$}(u_{\ell}-u_{\ell-1})\hat{V}_{ $\omega$}(u_{\ell'}-u_{\ell'-1})]

to this contraction line.

Figure 1. An example of a Feynman graph,  $\pi$\in$\Gamma$_{n,\overline{n}} ,
with n=5, \overline{n}=7 . The

distinguished vertex is filled.

We consider the following classification of Feynman graphs, [34].

\bullet A subgraph consisting of one propagator line adjacent to a pair of vertices \ell and

\ell+1 ,
and a contraction line connecting them, i.e., \ell\sim_{ $\pi$}\ell+1 ,

where both \ell, \ell+1

are either \leq n or \geq n+1 ,
is called an immediate recollision.

\bullet The graph  $\pi$\in$\Gamma$_{n,n} (i.e., n=\overline{n}=\overline{n} ) with \ell\sim_{ $\pi$}2n-\ell for all \ell=1
,

. . .

,
n

,
is called

a basic ladder diagram. The contraction lines are called rungs of the ladder. We

note that a rung contraction always has the form \ell\sim_{ $\pi$}\ell' with \ell\leq n and \ell'\geq n+1.

Moreover, in a basic ladder diagram one always has that if \ell_{1}\sim_{ $\pi$} \ell í and \ell_{2}\sim_{ $\pi$}\ell_{2}'
with \ell_{1}<\ell_{2} ,

then \ell_{2}' <\ellí.

\bullet A diagram  $\pi$\in$\Gamma$_{n,\overline{n}} is called a decorated ladder if any contraction is either an

immediate recollision, or a rung contraction \ell_{j}\sim_{ $\pi$}\ell_{j}' with \ell_{j}\leq n and \ell_{j}'\geq n for

j=1 ,
. . .

,
k

,
and \ell_{1}<\cdots<\ell_{k} ,

\ell í >\cdots>\ell_{k}' . Evidently, a basic ladder diagram is

the special case of a decorated ladder which contains no immediate recollisions (so
that necessarily, n=\overline{n}).
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\bullet A diagram  $\pi$\in$\Gamma$_{n,\overline{n}} is called crossing if there is a pair of contractions \ell\sim_{ $\pi$}\ell',

j\sim_{ $\pi$}j' ,
with \ell<\ell' and j<j' ,

such that \ell<j.

\bullet A diagram  $\pi$\in$\Gamma$_{n,\overline{n}} is called nesting if there is a subdiagram with \ell\sim_{ $\pi$}\ell+2k ,
with

k\geq 1 ,
and either \ell\geq n+1 or \ell+2k\leq n ,

with j\sim_{ $\pi$}j+1 for j=\ell+1, \ell+3 ,
. . .

, \ell+

2k-1 . The latter corresponds to a progression of k-1 immediate recollisions.

We note that any diagram that is not a decorated ladder contains at least a crossing or

a nesting subdiagram.

To each Feynman graph,  $\pi$\in$\Gamma$_{m,n} ,
we associate its Feynman amplitude, given by

\displaystyle \mathrm{A}\mathrm{m}\mathrm{p}_{J_{$\eta$^{2}}}( $\pi$)=\frac{$\eta$^{2\overline{n}}}{(2 $\pi$)^{2}}e^{2 $\epsilon$ t} \displaystyle \int_{\mathbb{R}^{2}}dEdE'e^{-it(E-E')}
\displaystyle \int du_{0}\cdots du_{2\overline{n}+1}\overline{\hat{ $\psi$}_{0}(u_{0})}\hat{ $\psi$}_{0}(u_{2\overline{n}+1})\frac{1}{$\eta$^{6}}\hat{J}(\frac{u_{n+1}-u_{n}}{$\eta$^{2}}, \frac{u_{n+1}+u_{n}}{2})

(2.16) $\delta$_{ $\pi$}(\displaystyle \mathrm{u}) [\prod_{j=0}^{n}\frac{1}{e_{\triangle}(u_{j})-E-i $\epsilon$}] [\prod_{\ell=n+1}^{2\overline{n}+1}\frac{1}{e_{\triangle}(u_{\ell})-E+i $\epsilon$}]
for  $\pi$\in$\Pi$_{m,n} and \displaystyle \overline{n}=\frac{m+n}{2} (zero if m+n\not\in 2\mathbb{N}). We set

(2.17)  $\epsilon$=\displaystyle \frac{1}{t}=\frac{$\eta$^{2}}{T}
so that the overall exponential factor e^{2 $\epsilon$ t} remains bounded. Here, $\delta$_{ $\pi$} denotes the prod‐
uct of the delta distributions associated to all contractions between random potentials
in  $\pi$.

To prove the theorem, the following estimates are crucial:

\bullet A priori bound: One first verifies that for every Feynman graph  $\pi$
,

one obtains the a

priori bound

|\displaystyle \mathrm{A}\mathrm{m}\mathrm{p}_{J_{$\eta$^{2}}}( $\pi$)|\leq(\log\frac{1}{ $\eta$})^{3}(cT\log\frac{1}{ $\eta$})^{\overline{n}}
To obtain this bound, one chooses a suitable spanning tree T_{ $\pi$} with \overline{n}+2 edges for

every given Feynman graph  $\pi$\in$\Gamma$_{n,\overline{n}} . The edges contained in T_{ $\pi$} are called tree edges,
and accordingly, the momentum variables and resolvents supported on them are called

tree momenta and tree resolvents, respectively. The edges in  $\pi$ not contained in  T_{ $\pi$} are

referred to as loop edges (because adding them to T_{ $\pi$} produces loop subdiagrams), and

correspondingly, they carry loop momenta and loop resolvents. A spanning tree T_{ $\pi$} is

admissible if it contains all contraction lines, and precisely one edge adjacent to the

distinguished vertex.
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Associated to an admissible choice of T_{ $\pi$} ,
one integrates out all delta distributions

using the tree momenta, whereby the tree momenta are substituted by linear combina‐

tions of loop momenta. Next, one applies the L^{\infty} ‐bound to the resolvents supported on

\overline{n} edges of T_{ $\pi$},

(2.18) \displaystyle \Vert\frac{1}{e_{\triangle}(\cdot)-E+i $\epsilon$}\Vert_{L^{\infty}(\mathrm{T}^{d})}\sim<\frac{1}{ $\epsilon$}
and L^{1} ‐estimates on the \overline{n} loop resolvents,

(2.19) \displaystyle \Vert\frac{1}{e_{\triangle}(\cdot)-E+i $\epsilon$}\Vert_{L^{1}(\mathrm{T}^{d})}\sim<\log\frac{1}{ $\epsilon$}.
Moreover, the integrals over the spectral parameters E, E' can be controlled by applying

(2.20) \displaystyle \Vert\int dE\frac{1}{|e_{\triangle}(\cdot)-E+i $\epsilon$|}\Vert_{L^{\infty}(\mathrm{T}^{d})}\sim<\log\frac{1}{ $\epsilon$}
to the two remaining tree resolvents. The a priori bound then follows.

\bullet Dominant diagrams: The dominant contributions to the expansion are obtained from

decorated ladder diagrams, where

|\displaystyle \mathrm{A}\mathrm{m}\mathrm{p}_{J_{$\eta$^{2}}}($\pi$_{ladder})|\leq\frac{(cT)^{\overline{n}}}{\sqrt{\overline{n}!}}
is summable in \overline{n}

, uniformly in  $\eta$.

The scaling limit of decorated ladder diagrams gives the solution F_{T}(X, V) of the

linear Boltzmann equation.

\bullet Nesting and crossing diagrams: For every Feynman graph  $\pi$ that contains a crossing
or a nesting diagram, one obtains the upper bound

\{\mathrm{z}\log \mathrm{c}\mathrm{T} \log|\mathrm{A}\mathrm{m}\mathrm{p}_{J_{$\eta$^{2}}}($\pi$_{crossing/nesting})|
a priori bound

where the gain of a factor $\eta$^{\frac{2}{5}} over the a priori bound is crucial. The number of graphs

exhibiting a crossing or a nesting is O(\overline{n}!) .

Choosing the truncation of the resolvent expansion at

N\displaystyle \approx\frac{\log\frac{1}{ $\eta$}}{\log\log\frac{1}{ $\eta$}},
one obtains that

\displaystyle \sum_{m,n=1}^{N}\sum_{$\Gamma$_{m,n}}|\mathrm{A}\mathrm{m}\mathrm{p}_{J_{$\eta$^{2}}}($\pi$_{crossing/nesting})|\sim<$\eta$^{ $\delta$}
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for some  $\delta$>0.

\bullet Terms involving the remainder term  R_{t}^{(N)} : If n and/or \overline{n}=N+1 ,
the corresponding

term in the expansion for the Wigner transform involves the remainder term R_{t}^{(N)} of

the resolvent expansion. It can be proven that the sum of these contributions are also

bounded by \sim<$\eta$^{ $\delta$} for the given choice of N
, [34, 13]. We will not discuss the fairly

technical proof of this result in this survey.

In conclusion, collecting all of the above estimates, and letting  $\eta$\rightarrow 0 ,
one obtains

the asserted Boltzmann limit. \square 

2.3.2. Crossing estimates

The most difficult part in the analysis is the proof of smallness of the Feynman

amplitudes associated with crossing diagrams. Amplitudes of nesting graphs, on the

other hand, can be straightforwardly controlled by use of analyticity arguments. For

every crossing diagram, it is possible to choose a spanning tree for which the associated

bound on the Feynman amplitude contains a factor of the form

(2.21) \displaystyle \int_{\mathrm{T}^{3}\times \mathrm{T}^{3}}dpdq\frac{1}{|e_{\triangle}(p)-E-i $\epsilon$|}\frac{1}{|e_{\triangle}(q)-E+i $\epsilon$|}\frac{1}{|e_{\triangle}(p+q-u)-E-i $\epsilon$|}
which can be trivally bounded by

(2.22) \sim<\underline{(\log\frac{1}{ $\epsilon$})^{2}}
 $\epsilon$

Here,  p, q are loop momenta which appear only on the subgraph associated to this

expression, and u is a linear combination of loop momenta in  $\pi$ independent of  p, q.

The bound 2.22 is insufficient for our purposes because it does not improve on the a

priori bound.

To improve on this bound, we observe that the singular integrand in (2.21) is

concentrated on the intersection of the  $\epsilon$‐tubular neighborhoods of isoenergy surfaces

(2.23)  $\Sigma$_{E}=\{p\in \mathrm{T}^{3}|e_{\triangle}(p)=E\}.

The idea is to exploit the smallness of the intersection measure, in order to improve on

the trivial bound (2.22).
As a matter of fact, improving (2.22) by a factor $\epsilon$^{ $\delta$} for any arbitrary  $\delta$>0 suffices

for our purposes.

We remark that in the case of the continuum, \mathbb{R}^{d}
,
the surfaces $\Sigma$_{E} are spheres, and

it is easy to control the size of their  $\epsilon$‐thickened intersections, [34].
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The geometry of level surfa ces for lattice models

In the case of lattice models, the geometry of the isoenergy surfaces is necessarily
more complicated than in the continuum case. The prototypical situation is given by the

case of the nearest neighbor laplacian which acts as a Fourier multiplication operator

with symbol

(2.24)  e_{\triangle}(p)=2\cos(2 $\pi$ p_{1})+2\cos(2 $\pi$ p_{2})+2\cos(2 $\pi$ p_{3})

in d=3 . The surface $\Sigma$_{E}=\{p\in \mathrm{T}^{3}|e_{\triangle}(p)=E\} is non‐convex, and exhibits lines of

vanishing Gauss curvature.

Naturally, one might ask if this problem can be circumvented by a different choice

of the kinetic energy operator than the nearest neighbor Laplacian \triangle . However, this

problem cannot be avoided by a different choice of the kinetic energy operator, due

to the topology of (\mathbb{Z}^{d})^{*}\cong \mathrm{T}^{d} . The reason is that at best, the kinetic energy e_{\triangle} :

\mathrm{T}^{d}\rightarrow[-2d, 2d] is \mathrm{a} (perfect) Morse function (which is the case for the nearest neighbor

laplacian), in case of which the Morse inequalities enforce a transition of $\Sigma$_{E} between

a topological sphere and a surface of genus at least 3, depending on the paramter E.

This is because the Betti numbers b_{p} of \mathrm{T}^{3} are b_{0}=1=b_{3} ,
and b_{1}=3=b_{2}.

