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Linear stability of the incoherent solution and the

transition formula for the Kuramoto‐Daido model

By

Hayato CHIBA *

Abstract

The Kuramoto‐Daido model, which describes synchronization phenomena, is a system
of ordinary differential equations on N‐torus defined as coupled harmonic oscillators, whose

natural frequencies are drawn from some distribution function. In this paper, the continuous

model for the Kuramoto‐Daido model is introduced and the linear stability of its trivial solution

(incoherent solution) is investigated. Kuramoto�s transition point K_{c} ,
at which the incoherent

solution changes the stability, is derived for an arbitrary distribution function for natural

frequencies. It is proved that if the coupling strength K is smaller than K_{c} ,
the incoherent

solution is asymptotically stable, while if K is larger than K_{c} ,
it is unstable.

§1. Introduction

Collective synchronization phenomena are observed in a variety of areas such as

chemical reactions, engineering circuits and biological populations [16]. In order to

investigate such a phenomenon, Kuramoto [9] proposed a system of ordinary differential

equations

(1.1) \displaystyle \frac{d$\theta$_{i}}{dt}=$\omega$_{i}+\frac{K}{N}\sum_{j=1}^{N}\sin($\theta$_{j}-$\theta$_{i}) , i=1, \cdots, N,
where  $\theta$_{i}\in[0, 2 $\pi$ ) denotes the phase of an i‐th oscillator on a circle,  $\omega$_{i}\in \mathrm{R} denotes

its natural frequency, K>0 is the coupling strength, and where N is the number

of oscillators. Eq.(1.1) is derived by means of the averaging method from coupled

dynamical systems having limit cycles, and now it is called the Kuramoto model.
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Figure 1. The order parameter for the Kuramoto model.

It is obvious that when K=0, $\theta$_{i}(t) and $\theta$_{j}(t) rotate on a circle at different

velocities unless $\omega$_{i} is equal to $\omega$_{j} ,
and it is true for sufficiently small K>0 . On the

other hand, if K is sufficiently large, it is numerically observed that some of oscillators

or all of them tend to rotate at the same velocity on average, which is called the

synchronization [16, 18, 14]. If N is small, such a transition from de‐synchronization
to synchronization may be well revealed by means of the bifurcation theory [3, 11, 12].
However, if N is large, it is difficult to investigate the transition from the view point of

the bifurcation theory and it is still far from understood.

In order to evaluate whether synchronization occurs or not, Kuramoto introduced

the order parameter r(t)e^{\sqrt{-1} $\psi$(t)} by

(1.2) r(t)e^{\sqrt{-1} $\psi$(t)} :=\displaystyle \frac{1}{N}\sum_{j=1}^{N}e^{\sqrt{-1}$\theta$_{j}(t)},
which gives the centroid of oscillators, where r,  $\psi$\in R. It seems that if synchronous
state is formed,  r(t) takes a positive number, while if de‐synchronization is stable, r(t) is

zero on time average (see Fig.1). Based on this observation and some formal calculation,
Kuramoto conjectured a bifurcation diagram of r(t) as follows:

Kuramoto�s conjecture

Suppose that  N\rightarrow\infty and natural frequencies $\omega$_{i} �s are distributed according to

a probability density function g( $\omega$) . If g( $\omega$) is an even and unimodal function, then

the bifurcation diagram of r(t) is given as Fig.2 (a); that is, if the coupling strength
K is smaller than K_{c}:=2/( $\pi$ g(0)) ,

then r(t)\equiv 0 is asymptotically stable. On the

other hand, if K is larger than K_{c} ,
there exists a positive constant r_{c} such that r(t)=

r_{c} is asymptotically stable. Near the transition point K_{c} ,
the scaling law of r_{c} is of

O((K-K_{c})^{1/2}) .

Now the value K_{c}=2/( $\pi$ g(0)) is called the Kuramoto�s transition point. See [10]
and [18] for the Kuramoto�s discussion.
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(a) (b)

Figure 2. Typical bifurcation diagrams of the order parameter for the cases that (a)
g( $\omega$) is even and unimodal (b) g( $\omega$) is even and bimodal. Solid lines denote stable

solutions and dotted lines denote unstable solutions.

Significant papers of Strogatz et al. [19, 20, 15] partially confirmed the Kuramoto�s

conjecture. Though their arguments are not rigorous from a mathematical view point,
almost all of them are justified as will be done in this paper. In [20], they introduced

the continuous model for the Kuramoto model and investigated the linear stability of a

trivial solution called the incoherent solution, which corresponds to the de‐synchronous
state r\equiv 0 . They derived the Kuramoto�s transition point K_{c}=2/( $\pi$ g(0)) and showed

that if K>K_{c} ,
the incoherent solution is unstable in the linear level (i.e. nonlinear

terms are neglected). When K<K_{c} ,
the linear operator T

,
which defines the linearized

equation of the continuous model around the incoherent solution, has no eigenvalues.

However, in [19], they found that an analytic continuation of the resolvent ( $\lambda$-T)^{-1} may

have poles (resonance poles) on the left half plane, and they remarked a possibility that

resonance poles induce exponential decay of the order parameter. In [15], the stability
of the partially locked state, which corresponds to a solution with positive constant

r=r_{c} ,
is investigated in the linear level.

Despite the active interest in the case that the distribution function g( $\omega$) is even

and unimodal, bifurcation diagrams of r for g( $\omega$) other than the even and unimodal

cases are not revealed well. Martens et al. [13] investigated the bifurcation diagram for

a bimodal g( $\omega$) which consists of two Lorentzian distributions. In particular, they found

that stable partially locked states can coexist with stable incoherent solutions if K is

slightly smaller than K_{c} (see Fig.2 (b)). Such a diagram seems to be common for any

bimodal distributions.