In [27], Erdös and Salmhofer have obtained a gain of $\epsilon$^{\frac{1}{4}} upon the a priori bound

(2.22) via a direct parametrization of level surfaces in 3D . Their result is obtained from

a very involved analysis and holds in greater generality than only for (2.24).
In [13], the author has independently provided an improvement of $\epsilon$^{\frac{1}{5}} upon (2.22)

by a short argument related to restriction estimates in Harmonic Analysis, involving
dimensional reduction. It holds for a smaller class of energy functions than those ad‐

mitted in [27], in that it exploits the fact that the addititive structure of e_{\triangle}(p)(2.24)
with respect to coordinate components.

For this discussion, we let d=3 . The argument proceeds as follows. We rewrite

the 3‐dimensional integral into a parametrized 2‐D integral,

\displaystyle \int_{\mathrm{T}\times \mathrm{T}}dp_{3}dq_{3}\int_{\mathrm{T}^{2}\times \mathrm{T}^{2}}d\underline{p}d\underline{q}\frac{1}{|\overline{e_{\triangle}}(\underline{p})-E(p_{3})-i $\epsilon$|}
1 1

\overline{|\overline{e_{\triangle}}(\underline{q})-E'(q_{3})+i $\epsilon$|}\overline{|\overline{e_{\triangle}}(\underline{p}+\underline{q}-\underline{u})-E(p_{3}+q_{3}-u_{3})-i $\epsilon$|}
where p=(p_{1},p_{2},p_{3}) and \underline{p}:=(p_{1},p_{2}) ,

and similarly for q and \underline{q} . Moreover,

(2.25) \overline{e_{\triangle}}(\underline{p}) :=2\cos(2 $\pi$ p_{1})+2\cos(2 $\pi$ p_{2})

and

(2.26) E(p_{3}) :=E-2\cos(2 $\pi$ p_{3}) ,
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et cetera. We note that there exists exactly one critical value E_{crit}=0 ,
for which

the isoenergy curve \{\underline{p}\in \mathrm{T}^{2}|\overline{e_{\triangle}}(\underline{p})=E_{crit}\} is a union of straight lines, and thus has

vanishing curvature. The idea is to exploit the fact that for \mathrm{a}(p_{3}, q_{3}) ‐set of large mea‐

sure, the level lines of the 2‐dimensional problem parametrized by \underline{p}, \underline{q} have sufficiently
a curvature sufficiently bounded away from zero.

Let, for brevity, E_{1}:=E(p_{3}) , E_{2}:=E(q_{3}) ,
and E_{3}:=E(p_{3}+q_{3}-u_{3}) .

We focus on the most singular part of

(2.27) \displaystyle \overline{R}_{i}(\underline{p}):=\frac{1}{|\overline{e_{\triangle}}(\underline{p})-E_{i}-i $\epsilon$|}
which can be estimated by

(2.28) R_{i}^{l $\nu$}(\displaystyle \underline{p}) :=$\chi$_{i}^{l $\nu$}(\underline{p})\frac{1}{|\overline{e_{\triangle}}(\underline{p})-E_{i}-i $\epsilon$|}\sim<\frac{v}{ $\epsilon$}$\delta$_{i}^{l $\nu$}(\underline{p})
where

(2.29) $\chi$_{i}^{l $\nu$}(\underline{p}) :=$\chi$_{\{\underline{p}||\overline{e}(\underline{p})-E_{i}|<l $\nu$\}}\triangle(\underline{p})

and

(2.30) $\delta$_{i}^{l $\nu$}(\displaystyle \underline{p}) :=\frac{1}{v}$\chi$_{i}^{l $\nu$}(\underline{p})
for some choice of v>0 which remains to be optimized, and  $\chi$ a smooth characteristic

function. Then,

(2.31) ($\delta$_{i}^{l $\nu$})^{\vee}(\displaystyle \mathrm{X})=\int d\underline{p}e^{-2 $\pi$ i\underline{p}\cdot \mathrm{x}}$\delta$_{i}^{ $\nu$}(\underline{p})
has a decay

(2.32) |($\delta$_{i}^{l $\nu$})^{\vee}(\mathrm{X})|\sim<$\tau$^{-1/2}|x|^{-1/2}e^{-l $\nu$|x|}

for |E_{i}-E_{crit}|> $\tau$ where  E_{crit} is the critical energy value for which the level line

has zero curvature. This curvature induced decay in \mathrm{X}‐space is related to restriction

problems in Harmonic Analysis, and is proven by use of stationary phase arguments.
If |E_{i}-E_{crit}|> $\tau$ for  i=1

, 2, 3, the contribution to the crossing integral can be

estimated by

(2.33) \displaystyle \langle R_{1}^{l $\nu$}*R_{2}^{l $\nu$}, R_{3}^{l $\nu$}\rangle<\sim ( \frac{v}{ $\epsilon$})^{3}\sum_{\underline{x}}($\delta$_{1}^{l $\nu$})^{\vee}(\mathrm{X})($\delta$_{2}^{l $\nu$})^{\vee}(\mathrm{X})($\delta$_{3}^{l $\nu$})^{\vee}(\mathrm{X})
(2.34) \displaystyle \sim<(\frac{v}{ $\epsilon$})^{3}\sum_{<0<|\underline{x}|_{\sim}\frac{1}{ $\nu$}}$\tau$^{-3/2}|\mathrm{x}|^{-3/2}
(2.35) =(\displaystyle \frac{v}{ $\epsilon$})^{3}$\tau$^{-3/2}v^{-1/2}
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On the other hand, the measure of the set of (p_{3}, q_{3}) ‐values for which there exists at

least one index i\in\{1 , 2, 3 \} such that |E_{i}-E_{crit}|\leq $\tau$ is small, of order  O($\tau$^{1/2}) (for the

choice of the cosine function, as it appears in \overline{e_{\triangle}} ). On this (p_{3}, q_{3}) ‐set, the level lines

have small curvature \leq $\tau$ ,
and we only get

(2.36) \displaystyle \langle R_{1}^{l $\nu$}*R_{2}^{l $\nu$}, R_{3}^{l $\nu$}\rangle\leq\frac{1}{ $\epsilon$}(\log\frac{1}{ $\epsilon$})^{2}
Finally, for the non‐singular contribution where |\overline{e_{\triangle}}(\underline{p})-E_{i}|>Cv for at least one value

of i
,

we get a contribution of size

(2.37) |\displaystyle \langle\overline{R}_{1}*\overline{R}_{2}, \overline{R}_{3}\rangle-\langle R_{1}^{l $\nu$}*R_{2}^{l $\nu$}, R_{3}^{l $\nu$}\rangle|\sim<\frac{1}{v}(\log\frac{1}{ $\epsilon$})^{2}
to (2.21).

Combining the bounds for the two (p_{3}, q_{3}) ‐regions discussed above, we find the

upper bound

(2.38) \displaystyle \int dp_{3}dq_{3}\langle\overline{R}_{1}*\overline{R}_{2}, \overline{R}_{3}\rangle\sim< (\frac{v}{ $\epsilon$})^{3}$\tau$^{-3/2}v^{-1/2}+ (\frac{1}{v}+\frac{$\tau$^{1/2}}{ $\epsilon$})(\log\frac{1}{ $\epsilon$})^{2}
and choosing v=$\epsilon$^{4/5} and  $\tau$=$\epsilon$^{2/5}

,
one obtains

\displaystyle \int_{\mathrm{T}^{3}\times \mathrm{T}^{3}}dpdq\frac{1}{|e_{\triangle}(p)-E-i $\epsilon$|}\frac{1}{|e_{\triangle}(q)-E'+i $\epsilon$|}\frac{1}{|e_{\triangle}(p+q-u)-E-i $\epsilon$|}\sim<\frac{(\log\frac{1}{ $\epsilon$})^{2}}{$\epsilon$^{4/5}},
which improves (2.22) by a factor $\epsilon$^{1/5}=O($\eta$^{2/5}) . \square 
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§3. Convergence in higher mean

In the previous section, we have discussed the fact that the dynamics on the average

in the weakly disordered Anderson model is determined by a linear Boltzmann equation.
In this section, we want to address the following problem:

Key question: Does the average dynamics reflect the typical dynamics for a generic re‐

alization of the random potential ?

As we will see, the answer is yes.

§3.1. Statement of the main results

For the analysis in this section, we assume that the initial condition \hat{$\psi$_{0}} is again of

WKB type (2.6), and, in addition, that the singularities of its Fourier transform are�not

too pathological�. The latter is expressed by the requirement that the Fourier transform

of the WKB initial condition (2.6) satisfies a concentration of singularity condition:

(3.1) \hat{ $\phi$}_{0}^{ $\mu$}(k)=f_{\infty}^{ $\mu$}(k)+f_{sing}^{ $\mu$}(k) ,

where

(3.2) \Vert f_{\infty}^{ $\mu$}\Vert_{L^{\infty}(\mathrm{T}^{3})}<c,

and

\text{∨
(3.3) \Vert|f_{sing}^{ $\mu$}|*|f_{sing}^{ $\mu$}|\Vert_{L^{2}(\mathrm{T}^{3})}= \Vert|f_{sing}^{ $\mu$}|^{\vee}\Vert_{\ell^{4}(\mathbb{Z}^{3})}^{2}\leq c'$\mu$^{\frac{4}{5}}
for finite, positive constants c, c' independent of  $\mu$ . This condition imposes a restriction

on the possible choices of the phase function  S in (2.6).
The following simple, but physically important examples of \hat{ $\phi$}_{0}^{ $\mu$} satisfy (3.1)-(3.3) .

3.1.1. Example Let S(X)=pX for X\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\{h\} ,
and p\in \mathrm{T}^{3} . Then,

(3.4) \displaystyle \hat{ $\phi$}_{0}^{ $\mu$}(k)=\frac{$\mu$^{-\frac{3}{2}}\hat{h}($\mu$^{-1}(k-p))}{\Vert h\Vert_{\ell^{2}( $\mu$ \mathbb{Z}^{3})}}=:$\delta$_{ $\mu$}(k-p)
Since h is of Schwartz class, $\delta$_{ $\mu$} is a smooth bump function concentrated on a ball of

radius O( $\mu$) ,
with \Vert$\delta$_{ $\mu$}\Vert_{L^{2}(\mathrm{T}^{3})}=1 . Accordingly, we find

(3.5) (|$\delta$_{ $\mu$}|*|$\delta$_{ $\mu$}|)(k)\approx $\chi$(|k|<c $\mu$) ,
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and

(3.6) \Vert|$\delta$_{ $\mu$}|*|$\delta$_{ $\mu$}|\Vert_{L^{2}(\mathrm{T}^{3})}=\Vert|$\delta$_{ $\mu$}|^{\vee}\Vert_{\ell^{4}(\mathbb{Z}^{3})}^{2}\leq c$\mu$^{\frac{3}{2}}

Hence, (3.1) -(3.3) is satisfied, with f_{\infty}^{ $\mu$}=0 . We remark that in this example, p\in \mathrm{T}^{3}
corresponds to the velocity of the macroscopic initial condition F_{0}(X, V) in (2.12) for

the linear Boltzmann evolution.

3.1.2. Example As a small generalization of the previous case, we may likewise as‐

sume for S that for every k\in \mathrm{T}^{3} ,
there are finitely many solutions X(k) of \nabla_{X}S(X(k))

=k
,
and that X_{j}(\cdot)\in C^{1}(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\{h\}) for each j . Moreover, we assume that |\det Hess S (X)|

>c uniformly on \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\{h\} . Then, by stationary phase arguments, [53], one finds that

(3.7) \hat{ $\phi$}_{0}^{ $\mu$}(k)=f_{\infty}^{ $\mu$}(k)+f_{sing}^{ $\mu$}(k) , \Vert f_{\infty}^{ $\mu$}\Vert_{L^{\infty}(\mathrm{T}^{3})}<c
with

(3.8) f_{sing}^{ $\mu$}(k)=\displaystyle \sum_{j}c_{j}$\delta$_{ $\mu$}^{(j)}(k-\nabla_{X}S(X_{j}(k))) ,

for constants c_{j} independent of  $\mu$ ,
and smooth bump functions  $\delta$_{ $\mu$}^{(j)} similar to (3.4).

One again obtains \Vert|f_{sing}^{ $\mu$}|^{\vee}\Vert_{\ell^{4}(\mathbb{Z}^{3})}^{2}\leq c$\mu$^{\frac{3}{2}} ,
which verifies that (3.1) -(3.3) holds. \nabla S

determines the velocity distribution of the macroscopic initial condition F_{0}(X, V) in

(2.12).

We may now state the main result of [14].

Theorem 3.1. (T. C., [14]) Assume that the Fourier transfO rm of (2. 6), \hat{ $\phi$}_{0}^{ $\mu$},
satisfies the concentration of singularity property (3.1) -(3.3) . Then, for

(3.9)  $\mu$=$\eta$^{2},

and for any fixed, finite r\in 2\mathbb{N} , any T>0 ,
and for any Schwartz class function J ,

the

estimate

(3.10) \displaystyle \lim_{L\rightarrow\infty}(\mathrm{E}[|\langle J, W_{T}^{($\eta$^{2})}\rangle-\mathrm{E}[\langle J, W_{T}^{($\eta$^{2})}\rangle]|^{r}])^{\frac{1}{r}}\leq c(r, T)$\eta$^{\frac{1}{300r}}
holds for  $\eta$ sufficiently small, and a finite constant  c(r, T) that does not depend on  $\eta$.

Consequently,

(3.11) \displaystyle \lim_{ $\eta$\rightarrow 0}\lim_{L\rightarrow\infty}\mathrm{E}[|\langle J, W_{T}^{($\eta$^{2})}\rangle-\langle J, F_{T}\rangle|^{r}]=0
for any  1\leq r<\infty (^{i}.e . convergence in r‐th mean), and any T\in \mathbb{R}_{+}.
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§3.2. Main ingredients of the proof

Our starting point again is the truncated resolvent expansion

$\psi$_{t}=\displaystyle \frac{1}{2 $\pi$ i}\int_{\mathbb{R}+i $\epsilon$}dze^{-itz}\frac{1}{H_{ $\omega$}-z}$\psi$_{0}

$\psi$_{t}=\displaystyle \sum_{n=0}^{N}$\psi$_{t}^{(n)}+R_{t}^{(N)}
$\psi$_{t}^{(n)}=\displaystyle \frac{(- $\eta$)^{n}}{2 $\pi$ i}e^{ $\epsilon$ t}\int_{\mathbb{R}}dEe^{-itE}(\frac{1}{\triangle-E-i $\epsilon$}V_{ $\omega$})^{n}\frac{1}{\triangle-E-i $\epsilon$}$\psi$_{0}.

Accordingly, it induces the decomposition of the Wigner transform into

W_{t}=\displaystyle \sum_{n_{1},n_{2}=0}^{N+1}W_{t;n_{1},n_{2}}
To determine higher order moments, we let r\in 2\mathbb{N} . Then, clearly,

(\mathrm{E}[(\langle J_{$\eta$^{2}}, W_{$\phi$_{t}}\rangle-\mathrm{E}\langle J_{$\eta$^{2}}, W_{$\phi$_{t}}\rangle)^{r}])^{\frac{1}{r}}
(3.12) \displaystyle \leq CN\sum_{n_{1},n_{2}=0}^{N+1}(\mathrm{E}[|\langle J_{$\eta$^{2}}, W_{t;n_{1},n_{2}}\rangle-\mathrm{E}\langle J_{$\eta$^{2}}, W_{t;n_{1},n_{2}}\rangle|^{r}])^{\frac{1}{r}},
where J_{ $\mu$}(x, v) :=$\mu$^{-3}J( $\mu$ x, v) . We observe that \hat{J}_{$\eta$^{2}} forces |k-k'(\mathrm{m}\mathrm{o}\mathrm{d} 2\mathrm{T}^{3})|<c$\eta$^{2},
but that |k+k'(\mathrm{m}\mathrm{o}\mathrm{d} 2\mathrm{T}^{3})| is essentially unrestricted.

For n_{1}, n_{2}\leq N ,
we again explicitly determine the contractions among all copies

of the random potential, and organize the associated expansion in terms of Feynman

graphs. For convenience, we introduce the following multi‐index notation: Let n\equiv n_{1},

and \overline{n}\equiv n_{1}+n_{2} be fixed. For j=1 ,
. . .

,
r

,
we let

\displaystyle \mathrm{k}^{(j)}:=(k_{0}^{(j)}, \ldots, k_{+1}^{j)}\frac{(}{n})

d\displaystyle \underline{k}^{(j)}:=\prod_{\ell=0}^{\overline{n}+1}dk_{\ell}^{(j)}
d\displaystyle \underline{k}_{\hat{J}_{$\eta$^{2}}}^{(j)}:=\prod_{\ell=0}^{\overline{n}+1}dk_{\ell}^{(j)}\hat{J}_{$\eta$^{2}}(k_{n}^{(j)}-k_{n+1}^{(j)}, \frac{k_{n}^{(j)}+k_{n+1}^{(j)}}{2})

K^{(j)}[\displaystyle \mathrm{k}^{(j)}, $\alpha$_{j}, $\beta$_{j},  $\epsilon$]:=\prod_{\ell=0}^{n}\frac{1}{e_{\triangle}(k_{\ell}^{(j)})-$\alpha$_{j}-i$\epsilon$_{j}}\prod_{\ell'=n+1}^{\overline{n}+1}\frac{1}{e_{\triangle}(k_{\ell}^{(j)})-$\beta$_{j}+i$\epsilon$_{j}}
(3.13) U^{(j)}[\displaystyle \mathrm{k}^{(j)}] :=\prod_{\ell=1}^{n}\hat{V}_{ $\omega$}(k_{\ell}^{(j)}-k_{\ell-1}^{(j)})\prod_{\ell=n+2}^{\overline{n}+1}\hat{V}_{ $\omega$}(k_{\ell}^{(j)}-k_{\ell-1}^{(j)}) ,
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where $\epsilon$_{j}:=(-1)^{j} $\epsilon$, $\alpha$_{j}, $\beta$_{j}\in \mathbb{R} ,
and where we note that \overline{\hat{V}_{ $\omega$}(k)}=\hat{V}_{ $\omega$}(-k) .

Moreover, let

(3.14)  $\alpha$:=($\alpha$_{1}, \ldots, $\alpha$_{r})

and likewise for \underline{ $\beta$}, \underline{ $\xi$} and d\underline{ $\beta$}, d\underline{ $\xi$} . Then,

, d $\alpha$:=\displaystyle \prod_{j=1}^{r}d$\alpha$_{j},

\displaystyle \mathrm{E}[(\langle J_{$\eta$^{2}}, W_{$\phi$_{t}}\rangle)^{r}]=\frac{e^{2r $\epsilon$ t}$\eta$^{r\overline{n}}}{(2 $\pi$)^{2r}}\int_{(\mathbb{R}\times \mathbb{R})^{r}}d $\alpha$ d\underline{ $\beta$}e^{-it$\Sigma$_{j=1}^{r}(-1)^{j}($\alpha$_{j}-$\beta$_{j})}
\displaystyle \int_{(\mathrm{T}^{3})^{(\overline{n}+2)r}}[\prod_{j=1}^{r}d\underline{k}_{\hat{J}_{$\eta$^{2}}}^{(j)}]\mathrm{E}[\prod_{j=1}^{r}U^{(j)}[\mathrm{k}^{(j)}]]

(3.15) \displaystyle \prod_{j=1}^{r}K^{(j)}[\mathrm{k}^{(j)}, $\alpha$_{j}, $\beta$_{j},  $\epsilon$]\hat{ $\phi$}_{0}^{(j)}(k_{0}^{(j)})\overline{\hat{ $\phi$}_{0}^{(j)}(k_{+1}^{j)}\frac{(}{n})} ,

where

(3.16) \hat{ $\phi$}_{0}^{(j)} :=\left\{\begin{array}{l}
\hat{ $\phi$}_{0} \mathrm{i}\mathrm{f} j \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\\
-\hat{ $\phi$}_{0} \mathrm{i}\mathrm{f} j \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d}
\end{array}\right.
Clearly, the expectation \mathrm{E} produces a sum of O((\overline{n}r)!) singular integrals, which we

organize via Feynman graphs. We note that the number of Feynman graphs at fixed \overline{n}

is superfactorial in \overline{n}.

Figure 2. \mathrm{A} (completely connected) contraction graph for the case r=6, n=3, \overline{n}=7.

The \hat{J}_{$\eta$^{2}} ‐vertices are drawn in black, while the \hat{V}_{ $\omega$} ‐vertices are shown in white. The

r particle lines are solid, while the lines corresponding to contractions of pairings of
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random potentials are dashed. For j=3 in the notation of (3.15), the momenta k_{0}^{(3)}
and k^{(3)}

\overline{n}+1
are written above the corresponding propagator lines.

Definition 3.2. We denote

(3.17) \displaystyle \mathrm{E}_{Disc}[\prod_{j=1}^{r}U^{(j)}[\mathrm{k}^{(j)}]] :=\displaystyle \prod_{j=1}^{r}\mathrm{E}[U^{(j)}[\mathrm{k}^{(j)}]]
as the expectation based on completely disconnected graphs. It includes contractions

among random potentials \hat{V}_{ $\omega$} only if they lie on the same partic line. We denote

(3.18) \displaystyle \mathrm{E}_{N-D}[\prod_{j=1}^{r}U^{(j)}[\mathrm{k}^{(j)}]] :=\mathrm{E}[\prod_{j=1}^{r}U^{(j)}[\mathrm{k}^{(j)}]]-\mathrm{E}_{Disc}[\prod_{j=1}^{r}U^{(j)}[\mathrm{k}^{(j)}]] ,

as the expectation based on non‐disconnected graphs. It is defined by the condition that

there is at least one connectivity compohent connecting at least two different particle
lines. Moreover, we refer to

(3.19) \mathrm{E}_{2} ‐Conn [\displaystyle \prod_{j=1}^{r}U^{(j)}[\mathrm{k}^{(j)}]] :=\displaystyle \mathrm{E}[\prod_{j=1}^{r}(U^{(j)}[\mathrm{k}^{(j)}]-\mathrm{E}[U^{(j)}[\mathrm{k}^{(j)}]])]
as the expectation based on 2‐connected graphs.

We make the key observation that for n_{1}, n_{2}\leq N ,
the expectation based on discon‐

nected graphs of the r‐th power precisely produces the r‐th power of the expectation,

(3.20) \mathrm{E}_{Disc}[|\langle J_{$\eta$^{2}}, W_{t;n_{1},n_{2}}\rangle|^{r}]=|\mathrm{E}\langle J_{$\eta$^{2}}, W_{t;n_{1},n_{2}}\rangle|^{r}
Therefore, the difference

(\mathrm{E}[|\langle J_{$\eta$^{2}}, W_{t;n_{1},n_{2}}\rangle-\mathrm{E}\langle J_{$\eta$^{2}}, W_{t;n_{1},n_{2}}\rangle|^{r}])^{\frac{1}{r}}
=(\mathrm{E}_{2-Conn}[|\langle J_{$\eta$^{2}}, W_{t;n_{1},n_{2}}\rangle|^{r}])^{\frac{1}{r}}

(3.21) =(\displaystyle \mathrm{E}_{2}- Conn [(|\int d $\xi$ dv\hat{J}_{$\eta$^{2}}( $\xi$, v)\hat{ $\phi$}_{n_{2},t}(v-\frac{ $\xi$}{2})\hat{ $\phi$}_{n_{1},t}(v+\frac{ $\xi$}{2})|^{2})^{\frac{r}{2}}])^{\frac{1}{r}} ,

involves only the expectation \mathrm{E}_{2} ‐Conn based on 2‐connected graphs.
The main technical result of [14] is the following proposition which asserts that

the expectation based on 2‐connected graphs is small (a factor $\eta$^{2/5} smaller than the

corresponding a priori bound).

Proposition 3.3. ([14], in part joint with Laszlo Erdös). Let s\geq 2 ,
with  s\overline{n}\in

 2\mathbb{N} , and let T=$\eta$^{2}t>0 ,
where  $\epsilon$=\displaystyle \frac{1}{t} . Moreover, let  $\pi$\in$\Pi$_{s;^{\frac{ $\eta$}{n}},n}^{(\hat{J}_{2})2} be a 2‐connected

graph on s particle lines.
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Then, there exists a finite constant c=c(T) such that

(\log )(\mathrm{c}(\mathrm{T}) \log(3.22) |\mathrm{A}\mathrm{m}\mathrm{p}_{\hat{J}_{$\eta$^{2}}}( $\pi$)|
a priori bound

In particular, setting r=s
,

this bound holds for every non‐disconnected graph.

Proof idea: The strategy of the proof is based on systematically disconnecting the

contraction lines between different particle lines, and to reduce the problem to the L^{4}-

case (i.e., the case r=2 ). Then, we exploit momentum conservation constraints for

estimates similar to the ones used for bounding the crossing diagrams in the previous
section. \square 

The upper bounds on the contributions of the remainder term in the resolvent

expansion are similar. We shall not address them in any detail here because their

discussion is more technical. As a result of the above, we obtain the following:

Corollary 3.4. The sum of disconnected graphs yields, in the kinetic scaling
limit  $\eta$\rightarrow 0 with (T, X)=$\eta$^{2}(t, x) ,

\displaystyle \lim_{ $\eta$\rightarrow 0}\mathrm{E}_{Disc}[|\langle W_{T}^{($\eta$^{2})}, J\rangle|^{r}]=|\langle F_{T}, J\rangle|^{r}
for any finite r\in 2\mathbb{N} , and any test function J(X, V) .

Thus,

\displaystyle \lim

contains only nondisconnected graphs

for any  r\in 2\mathbb{N} , and thus for all 1\leq r<\infty.

In particular, the variance (r=2) tends to zero as  $\eta$\rightarrow 0 . Moreover, from conver‐

gence in higher mean, one immediately obtains convergence in probability.

Corollary 3.5. The rescaled Wigner transfO rm converges weakly, and in proba‐

bility, to a solution F_{T}(X, V) of the linear Boltzmann equation. That is,

\displaystyle \lim_{ $\eta$\rightarrow 0}\mathbb{P}[|\langle W_{T}^{($\eta$^{2})}, J\rangle-\langle F_{T}, J\rangle|> $\delta$]=0
for any  $\delta$>0 ,

and any test function J(X, V) .

We conclude that in this sense, the average dynamics in the kinetic scaling limit

indeed reflects the typical dynamics of the system.
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§4. Lower bounds on localization lengths

We recall the main conjecture for the 2‐dimensional Anderson model:

Conjecture: In dimension 2, Anderson localization holds for all  $\eta$>0 . The localization

length is of size O(\exp($\eta$^{-c})) , for some c>0.

Heuristically, the localization length is the typical diameter of the support of l0‐

calized eigenfunctions. There are many various precise definitions, adapted to different

contexts, which we will not address in detail here.

In the important work [49], C. Shubin, W. Schlag and T. Wolff, prove the following.

Theorem 4.1. (C. Shubin, W. Schlag, T. Wolff� [49]) Assume that the random

potential in the Anderson model is either Gaussian or Bernoulli. Then, with probability

one, the localization length of eigenstates (outside a small exceptional energy range) is

bounded below by O($\eta$^{-2}) in d=1
,

and by O($\eta$^{-2+ $\delta$}) in d=2.

In their proof, the authors of [49] use techniques of harmonic analysis to establish

for the Anderson model in d=1
,

2 and small  $\eta$>0 ,
that with probability one, most

eigenstates are in frequency space concentrated on shells of thickness \leq$\eta$^{2} in d=1,
and \leq$\eta$^{2- $\delta$} in d=2 . The eigenenergies are required to be bounded away from the

edges of the spectrum of the nearest neighbor laplacian \triangle
,

and in  d=2
,

also away

from its center. By the uncertainty principle, this implies the asserted lower bounds

of order O($\eta$^{-2}) in d=1
,

and and O($\eta$^{-2+ $\delta$}) in d=2
,

on the localization lengths in

position space. Closely related to their work are the papers [43, 44, 45] by Magnen,

Poirot, Rivasseau, and [46] by Poirot, who used, amongst others, ideas stemming from

the renormalization group analysis of fermionic manybody systems, to study the Greens

functions associated to H_{ $\omega$}.

The class of methods employed in [49] and [43, 44, 45, 46] is known to be extremely

powerful in d=1
, 2, but less suitable for d=3 . In the paper [13], an entirely different

approach is taken to prove the following result.

Theorem 4.2. (T. C., [13]) In d=3 ,
the localization length of eigenfu nctions

is bounded from below by  $\eta$ of order  O(\displaystyle \frac{$\eta$^{-2}}{|\log $\eta$|}) , for  $\eta$>0 small, and with probability one.

The link between the localization length and the bounds proven for the Boltzmann

limit in [13] is a joint result of the author with L. Erdös and H.‐T. Yau. The argument
can be outlined as follows. We write the eigenfunctions of H_{ $\omega$} (for finite L at first)
in the basis of Kronecker deltas on $\Lambda$_{L} . It is impossible that the localization length is

smaller than the spreading size of each basis vector $\delta$_{x} obtained from e^{-itH_{ $\omega$}}$\delta$_{x}.
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Thus, the estimate

(4.1) \mathrm{E}[\Vert e^{-itH_{ $\omega$}}$\phi$_{0}-e^{-it\triangle}$\phi$_{0}\Vert_{2}^{2}]\ll 1

with $\phi$_{0}=$\delta$_{x} ,
and some t>0 , implies that the localization length is \geq O(t) . However,

this bound is proven as part of the error estimate for the Boltzmann limit in [13], as

addressed in Section 2, for t=O($\eta$^{-2}) .

§4.1. Decaying Random Potentials

The localization conjecture for the weakly disordered Anderson model in dimension

2 is a notoriously hard open problem. It is natural to ask whether there is an interpre‐
tation in the context of renormalization group theory that elucidates more clearly the

nature of some of the obstacles.

In this section, we consider the weakly disordered Anderson model with a decaying
random potential. As will be described, this model exhibits a transition parametrized

by the decay exponent, from a scattering region, to a region where localization is con‐

jectured.
To be precise, the Hamiltonian has the form

(4.2) H_{ $\omega$}=\triangle+ $\eta$ V_{ $\omega$}(x)

where

(4.3) V_{ $\omega$}(x)\displaystyle \sim\frac{$\omega$_{x}}{\langle x\rangle^{ $\sigma$}}
and \langle x\rangle:=\sqrt{1+x^{2}}.

The following results have been established in the more recent literature: In the

supercritical case  $\sigma$>\displaystyle \frac{1}{2} ,
it was proven by Bourgain in [10] that with large probability,

H_{ $\omega$} (with Bernoulli or Gaussian randomness) has, for small  $\eta$ , pure a.c. spectrum in

(4.4)  I_{ $\tau$}:=(-4+ $\tau$, - $\tau$)\cup( $\tau$, 4- $\tau$)

(  $\tau$>0 arbitrary, but fixed), noting that \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\triangle= [4, 4] in d=2 ; moreover, the

wave operators were constructed, and asymptotic completeness was established. The

(generalized) eigenfunctions are therefore delocalized. Certain other classes of lattice

Schrödinger operators with decaying random potentials have been proven to exhibit

a.c. spectrum, scattering, and asymptotic completeness by Bourgain in [11], and by
Rodnianski and Schlag in [47]. We also note the contextually related work of Denissov

in [20].
As noted in the previous section, Schlag, Shubin and Wolff have proven lower

bounds on the localization length of eigenfunctions for d=2 and  $\sigma$=0 ,
of the form

$\eta$^{-2+ $\delta$} ,
for any  $\delta$>0 , [49].
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We shall here address the case 0< $\sigma$\displaystyle \leq\frac{1}{2} in dimension d=2 . Our main results

are as follows.

For the critical decay exponent  $\sigma$=\displaystyle \frac{1}{2} ,
the problem is marginal in the language of

renormalization group theory. Accordingly, we obtain a comparison of the logarithm of

the localization length to powers of  $\eta$ , yielding lower bounds on the localization length
that are exponential in \displaystyle \frac{1}{ $\eta$} ,

of the form 2^{$\eta$^{-1}}4^{+ $\delta$} (  $\delta$>0 arbitrary).
In the subcritical case 0< $\sigma$<\displaystyle \frac{1}{2} ,

it is suspected that the model exhibits a signif‐
icant component of point spectrum. In the language of renormalization group theory,
the potential scales like a relevant perturbation, whereby we obtain a comparison of the

localization length to powers of  $\eta$ . Consequently, our lower bounds on the localization

lengths are polynomial in \displaystyle \frac{1}{ $\eta$} for 0< $\sigma$<\displaystyle \frac{1}{2} ,
of the form $\eta$^{-\frac{2- $\delta$}{1-2 $\sigma$}} (  $\delta$>0 arbitrary).

Theorem 4.3. (T. C., [15]) For  $\mu$>0 sufficiently small,  0< $\eta$\ll $\mu$ , any fixed
 $\tau$ with  $\eta$\ll $\tau$< $\mu$ ,

and any arbitrary  $\delta$>0 ,
the lower bound on the localization length

\ell_{ $\sigma$}( $\eta$) of eigenfunctions for eigenvalues in I_{ $\tau$} satisfies the following estimates:

\bullet In the subcritical case  0< $\sigma$<\displaystyle \frac{1}{2} ,
there exist positive constants $\eta$_{0}( $\sigma$,  $\delta$)\ll 1 and C_{ $\sigma$}

for every fixed 0< $\sigma$<\displaystyle \frac{1}{2} such that

(4.5) \ell_{ $\sigma$}( $\eta$)\geq C_{ $\sigma$}$\eta$^{-\frac{2- $\delta$}{1-2 $\sigma$}}

for all  $\eta$<$\eta$_{0}( $\sigma$,  $\delta$) .

\bullet In the critical case  $\sigma$=\displaystyle \frac{1}{2} , there exists a positive constant $\eta$_{0}( $\delta$)\ll 1 such that

(4.6) \ell_{ $\sigma$=\frac{1}{2}}( $\eta$)\geq 2^{$\eta$^{-1}}4^{+ $\delta$}
for all  $\eta$<$\eta$_{0}( $\delta$) .

These estimates �interpolate� between the lower bound $\eta$^{-2+ $\delta$} of Schlag‐Shubin‐
Wolff for  $\sigma$=0 ,

and \infty corresponding to pure a.c. spectrum for  $\sigma$>\displaystyle \frac{1}{2} due to Bourgain.

§4.2. Outline of the proof

The proof uses Feynman graph expansions adapted to a dyadic partition of unity
on \mathbb{Z}^{2}

,
combined with the smoothing of resolvent multipliers due to dyadic restriction,

inspired by Bourgain in [10].
We introduce a dyadic partition of unity,

\displaystyle \sum_{j=0}^{\infty}P_{j}=1
where we require that P_{j} and v_{ $\sigma$} satisfy:
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\bullet P_{j}\sim $\chi$(2^{j}<|x|\leq 2^{j+1}) .

\bullet \Vert \mathcal{F}(P_{j}P_{j'})\Vert_{L^{1}(\mathrm{T}^{2})}\sim 1 if |j-j'|\leq 1

\bullet  P_{j}P_{j'}=0 if |j-j'|>1.

\bullet  V_{ $\omega$}(x)=v_{ $\sigma$}(x)$\omega$_{x} where v_{ $\sigma$} satisfies

(4.7) |\mathcal{F}(P_{j}P_{j'}v_{ $\sigma$}^{2})|\sim<2^{-2 $\sigma$ j}|\mathcal{F}(P_{j}P_{j'})|\sim 2^{-2 $\sigma$ j}|\mathcal{F}(P_{j}^{2})| if |j-j'|\leq 1.

This implies

(4.8) |x|^{ $\sigma$}|v_{ $\sigma$}(x)|\sim<1

because

, 0< $\sigma$\displaystyle \leq\frac{1}{2}

(4.9) \Vert P_{j}v_{ $\sigma$}\Vert_{\ell^{\infty}(\mathbb{Z}^{2})}=\Vert P_{j}^{2}v_{ $\sigma$}^{2}\Vert_{\ell\infty(\mathbb{Z}^{2})}^{1/2}\leq\Vert \mathcal{F}(P_{j}^{2}v_{ $\sigma$}^{2})\Vert_{L^{1}(\mathrm{T}^{2})}^{1/2}\sim 2^{- $\sigma$ j}
holds.

Next, we partition V\equiv V_{ $\omega$} into

V=\displaystyle \sum_{j=0}^{J+1}V_{j}
where 0\leq j\leq J account for the dyadic annuli at scales |x|\sim 2^{j} ,

and where J+1

accounts for the unbounded region |x|>2^{J+1},

(4.10) V_{j}(x)=P_{j}(x)v_{ $\sigma$}(x)$\omega$_{x}

for 0\leq j\leq J ,
and

(4.11) V_{J+1}(x)=(\displaystyle \sum_{j=J+1}^{\infty}P_{j}(x))v_{ $\sigma$}(x)$\omega$_{x}.
It is evident that

(4.12) \mathrm{E}[V_{j}(x)V_{j'}(x')]=$\delta$_{|j-j'|\leq 1}P_{j}(x)P_{j'}(x)v_{ $\sigma$}^{2}(x)$\delta$_{x,x'}\sim<2^{-2 $\sigma$ j}$\delta$_{x,x'}

and

(4.13) \mathrm{E}[V_{J+1}(x)V_{J+1}(x')]<2^{-2 $\sigma$ J}$\delta$_{x,x'}\sim

The expectations \displaystyle \mathrm{E}[\prod_{i}V(x)] satisfy Wick�s theorem.

Subsequently, we invoke estimates on the restriction of the resolvent \displaystyle \frac{1}{e\triangle- $\alpha$-i $\epsilon$} to

dyadic shells, which we adapt from those proven by Bourgain in [10].
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Assume that \in - -\text{∪ -

). Then,Lemma 4.4. Assume that  $\alpha$\in I_{ $\tau$} :=(-4+ $\tau$, - $\tau$)\cup( $\tau$, 4- $\tau$) . Then,

(4.14) \displaystyle \Vert|\frac{1}{e_{\triangle}- $\alpha$-i $\epsilon$}|*|\mathcal{F}(P_{j}P_{j'}v_{ $\sigma$}^{2})|\Vert_{L^{\infty}(\mathrm{T}^{2})}\sim<\left\{\begin{array}{l}
2^{j(1-2 $\sigma$)} \mathrm{i}\mathrm{f} j\leq J\\
$\sigma$^{-1}2^{-2 $\sigma$ J}$\epsilon$^{-1} \mathrm{i}\mathrm{f} j, j'=J+1
\end{array}\right.
and

(4.15) \displaystyle \Vert|\frac{1}{e_{\triangle}- $\alpha$-i $\epsilon$}|*|\mathcal{F}(P_{j}P_{j'}v_{ $\sigma$}^{2})|\Vert_{L^{1}(\mathrm{T}^{2})}\sim<\log\frac{1}{ $\epsilon$}
for0\leq j, j'\leq J+1 . The implicit constants only depend on  $\tau$

,
and are finite for  $\tau$>0.

Again, we evaluate the expectation \mathrm{E} explicitly in the resolvent expansion for $\phi$_{t},
truncated at N . Subsequently, we organize the resulting terms by use of Feynman

graphs, and in a similar manner as in section 2, we sum the contributions from all

scales, and obtain

\{\mathrm{z}\mathrm{j}(12 $\sigma$) + (error terms) ,(4.16) \mathrm{E}[\Vert$\phi$_{t}-e^{it\triangle}$\phi$_{0}\Vert_{2}^{2}] \{\mathrm{z} \mathrm{J}+1 th term

\sim J2-

where the first term on the rhs stems from the sum over all annuli with 0\leq j\leq J.
The second term stems from the remainder term indexed by J+1 which accounts for

\{x\in \mathbb{Z}^{2}||x|>2^{J+1}\} . The last term depends on N, J,  $\sigma$,  $\epsilon$,  $\eta$ ,
and accounts for various

errors terms which we will not address in any detail.

We again note that based on the arguments in the previous section,  t is proportional
to lower bound on localization length. Hence, our goal is to maximize t=$\epsilon$^{-1} while

minimizing the rhs of (4.16).

The two dominant terms on the rhs of (4.16) are comparable and small for the

following choices of parameters:

\bullet Subcritical  $\sigma$<\displaystyle \frac{1}{2} : We set  $\epsilon$=t^{-1}\sim 2^{-(1-2 $\sigma$)J} and $\eta$^{-2+ $\delta$}\sim J2^{J} ,
and N\displaystyle \sim\frac{|\log $\epsilon$|}{\log|\log $\epsilon$|}

\bullet Critical  $\sigma$=\displaystyle \frac{1}{2} : We set  $\epsilon$=t^{-1}\sim 2^{-J} and $\eta$^{-\frac{1}{4}+ $\delta$}=J=N . We note that the

\overline{\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}\frac{1}{4}}is not optimal, owing to the loss of some powers of  $\eta$ caused by the

error terms.

From the above results, we conclude the following lower bounds on the localization

length:

\bullet Subcritical  $\sigma$<\displaystyle \frac{1}{2} : The localization length is bounded from below \mathrm{b}\mathrm{y}_{\sim}^{>}($\eta$^{-2+ $\delta$})^{\frac{1}{1-2 $\sigma$}}.
This result interpolates between the bound of Shubin‐Schlag‐Wolff in [49], and the

scattering result of Bourgain in [10].
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\bullet Critical  $\sigma$=\displaystyle \frac{1}{2} : Due to the critical scaling, we obtain a lower bound on the localiza‐

tion length \sim>2^{-(\frac{1}{ $\eta$})^{1/4- $\delta$}} . We note that this result and its proof are reminiscent of

Nekhoroshev type estimates.

This concludes our outline of the proof of Theorem 4.3. \square 

§4.3. Renormalization group interpretation

The localization conjecture for the weakly disordered Anderson model in d=2 is

known as extremely hard. In view of the analysis of the weakly disordered Anderson

model with decaying random potential, we arrive at the following interpretation of this

problem, from the point of view of renormalization group theory:

\bullet For supercritical  $\sigma$>\displaystyle \frac{1}{2} ,
the random potential is a perturbation is RG irrelevant

perturbation of the lattice laplacian, \triangle . In the scaling limit, \triangle dominates over

 V_{ $\omega$} . Accordingly, as proven by Bourgain in [10], the perturbed Hamiltonian H_{ $\omega$} is

unitarily equivalent to \triangle
,

via the scattering map, for energies in  I_{ $\tau$} . In this sense,

\triangle and  H_{ $\omega$} belong to the same universality class of Hamiltonians, and restricted to

the spectral intervals I_{ $\tau$}, H_{ $\omega$} has absolutely continuous spectrum.

\bullet For critical  $\sigma$=\displaystyle \frac{1}{2} ,
the random potential is a RG marginal perturbation of \triangle . In

the scaling limit, \triangle and  V_{ $\omega$} scale in the same manner. The problem is scaling

critical, and the type of the spectrum is not known at present. It is not known if

this problem is strictly marginal, marginally relevant, or marginally irrelevant.

\bullet For subcritical  $\sigma$<\displaystyle \frac{1}{2} ,
the random potential is a RG relevant perturbation of \triangle.

In the scaling limit, V_{ $\omega$} dominates over \triangle
,

which makes the conjectural presence

of point spectrum and localized states plausible. However, RG relevant problems
are notoriously difficult, and at present, there are no known methods to attack this

problem. In quantum field theory, RG relevant problems appear in the vicinity
of RG unstable fixed points, and are far less investigated than RG irrelevant or

marginally irrelevant problems.

In this sense, we conclude: The localization conjecture for the weakly disordered

(0< $\eta$\ll 1) Anderson model in d=2 is hard because it constitutes a RG

relevant problem.
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§5. Fermi gas in random medium‐I. The ideal Fermi gas

The Anderson model neglects the repulsion between the electrons due to Coulomb

interactions, and the Pauli principle. This section addresses some recent results concern‐

ing the dynamics of an ideal Fermi gas in a random medium, at positive temperature,

based on joint work of the author with I. Sasaki, [16]. In the next section, we address

a Fermi gas in a random medium with dynamical Hartree‐Fock interactions, based on

joint work with I. Rodnianski, [17]. Our goal is to investigate the extent to which

manybody effects influence the predictions of the weakly disordered Anderson model.

We also refer to [4, 18, 19] for important recent results on the persistence of localiza‐

tion in fermionic manybody models at strong disorders (a topic which is not addressed

here).
We consider a fermion gas in a finite box $\Lambda$_{L}:= [- \displaystyle \frac{L}{2}, \frac{L}{2}]^{d}\cap \mathbb{Z}^{d} of side length L\gg 1,

with periodic boundary conditions, in dimensions d\geq 3 . We denote its dual lattice by

$\Lambda$_{L}^{*}:=$\Lambda$_{L}/L\subset \mathrm{T}^{d}.
We denote the fermionic Fock space of scalar electrons by

(5.1) \displaystyle \mathfrak{F}=\bigoplus_{n\geq 0}\mathfrak{F}_{n},
where

(5.2) \displaystyle \mathfrak{F}_{0}=\mathbb{C} , \mathfrak{F}_{n}=\bigwedge_{1}^{n}\ell^{2}($\Lambda$_{L}) , n\geq 1.
We introduce creation‐ and annihilation operators a_{p}^{+}, a_{q} ,

for p, q\in$\Lambda$_{L}^{*} , satisfying the

canonical anticommutation relations

(5.3) a_{p}^{+}a_{q}+a_{q}a_{p}^{+}= $\delta$(p-q):=\left\{\begin{array}{l}
L^{d} \mathrm{i}\mathrm{f} p=q\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
We define the fermionic manybody Hamiltonian

(5.4) H_{ $\omega$}:=T+ $\eta$ V_{ $\omega$}

where

(5.5) T=\displaystyle \int dpE(p)a_{p}^{+}a_{p}
is the kinetic energy operator; here we recall the notation \displaystyle \int dp\equiv\frac{1}{|$\Lambda$_{L}|}\sum_{p\in$\Lambda$_{L}^{*}} . Moreover,

(5.6) V_{ $\omega$}:=\displaystyle \sum_{x\in$\Lambda$_{L}}$\omega$_{x}a_{x}^{+}a_{x}



90 T. Chen

couples the fermions to a static random potential. As previously, in the case of the

Anderson model, \{$\omega$_{x}\}_{x\in$\Lambda$_{L}} is a field of i.i. \mathrm{d} . real‐valued random variables which we

assume to be centered, normalized, and Gaussian for simplicity. Thus,

(5.7) \mathrm{E}[$\omega$_{x}]=0, \mathrm{E}[$\omega$_{x}^{2}]=1

for all x\in$\Lambda$_{L} . Moreover, we assume that

(5.8) E(p)=\displaystyle \sum_{j=1}^{d}\cos(2 $\pi$ p_{j}) ,

which defines the Fourier multiplier corresponding to the nearest neighbor Laplacian on

\mathbb{Z}^{d}.

Let

(5.9) N:=\displaystyle \sum_{x\in$\Lambda$_{L}}a_{x}^{+}a_{x}
denote the particle number operator. Clearly,

(5.10) [H_{ $\omega$}, N]=0

holds.

Let A denote the C^{*} ‐algebra of bounded operators on \mathfrak{F} . We consider the dynamics
on A given by

(5.11) $\alpha$_{t}(A)=e^{itH_{ $\omega$}} A e^{-itH_{ $\omega$}}

generated by the random Hamiltonian H_{ $\omega$}.

§5.1. Statement of the main results

We consider a normalized, translation‐invariant

(5.12) $\rho$_{0}:\mathfrak{A}\rightarrow \mathbb{C},

which is deterministic in the sense that it does not depend on \{$\omega$_{x}\}_{x} . Accordingly, we

define the associated time‐evolved state

(5.13) $\rho$_{t}(A) :=$\rho$_{0}(e^{itH_{ $\omega$}} A e^{-itH_{ $\omega$}}) ,

with t\in \mathbb{R} ,
and initial condition given by $\rho$_{0} . We particularly focus on the dynamics of

the averaged two‐point functions

(5.14) \mathrm{E}[$\rho$_{t}(a_{p}^{+}a_{q})],
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where p, q\in$\Lambda$_{L}^{*} . Clearly,

(5.15) \displaystyle \mathrm{E}[$\rho$_{0}(a_{p}^{+}a_{q})]=$\rho$_{0}(a_{p}^{+}a_{q})= $\delta$(p-q)\frac{1}{L^{d}}$\rho$_{0}(a_{p}^{+}a_{p}) ,

where

(5.16)  $\delta$(k) :=L^{d}$\delta$_{k},

and where

(5.17) $\delta$_{k}=\left\{\begin{array}{l}
1\mathrm{i}\mathrm{f} k\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} $\Lambda$_{L}^{*}\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right.
denotes the Kronecker delta on the lattice $\Lambda$_{L}^{*} (mod \mathrm{T}^{d} ). We remark that for fermions,

(5.18) 0\displaystyle \leq\frac{1}{L^{d}}$\rho$_{0}(a_{p}^{+}a_{p})\leq 1,
since \Vert a_{p}^{(+)}\Vert=L^{d/2} in operator norm, \forall p\in$\Lambda$_{L}^{*}.

§5.2. Boltzmann limit of the momentum distribution function

We denote the microscopic time, position, and velocity variables by (t, x,p) ,
and

the corresponding macroscopic variables by (T, X, V)=($\eta$^{2}t, $\eta$^{2}x, v) . We prove that the

momentum distribution f(q) converges to a solution of a linear Boltzmann equation in

the limit  $\eta$\rightarrow 0.

Theorem 5.1. (T. C., I. Sasaki, [16]) We assume that $\rho$_{0} is translation invari‐

ant. Then, the averaged two‐point functions are translation invariant,

(5.19) \displaystyle \mathrm{E}[$\rho$_{t}(a^{+}(f)a(g))]=\int dp\overline{f(p)}g(p)\mathrm{E}[$\rho$_{t}(a_{p}^{+}a_{p})],
(i.e., diagonal in a_{p}^{+}, a_{p}) for any f, g\in S(\mathrm{T}^{d}) of Schwartz class, and the thermodynamic
limit

(5.20) $\Omega$_{T}^{(2; $\eta$)}(f;g) :=\displaystyle \lim_{L\rightarrow\infty}\mathrm{E}[$\rho$_{T/$\eta$^{2}}(a^{+}(f)a(g))]
exists for all f, g\in S(\mathrm{T}^{d}) ,

and T>0.

For any T>0 and all f, g\in S(\mathrm{T}^{d}) ,
the limit

(5.21) $\Omega$_{T}^{(2)}(f;g) :=\displaystyle \lim_{ $\eta$\rightarrow 0}$\Omega$_{T}^{(2; $\eta$)}(f;g)
exists, and is the inner product of f, g with respect to a Borel measure F_{T}(p)dp,

(5.22) $\Omega$_{T}^{(2)}(f;g)=\displaystyle \int dpF_{T}(p)\overline{f(p)}g(p) ,
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where F_{T}(V) satisfies the linear Boltzmann equation

(5.23) \displaystyle \partial_{T}F_{T}(V)=2 $\pi$\int_{\mathrm{T}^{d}}dU $\delta$(E(U)-E(V))(F_{T}(U)-F_{T}(V)) ,

with initial condition

(5.24) F_{0}(p)=\displaystyle \lim_{L\rightarrow\infty}\frac{1}{L^{d}}$\rho$_{0}(a_{p}^{+}a_{p})
for p\in \mathrm{T}^{d}.

§5.3. Outline of the Proof

The proof of Theorem 5.1 can be sketched as follows. We consider the Heisenberg
evolution of the creation‐ and annihilation operators,

(5.25) a(f, t) :=e^{itH_{ $\omega$}}a(f)e^{-itH_{ $\omega$}},

where f is a test function.

We make the key observation that since H_{ $\omega$} is bilinear in a^{+}, a
,
it follows that a(f, t)

is a linear superposition of annihilation operators. Therefore, there exists a function f_{t}
such that

(5.26) a(f, t)=a(f_{t})=\displaystyle \int dp\overline{f_{t}(p)}a_{p}=(a^{+}(f_{t}))^{*}
In particular,

i\partial_{t}a(f_{t})=[H_{ $\omega$}, a(f_{t})]

=\displaystyle \int dpf_{t}(p)E(p)a_{p}+ $\eta$\int dp\int duf_{t}(p)\hat{V}_{ $\omega$}(u-p)a_{u}
(5.27) =a(\triangle f_{t})+a( $\eta$ V_{ $\omega$}^{(1)}f_{t}) ,

and moreover, it is clear that a(f, 0)=a(f_{0})=a(f) . As before, \triangle is the nearest

neighbor Laplacian on $\Lambda$_{L} . Moreover, H_{ $\omega$}^{(1)}=H_{ $\omega$}|_{\mathfrak{F}_{1}} denotes the 1‐particle Anderson

Hamiltonian, and V_{ $\omega$}^{(1)}=V_{ $\omega$}|_{\mathfrak{F}_{1}} is the 1‐particle multiplication operator (V_{ $\omega$}^{(1)}f)(x)=
$\omega$_{x}f(x) .

Thus, f_{t} solves the 1‐particle random Schrödinger equation

(5.28) i\partial_{t}f_{t}=H_{ $\omega$}^{(1)}f_{t} :=\triangle f_{t}+ $\eta$ V_{ $\omega$}^{(1)}f_{t}

(5.29) f_{0}=f.
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Accordingly,

$\rho$_{t}(a^{+}(f)a(g))=$\rho$_{0}(a^{+}(f_{t})a(g_{t}))

=\displaystyle \int dpdq$\rho$_{0}(a_{p}^{+}a_{q})\overline{f_{t}(p)}g_{t}(q)
(5.30) =\displaystyle \int dpJ(p)\overline{f_{t}(p)}g(p)
where the momentum conservation condition

(5.31) $\rho$_{0}(a_{p}^{+}a_{q})= $\delta$(p-q)J(p)

follows from translation invariance of $\rho$_{0} ,
with

(5.32) 0\displaystyle \leq J(p)=\frac{1}{L^{d}}$\rho$_{0}(a_{p}^{+}a_{p})=\frac{1}{1+e^{h(p)}}\leq 1.
The fact that J(p)\leq 1 is a consequence of the Pauli principle.

For N\in \mathbb{N} ,
we expand f_{t}, g_{t} into the truncated Duhamel series,

(5.33) f_{t}=f_{t}^{(\leq N)}+f_{t}^{(>N)},

with

(5.34) f_{t}^{(\leq N)}:=\displaystyle \sum_{n=0}^{N}f_{t}^{(n)}
The Duhamel term of n‐th order (in powers of  $\eta$ ) is given by

(5.35) \displaystyle \hat{f_{t}}^{(n)}(p) :=$\eta$^{n}e^{ $\epsilon$ t}\int d $\alpha$ e^{it $\alpha$}\int dk_{0}\cdots dk_{n} $\delta$(p-k_{0})

(\displaystyle \prod_{j=0}^{n}\frac{1}{E(k_{j})- $\alpha$-i $\epsilon$})(\prod_{j=1}^{n}\hat{V}_{ $\omega$}(k_{j}-k_{j-1}))\hat{f}(k_{n}) .

As in the discussion of the Boltzmann limit for the weakly disordered Anderson model,
we choose

(5.36)  $\epsilon$=\displaystyle \frac{1}{t}
so that the factor e^{ $\epsilon$ t} remains bounded for all t . By

(5.37) f_{t}^{(>N)}=i $\eta$\displaystyle \int_{0}^{t}dse^{i(t-s)H_{ $\omega$}}V_{ $\omega$}^{(1)}f_{t}^{(N)}(s) ,

we account for the Duhamel remainder term.



94 T. Chen

Accordingly,

(5.38) $\rho$_{t}(a^{+}(f)a(g))=$\rho$_{0}(a^{+}(f_{t})a(g_{t}))=\displaystyle \sum_{n,\overline{n}\in \mathcal{I}_{N}}$\rho$_{t}^{(n,\overline{n})}(f;g)
where

(5.39) $\rho$_{t}^{(n,\overline{n})}(f;g):=$\rho$_{0}(a^{+}(f_{t}^{(n)})a(g_{t}^{(\overline{n})}))

for \mathcal{I}_{N}:=\{1, . . . , N, >N\}.
Next, we use the following notation. If n, \overline{n}\leq N ,

and n+\overline{n} is odd, \mathrm{E}[$\rho$_{t}^{(n,\overline{n})}(p, q)]=
0 . Thus, let

(5.40) \displaystyle \overline{n}:=\frac{n+\overline{n}}{2}\in \mathbb{N},
and we define \{u_{j}\}_{j=0}^{2\overline{n}+1} by

(5.41) u_{j}:=\left\{\begin{array}{l}
k_{n-j} \mathrm{i}\mathrm{f} j\leq n\\
\overline{k}_{j-n-1} \mathrm{i}\mathrm{f} j\geq n+1.
\end{array}\right.
Thus, for n, \overline{n}\leq N (and \hat{V}_{ $\omega$}(u)^{*}=\hat{V}_{ $\omega$}(-u) ),

\displaystyle \mathrm{E}[$\rho$_{t}^{(n,\overline{n})}(f;g)]=$\eta$^{2\overline{n}}e^{2 $\epsilon$ t}\int d $\alpha$ d\overline{ $\alpha$}e^{it( $\alpha$-\overline{ $\alpha$})}
\displaystyle \int du_{0}\cdots du_{2\overline{n}+1}\overline{f(u_{0})}g(u_{2\overline{n}+1})J(u_{n}) $\delta$(u_{n}-u_{n+1})

\displaystyle \prod_{j=0}^{n}\frac{1}{E(u_{j})- $\alpha$-i $\epsilon$}\prod_{\ell=n+1}^{2\overline{n}+1}\frac{1}{E(u_{\ell})-\overline{ $\alpha$}+i $\epsilon$}
(5.42) \displaystyle \mathrm{E}[\prod_{j=1}^{n}\hat{V}_{ $\omega$}(u_{j}-u_{j-1})\prod_{j=n+2}^{2\overline{n}+1}\hat{V}_{ $\omega$}(u_{j}-u_{j-1})]
This expression is completely analogous to (2.16) in our previous discussion of the

Anderson model, and we organize the expectation with respect to the random potential

by use of Feynman diagrams.

Accordingly, to prove the theorem, we show that the Feynman amplitudes of cross‐

ing and nesting diagrams yield small error terms, and that the amplitudes of decorated

ladder diagrams are dominant.

The sum of Feynman amplitudes associated to decorated ladder diagrams yields
the solution of the linear Boltzmann equation, as asserted in the theorem. \square 
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§5.4. Discussion of the Result

An initial condition of particular interest is the Gibbs state (with inverse temper‐

ature  $\beta$ and chemical potential  $\mu$ ) for a non‐interacting fermion gas,

(5.43)  $\rho$_{0}(A)=\displaystyle \frac{1}{Z_{ $\beta,\ \mu$}}\mathrm{T}\mathrm{r}(e^{- $\beta$(T- $\mu$ N)}A)
where Z_{ $\beta,\ \mu$}:=\mathrm{T}\mathrm{r}(e^{- $\beta$(T- $\mu$ N)}) .

The momentum distribution in the free Gibbs state is the Fermi‐Dirac distribution

F_{0}(p)=\displaystyle \lim_{L\rightarrow\infty}$\rho$_{0}(\frac{1}{L^{d}}a_{p}^{+}a_{p}). =\frac{1}{1+e^{ $\beta$(E(p)- $\mu$)}}
According to it, the probability of having a plane wave with momentum p is \displaystyle \frac{F_{0}(p)}{\int dpF_{0}(p)}.

We make the key observation that for all 0< $\beta$\leq\infty,

F_{0}(p)=\displaystyle \frac{1}{1+e^{ $\beta$(E(p)- $\mu$)}}
is a stationary solution of the Boltzmann equation. This remains true in zero tempera‐

ture limit  $\beta$\rightarrow\infty where (in the weak sense)

\displaystyle \frac{1}{1+e^{ $\beta$(E(p)- $\mu$)}}\rightarrow $\chi$[E(p)< $\mu$]
which is nontrivial whenever  $\mu$>0.

§5.5. Persistence of Quasifreeness

A state $\rho$_{0} is quasifree (determinantal) if

$\rho$_{0}(a^{+}(f_{1})\cdots a^{+}(f_{r})a(g_{1})\cdots a(g_{s}))

=$\delta$_{r,s}\det[$\rho$_{0}(a^{+}(f_{i})a(g_{j}))]_{1\leq i,j\leq r}.
In a quasifree state, the particles are uncorrelated, and obey the Pauli principle. In

addition to the Boltzmann limit described above, we are interested in the influence of

the random potential on the property of quasirandomness.
We observe that since H_{ $\omega$} is bilinear in the creation‐ and annihilation operators,

(5.44) K(t):=e^{itH_{ $\omega$}}Ke^{-itH_{ $\omega$}}

is also bilinear in a^{+}, a . Therefore,

(5.45) $\rho$_{t}(A)=\displaystyle \frac{1}{Z_{K}}\mathrm{T}\mathrm{r}(e^{-K(t)}A)
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is quasifree with probability 1 (where Z_{K}:=\mathrm{T}\mathrm{r}(e^{-K}) ).
However, the average \mathrm{E}[$\rho$_{t}(\cdot)] is not quasifr ee, for any  $\eta$>0 ,

and t>0 . Notably,

quasifreeness is a nonlinear condition on determinants.

However, the kinetic scaling limit produces a quasifree limiting state.

Theorem 5.2. (T. C., I. Sasaki, [16]) Assume that $\rho$_{0} is number conserving,

quasifr ee, and translation invariant. Then, the following holds. For any normal ordered

monomial in creation‐ and annihilation operators,

(5.46) a^{+}(f_{1})\cdots a^{+}(f_{r})a(g_{1})\cdots a(g_{r}) ,

with r, s\in \mathbb{N} and Schwartz class test functions f_{j}, g_{\ell}\in S(\mathrm{T}^{d}) ,
and any T>0 ,

the

macroscopic 2r ‐point function

(5.47) $\Omega$_{T}^{(2r)} ( f\mathrm{l} ,
. . .

, f_{r} ; g\mathrm{l} ,
. . .

, g_{r} )

:=\displaystyle \lim_{ $\eta$\rightarrow 0}\lim_{L\rightarrow\infty}\mathrm{E}[$\rho$_{T/$\eta$^{2}}(a^{+}(f_{1})\cdots a^{+}(f_{r})a(g_{1})\cdots a(g))]
exists and is quasifr ee,

(5.48) $\Omega$_{T}^{(2r)}(f_{1}, \ldots, f_{r};g_{1}, \ldots, g_{r})=\det[$\Omega$_{T}^{(2)}(f_{i}, g_{j})]_{1\leq i,j\leq r}.
The macroscopic 2‐point function is the same as in Theorem 5.1,

(5.49) $\Omega$_{T}^{(2)}(f;g)=\displaystyle \int dpF_{T}(p)\overline{f(p)}g(p) ,

and F_{T}(p) solves the linear Boltzmann equation (5.23) with initial condition (5.24).

For the proof, we employ the fact that the main estimate

\displaystyle \lim_{ $\eta$\rightarrow 0}\lim_{L\rightarrow\infty}|\mathrm{E}[$\rho$_{T/$\eta$^{2}} (a^{+}(f_{1})\cdots a^{+}(f_{r})a(g_{1})\cdots a(g))]

-\det[$\Omega$_{T}^{(2)}(f_{i};g_{j})]_{1\leq i,j\leq r}|=0
can be interpreted as a corollary of (3.11) of Theorem 3.1. \square 
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§6. Fermi gas in random medium‐II. Fermi gas with dynamical
Hartree‐Fock interaction

In this section, we include particle interactions between the fermions, modeled

in dynamical Hartree‐Fock theory. As a consequence, it is necessary to control both

randomness and the nonlinearities arising from the self‐interaction of the field. The

results presented here are based on joint work with I. Rodnianski, [17].
We consider the time‐dependent Hamiltonian

(6.1) H(t)=T+ $\eta$ V_{ $\omega$}+ $\lambda$ W(t)

where the fermion‐fermion interaction is modeled by

(6.2) W(t)=\displaystyle \sum_{x,y}v(x-y)\{\mathrm{E}[$\rho$_{t}(a_{x}^{+}a_{x})]a_{y}^{+}a_{y}-\mathrm{E}[$\rho$_{t}(a_{y}^{+}a_{x})]a_{x}^{+}a_{y}\}.
The terms on the rhs correspond to the Hartree‐Fock direct and exchange term, re‐

spectively. The coupling constant  $\lambda$ accounts for the strength of interaction between

the fermions. The kinetic energy operator  T and the operator V_{ $\omega$} which describes the

interaction of each fermion with the static random potential are as in the previous
section. For technical reasons that we will not further address here, we assume that

\Vert \mathrm{V}\Vert_{H^{3/2+ $\delta$}(\mathrm{T}^{3})}<C for  $\delta$>0 arbitrary but fixed.

We are interested in the dynamics of two‐point function, which is determined by

i\partial_{t}$\rho$_{t}(a_{p}^{+}a_{q})
=(E(p)-E(q))$\rho$_{t}(a_{p}^{+}a_{q})

+ $\lambda$\displaystyle \int du\mathrm{E}[$\rho$_{t}(\frac{1}{L^{d}}a_{u}^{+}a_{u})](\hat{v}(u-p)$\rho$_{t}(a_{u}^{+}a_{q})-\mathrm{V}(q-u)$\rho$_{t}(a_{p}^{+}a_{u}))
(6.3) + $\eta$\displaystyle \int du $\omega$(u-p)$\rho$_{t}(a_{u}^{+}a_{q})- $\omega$(q-u)$\rho$_{t}(a_{p}^{+}a_{u})
for any realization of the random potential, where \hat{ $\omega$}(u) :=\displaystyle \sum_{x\in$\Lambda$_{L}}$\omega$_{x}e^{-2 $\pi$ iu\cdot x} is well‐

defined, almost surely (where we will ultimately let  L\rightarrow\infty ).
We make the following key observations:

\bullet For a generic realization of the random potential, the problem is not translation

invariant.

\bullet The equation (6.3) for the momentum distribution function $\rho$_{t}(a_{p}^{+}a_{p}) does not

close.

However, we can close the equation for the momentum distribution function by

taking the expectation, E. This is because the \mathrm{E}‐average is translation invariant, due
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to the homogeneity of the randomness. Then, the average state \mathrm{E}[$\rho$_{t}(\cdot)] : \mathfrak{A}\rightarrow \mathbb{C} solves

i\partial_{t}\mathrm{E}[$\rho$_{t}(A)]=\mathrm{E}[$\rho$_{t}([H(t), A])]

(6.4) \mathrm{E}[$\rho$_{0}]=$\rho$_{0}.

This is a self‐consistent nonlinear initial value problem determining \mathrm{E}[$\rho$_{t}(\cdot)].
We note that for every realization of V_{ $\omega$} ,

we have

$\rho$_{t}(A)=$\rho$_{0}(\mathcal{U}_{t}^{*}A\mathcal{U}_{t})

for A\in \mathfrak{A} ,
with \mathcal{U}_{t} unitary,

i\partial_{t}\mathcal{U}_{t}=H(t)\mathcal{U}_{t},

and \mathcal{U}_{0}=1 . Notably, the Hamiltonian H(t) itself depends on \mathrm{E}[$\rho$_{t}(\cdot)] . In particular,
we note that

(6.5) $\rho$_{t}(a^{+}(f)a(g))=$\rho$_{0}(a^{+}(f, t)a(g, t)) .

The Heisenberg evolution of the creation‐ and annihilation operators is determined by

(6.6) a(f, t):=\mathcal{U}_{t}^{*}a(f)\mathcal{U}_{t}.

Similarly as in the case discussed for the ideal Fermi gas, there exists a function f_{t} such

that

(6.7) a(f, t)=a(f_{t}) ,

where f_{t} is the solution of the 1‐particle random Schrödinger equation

(6.8) i\partial_{t}f_{t}(p)=E(p)f_{t}(p)+ $\eta$(\hat{V}_{ $\omega$}*f_{t})(p)- $\lambda$(\hat{v}*$\mu$_{t})(p)f(p)

with initial condition

(6.9) f_{0}=f.

Noting that the Hamiltonian H(t) itself depends on the unknown quantity

(6.10) $\mu$_{t}(p) :=\displaystyle \frac{1}{L^{3}}\mathrm{E}[$\rho$_{t}(a_{p}^{+}a_{p})],
we determine $\mu$_{t} by writing the solution to (6.4) in integral form, as an expansion in

powers of  $\eta$.
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For arbitrary test functions f and g ,
we consider the pair correlation function

$\rho$_{t}(a^{+}(f)a(g))=$\rho$_{0}(a^{+}(f_{t})a(g_{t}))

=\displaystyle \int dpdq$\rho$_{0}(a_{p}^{+}a_{q})\overline{f_{t}(p)}g_{t}(q)
(6.11) =\displaystyle \int dpJ(p)\overline{f_{t}(p)}g_{t}(p) .

Passing to the last line, we have used the momentum conservation condition

(6.12) $\rho$_{0}(a_{p}^{+}a_{q})=J(p) $\delta$(p-q)

obtained from the translation invariance of the initial state $\rho$_{0} ,
where

(6.13) 0\displaystyle \leq J(p)=\frac{1}{L^{3}}$\rho$_{0}(a_{p}^{+}a_{p})\leq 1,
similarly as in the case of the ideal Fermi gas.

The solution f_{t} of (6.8), (6.9), satisfies the Duhamel formula

(6.14) f_{t}(p)=U_{0,t}(p)f(p)+i $\eta$\displaystyle \int_{0}^{t}dsU_{s,t}(p)(\hat{V}_{ $\omega$}*f_{s})(p)
where

(6.15) U_{s,t}(p) :=e^{i\int_{\mathrm{s}}^{t}ds'(E(p)- $\lambda \kappa$_{\mathrm{s}'}(p))}

and

(6.16) $\kappa$_{s}(u) :=(\hat{v}*$\mu$_{s})(u) .

We note that the term U(p)f(p) solves (6.8) for  $\eta$=0 (no random potential) with

initial condition (6.9).
Let N\in \mathbb{N} ,

which remains to be optimized. The N‐fold iterate of (6.14) is given

by the truncated Duhamel expansion with remainder term,

(6.17) f_{t}=f_{t}^{(\leq N)}+f_{t}^{(>N)},

where

(6.18) f_{t}^{(\leq N)} :=\displaystyle \sum_{n=0}^{N}f_{t}^{(n)},
and f_{t}^{(>N)} is the Duhamel remainder term of order N . We define

(6.19) t_{-1}:=0 , t_{j}=s_{0}+\cdots+s_{j},
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for j=0 ,
. . .

,
n

,
and

(6.20) \mathcal{R}(k_{0}, \ldots, k_{n};z) :=\displaystyle \int_{\mathbb{R}_{+}^{n+1}}ds_{0}\cdots ds_{n}(\prod_{j=0}^{n}e^{-is_{j}(E(k_{j})-z)}e^{i $\lambda$\int_{t_{j-1}}^{t_{j}}ds'$\kappa$_{\mathrm{s}'}(k_{j})}) ,

for z\in \mathbb{C}.

The n‐th order term in the Duhamel expansion is given by

(6.21) f_{t}^{(n)}(p) :=(i $\eta$)^{n}\displaystyle \int_{0}^{t}dt_{n}\cdots\int_{0}^{t_{2}}dt_{1}\int dk_{0}\cdots dk_{n} $\delta$(p-k_{0})
[\displaystyle \prod_{j=0}^{n}U_{t_{j-1},t_{j}}(k_{j})][\prod_{\ell=1}^{n}\hat{V}_{ $\omega$}(k_{\ell}-k_{\ell-1})]f(k_{n}) .

Expressed in terms of the time increments s_{j}:=t_{j}-t_{j-1},

f_{t}^{(n)}(p)=(i $\eta$)^{n}\displaystyle \int ds_{0}\cdots ds_{n} $\delta$(t-\sum_{j=0}^{n}s_{j})\int dk_{0}\cdots dk_{n} $\delta$(p-k_{0})
(6.22) [\displaystyle \prod_{j=0}^{n}e^{-i\int_{t_{j-1}}^{t_{j}}ds'(E(k_{j})- $\lambda \kappa$_{\mathrm{s}'}(k_{j}))}][\prod_{\ell=1}^{n}\hat{V}_{ $\omega$}(k_{\ell}-k_{\ell-1})]f ( kn).

Expressing the delta distribution  $\delta$(t-\displaystyle \sum_{j=0}^{n}s_{j}) in terms of its Fourier transform, we

find

f_{t}^{(n)}(p)=(i $\eta$)^{n}e^{ $\epsilon$ t}\displaystyle \int d $\alpha$ e^{-it $\alpha$}\int dk_{0}\cdots dk_{n} $\delta$(p-k_{0})
(6.23) \displaystyle \mathcal{R}(k_{0}, \ldots, k_{n}; $\alpha$+i $\epsilon$)[\prod_{j=1}^{n}\hat{V}_{ $\omega$}(k_{j}-k_{j-1})]f ( kn).

The above three equivalent expressions for f_{t}^{(n)}(p) have different advantages in different

contexts, and will all be used in the sequel.
The Duhamel remainder term of order N is given by

(6.24) f_{t}^{(>N)}=i $\eta$\displaystyle \int_{0}^{t}ds\mathcal{U}_{s,t}V_{ $\omega$}^{(1)}f_{s}^{(N)}.
We choose

(6.25)  $\epsilon$=\displaystyle \frac{1}{t}
so that the factor e^{ $\epsilon$ t} in (6.23) remains bounded for all t.

Substituting the truncated Duhamel expansion for a^{+}(f_{t}) , a(g) in (6.11), one ob‐

tains

(6.26) $\rho$_{t}(a^{+}(f)a(g))=$\rho$_{0}(a^{+}(f_{t})a(g_{t}))=\displaystyle \sum_{n,\overline{n}=0}^{N+1}$\rho$_{t}^{(n,\overline{n})}(f, g)
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where

(6.27) $\rho$_{t}^{(n,\overline{n})}(f, g) :=$\rho$_{0}(a^{+}(f_{t}^{(n)})a(g_{t}^{(\overline{n})})) .

If n, \overline{n}\leq N ,
we have

\displaystyle \mathrm{E}[$\rho$_{t}^{(n,\overline{n})}(f, g)]=$\eta$^{2\overline{n}}\sum_{ $\pi$\in$\Gamma$_{n\overline{n}}},\int_{0}^{t}dt_{q} . . . \displaystyle \int_{0}^{t_{2}}dt_{1}\int_{0}^{t}d$\theta$_{q} . . . \displaystyle \int_{0}^{$\theta$_{2}}d$\theta$_{1}
\displaystyle \int du_{0}\cdots du_{2\overline{n}+1}\overline{f(u_{0})}g(u_{2\overline{n}+1})J(u_{n}) $\delta$(u_{n}-u_{n+1})

(6.28) [\displaystyle \prod_{j=0}^{n}U_{t_{j-1}}, t_{j}(u_{j})][\prod_{j=n+1}^{2\overline{n}+1}\overline{U_{$\theta$_{j-1},$\theta$_{j}}(u_{j})}]
\displaystyle \mathrm{E}[\prod_{j=1}^{n}\hat{V}_{ $\omega$}(u_{j}-u_{j-1})\prod_{j=n+2}^{2\overline{n}+1}\hat{V}_{ $\omega$}(u_{j}-u_{j-1})]

and using (6.23), this is equivalent to

\displaystyle \mathrm{E}[$\rho$_{t}^{(n,\overline{n})}(f, g)]=$\eta$^{2\overline{n}}e^{2 $\epsilon$ t}\sum_{ $\pi$\in$\Gamma$_{n\overline{n}}},\int d $\alpha$ d\overline{ $\alpha$}e^{it( $\alpha$-\overline{ $\alpha$})}
\displaystyle \int du_{0}\cdots du_{2\overline{n}+1}\overline{f(u_{0})}g(u_{2\overline{n}+1})J(u_{n}) $\delta$(u_{n}-u_{n+1})

(6.29) \mathcal{R}(u0, . . . , u_{n}; $\alpha$+i $\epsilon$)\mathcal{R}(u_{n+1}, \ldots, u_{2\overline{n}+1};\overline{ $\alpha$}-i $\epsilon$)

\displaystyle \mathrm{E}[\prod_{j=1}^{n}\hat{V}_{ $\omega$}(u_{j}-u_{j-1})\prod_{j=n+2}^{2\overline{n}+1}\hat{V}_{ $\omega$}(u_{j}-u_{j-1})]
where t_{-1}, $\theta$_{-1}:=0 in (6.28).

§6.1. Statement of main results

We introduce macroscopic variables (T, X) ,
related to the microscopic variables

(t, x) by

(6.30) (T, X)=( $\zeta$ t,  $\zeta$ x) ,

with  $\zeta$ a real parameter. We will study kinetic scaling limits associated to different

scaling ratios between  $\zeta$,  $\eta$ and  $\lambda$.

The random potential has an average effect on the dynamics of $\mu$_{t} by an amount

proportional to its variance, O($\eta$^{2}t) ,
in the time interval [0, t] . Since the strength of the

fermion pair interactions is O( $\lambda$) ,
both effects are comparable if  $\lambda$=O($\eta$^{2}) . Accordingly,

we distinguis the following scaling regimes.
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6.1.1. The regime  $\lambda$\leq C$\eta$^{2}
The interaction between electrons and the effect of the random potential per time

unit is comparable if  $\lambda$=C$\eta$^{2}.

Theorem 6.1. (T. C., I. Rodnianski, [17]) Assume that  $\lambda$\leq O($\eta$^{2}) . Then, for

any fixed, finite T>0 ,
and any choice of test functions f, g,

(6.31) \displaystyle \lim_{ $\eta$\rightarrow 0}\lim_{L\rightarrow\infty}\mathrm{E}[$\rho$_{T/$\eta$^{2}}(a^{+}(f)a(g))]=\int dp\overline{f(p)}g(p)F_{T}(p)
holds, where F_{T}(p) satisfies the linear Boltzmann equation

(6.32) \displaystyle \partial_{T}F_{T}(p)=2 $\pi$\int du $\delta$(E(u)-E(p))(F_{T}(u)-F_{T}(p))
with initial condition F_{0}=$\mu$_{0}.

The Boltzmann equations obtained in the kinetic scaling limit are linear because

the Hartree‐Fock interactions cancel, due to translation invariance.

Remarks about the proof. For the proof, we use the nonlinear evolution

(6.33) U_{s,t}(p) :=e^{i\int_{\mathrm{s}}^{t}ds'(E(p)- $\lambda$\hat{v}*$\mu$_{\mathrm{s}'})}

as the reference dynamics, instead of free evolution e^{i(t-s)E(p)} as in previous sections,
and we invoke the Feynman graph expansion in powers of  $\eta$.

Since the free evolution operator depends on the unknown $\mu$_{t}(p) ,
and satisfies a

nonlinear evolution equation, the resolvent calculus used for the problems discussed

previously is unvailable ! Accordingly, the entire analysis in [17] is based on stationary

phase estimates.

The recombination of contributions associated to decorated ladders is much more

difficult for the problem at hand than for the linear problems discussed previously. Our

approach involves a very careful analysis of phase cancellations and stationary phase
effects. \square 

6.1.2. The regime  $\eta$=o(\sqrt{ $\lambda$})
In this regime, the limiting distribution is stationary.

Theorem 6.2. (T. C., I. Rodnianski, [17]) Assume that $\eta$^{2}=O($\lambda$^{1+ $\delta$}) for
 $\delta$>0 arbitrary. Then, for any fixed, finite T>0,

(6.34) \displaystyle \lim_{ $\lambda$\rightarrow 0}\lim_{L\rightarrow\infty}\mathrm{E}[$\rho$_{T/ $\lambda$}(a^{+}(f)a(g))]=\int dp\overline{f(p)}g(p)F_{T}(p) ,
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for arbitrary test functions f, g, ,
and

(6.35) \partial_{T}F_{T}(p)=0,

for F_{0}=$\mu$_{0} . Accordingly, F_{T}=F_{0} is stationary.

6.1.3. The regime t=T/$\eta$^{2} and  $\lambda$=O(1)
This regime is very difficult to control, and in [17], we prove a partial result that

highlights some interesting aspects about the problem of determining the kinetic scaling
limit determined by T=$\eta$^{2}t and  $\eta$\rightarrow 0 ,

with  $\lambda$ small but independent of  $\eta$ . We are

considering, for  $\lambda$=O(1) ,
the rescaled, formal fixed point equation

\displaystyle \int dp\overline{f(p)}g(p)$\mu$_{T/$\eta$^{2}}(p)=\mathcal{G}^{(L)}[$\mu$_{\bullet}(\bullet); $\eta$; $\lambda$;T;f, g]
(6.36) :=\mathrm{E}[$\rho$_{T/$\eta$^{2}}(a^{+}(f)a(g))]
for  $\mu$.(\bullet) . The existence and uniqueness of solutions for this fixed point equation is

currently an open problem. Below, we will make the assumption that there exist limiting

stationary solutions, and determine their form under this hypothesis.
We base our discussion on the following hypotheses for the case  $\lambda$=O(1) :

(H1) There exist solutions F^{( $\eta$)}(T) :=\displaystyle \lim_{L\rightarrow\infty}$\mu$_{T/$\eta$^{2}} of (6.36), such that the limit w-

\displaystyle \lim_{ $\eta$\rightarrow 0}F^{( $\eta$)}(T)=:F(T)=F(0) exists and is stationary.

(H2) The stationary fixed point solution in (H1) satisfies

F(T)=\displaystyle \lim_{ $\eta$\rightarrow 0}\lim_{L\rightarrow\infty}\mathcal{G}^{(L)}[F^{( $\eta$)}; $\eta$; $\lambda$;T;f, g]
(6.37) =\displaystyle \lim_{ $\eta$\rightarrow 0}\lim_{L\rightarrow\infty}\mathcal{G}^{(L)}[F; $\eta$; $\lambda$;T;f, g].
The first equality sign here is equivalent to (H1), while the second equality sign
accounts for the assumption that F^{( $\eta$)} can be replaced by the limiting fixed point
F before letting  $\eta$\rightarrow 0 ,

to produce the same result.

We note that based on the analysis given in [17], we are able to prove hypothesis

(H2) if F^{( $\eta$)}=F+O($\eta$^{2}) . Error bounds of order O($\eta$^{2}) require more precise estimates

of�crossing� and �nesting� terms in the Feynman graph expansion than considered in

this paper, but are available from [27, 28, 29, 30].

Proposition 6.3. Let  $\lambda$ be small but independent of  $\eta$ , and assume that  F\in

 L^{\infty}() independent of t . Then, the thermodynamic limit

(6.38) \displaystyle \mathcal{G}[F; $\eta$; $\lambda$;T;f, g]:=\lim_{L\rightarrow\infty}\mathcal{G}^{(L)}[F; $\eta$; $\lambda$;T;f, g]
exists.
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The proof of this proposition follows straightforwardly from results established in

[13, 14, 16, 34].

Theorem 6.4. (T. C., I. Rodnianski, [17]) Assume that  $\lambda$\leq O_{ $\eta$}(1) ,
and let

(6.39) \overline{E}_{ $\lambda$}(u) :=E(u)+ $\lambda$(\hat{v}*F)(u) .

We assume that F\in L^{\infty}(\mathrm{T}^{3}) admits the bounds

(6.40) \displaystyle \sup_{ $\alpha$}\int dp\frac{1}{|\overline{E}_{ $\lambda$}(q)- $\alpha$-i $\epsilon$|}, \sup_{q}\int d $\alpha$\frac{1}{|\overline{E}_{ $\lambda$}(q)- $\alpha$-i $\epsilon$|}\leq C\log\frac{1}{ $\epsilon$},
and

\displaystyle \sup_{$\alpha$_{i}}\sup_{u\in \mathrm{T}^{3}}\int dqdp\frac{1}{|\overline{E}_{ $\lambda$}(q)-$\alpha$_{1}-i $\epsilon$|}\frac{1}{|\overline{E}_{ $\lambda$}(p)-$\alpha$_{2}-i $\epsilon$|}\frac{1}{|\overline{E}_{ $\lambda$}(p\pm q+u)-$\alpha$_{3}-i $\epsilon$|}
(6.41) \leq$\epsilon$^{-b}

for some 0<b<1.

Then, F satisfies

(6.42) \displaystyle \int dp\overline{f(p)}g(p)F(p)=\lim_{ $\eta$\rightarrow 0}\mathcal{G}[F; $\eta$; $\lambda$;T;f, g],
independent of T

, if and only if it satisfies

(6.43) F(p)=$\mu$_{0}(p)=\displaystyle \frac{1}{\overline{m}_{ $\lambda$}(p)}\int du $\delta$(\overline{E}_{ $\lambda$}(u)-\overline{E}_{ $\lambda$}(p))F(u) ,

where

(6.44) \displaystyle \overline{m}_{ $\lambda$}(p) :=2 $\pi$\int du $\delta$(\overline{E}_{ $\lambda$}(u)-\overline{E}_{ $\lambda$}(p))
is the (normalized) measure of the level surfa ce of \overline{E}_{ $\lambda$} for the value \overline{E}_{ $\lambda$}(p) .

We point out the following comments related to Theorem 6.4.

1. The solution of (6.39) corresponds to a renormalized kinetic energy which is shifted

by the average interaction energy for fermion pairs.

2. The fixed point equation (6.43) for F shows that the stationary kinetic limits of $\mu$_{t}

are concentrated and equidistributed on level surfaces of the renormalized kinetic

energy function \overline{E}_{ $\lambda$}(\cdot) .
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3. The bounds (6.40) and (6.41) correspond to the �crossing estimates� in [13, 34, 27,

39]. They ensure sufficient non‐degeneracy of the renormalized energy level surfaces

so that the Feynman graph expansions introduced below are convergent. However,

they do not seem sufficient to prove hypothesis (H2) under the assumption that

(H1) holds.

4. We note that if  $\lambda$\leq o_{ $\eta$}(1) ,
the stationary solutions found in Theorem 6.4 reduce to

those of the linear Boltzmann equation derived in Theorem 6.1.
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