A simple extension of the Kuramoto model defined to be

(1.3) \displaystyle \frac{d$\theta$_{i}}{dt}=$\omega$_{i}+\frac{K}{N}\sum_{j=1}^{N}f($\theta$_{j}-$\theta$_{i}) , i=1, \cdots, N,
is called the Kuramoto‐Daido model [4, 5, 6, 7], where the  2 $\pi$‐periodic function  f :
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\mathrm{R}\rightarrow \mathrm{R} is called the coupling function. Daido [7] investigated bifurcation diagrams of

the order parameter for the Kuramoto‐Daido model with even and unimodal g( $\omega$) by
a similar argument to Kuramoto�s one. He found that if  f( $\theta$)\neq\sin $\theta$ , partially locked

states may coexist with stable incoherent solutions even if  g( $\omega$) is even and unimodal.

All such studies by physicist are based on formal calculations and numerical simu‐

lations. The purpose of this paper is to justify and extend their results as mathematics

for the Kuramoto‐Daido model with any distribution function g( $\omega$) . The continuous

model for the Kuramoto‐Daido model is introduced and the linear stability of the in‐

coherent solution is studied. In particular, the spectrum and the semigroup of a linear

operator T
,
which is obtained by linearizing the continuous model around the incoherent

solution, will be investigated in detail. At first, a formula for obtaining the transition

point K_{c} for an arbitrary distribution g( $\omega$) is derived. As a corollary, the Kuramoto�s

transition point K_{c}=2/( $\pi$ g(0)) is obtained if g( $\omega$) is an even and unimodal function. If

K>K_{c} ,
it is proved that the incoherent solution is unstable because the operator T has

eigenvalues on the right half plane. It means that if the coupling strength K is large,
the de‐synchronous state is unstable and thus synchronization may occur. On the other

hand, if 0<K<K_{c} ,
it will be shown that the spectrum of the operator T consists

of the continuous spectrum and it lies on the imaginary axis. Thus the stability of the

incoherent solution is nontrivial. Despite this fact, under appropriate assumptions for

g( $\omega$) ,
the order parameter proves to decay exponentially because of existence of reso‐

nance poles on the left half plane as was expected by Strogatz et al. [19]. It suggests
that in general, linear stability of a trivial solution of a linear equation on an infinite

dimensional space is determined by not only the spectrum of the linear operator but

also its resonance poles.

§2. Continuous model

In this section, we introduce a continuous model of the Kuramoto‐Daido model and

show a few properties of it.

Let us consider the Kuramoto‐Daido model (1.3). We suppose that the coupling
function f is a C^{1} periodic function with the period  2 $\pi$ . It is expanded in a Fourier

series as

(2.1)  f( $\theta$)=\displaystyle \sum_{l=-\infty}^{\infty}f_{l}e^{\sqrt{-1}l $\theta$},  f_{l}\in C.

We can suppose that  f_{0}=0 without loss of generality because f_{0} is renormalized into

the constants $\omega$_{i} . For the Kuramoto model (f( $\theta$)=\sin $\theta$) , f\pm 1=\pm 1/(2\sqrt{-1}) and

f_{l}=0(l\neq\pm 1) . Following Daido [7], we introduce the generalized order parameters \hat{Z}_{k}^{0}
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by

(2.2) \displaystyle \hat{Z}_{k}^{0}(t)=\frac{1}{N}\sum_{j=1}^{N}e^{\sqrt{-1}k$\theta$_{j}(t)}, k=0, \pm 1, \pm 2, \cdots
In particular, \hat{Z}_{1}^{0} is the order parameter defined in Section 1. By using them, Eq.(1.3)
is rewritten as

(2.3) \displaystyle \frac{d$\theta$_{i}}{dt}=$\omega$_{i}+K\sum_{l=-\infty}^{\infty}fi\hat{Z}_{l}^{0}(t)e^{-\sqrt{-1}l$\theta$_{i}}.
Motivated by these equations, we introduce a continuous model of the Kuramoto‐Daido

model, which is an evolution equation of a probability density function $\rho$_{t}=$\rho$_{t}( $\theta$,  $\omega$) on

S^{1}\times \mathrm{R} parameterized by t\in \mathrm{R} ,
as

(2.4) \left\{\begin{array}{l}
\frac{\partial$\rho$_{t}}{\partial t}+\frac{\partial}{\partial $\theta$}(( $\omega$+K\sum_{l=-\infty}^{\infty}fiZ_{l}^{0}(t)e^{-\sqrt{-1}l $\theta$})$\rho$_{t})=0,\\
Z_{k}^{0}(t)=\int_{\mathrm{R}}\int_{0}^{2 $\pi$}e^{\sqrt{-1}k $\theta$}$\rho$_{t}( $\theta$,  $\omega$)d $\theta$ d $\omega$,\\
$\rho$_{0}( $\theta$,  $\omega$)=h( $\theta$,  $\omega$) ,
\end{array}\right.
where h( $\theta$,  $\omega$) is an initial density function. The Z_{k}^{0}(t) is a continuous version of \hat{Z}_{k}^{0}(t) ,

and we also call it the generalized order parameter. We can prove that Eq.(2.4) is proper

in the sense that \hat{Z}_{k}^{0}(t)\rightarrow Z_{k}^{0}(t) as  N\rightarrow\infty under some assumptions, although the proof
is not given in this paper. If we regard

 v:= $\omega$+K\displaystyle \sum_{l=-\infty}^{\infty}fiZ_{l}^{0}(t)e^{-\sqrt{-1}l $\theta$}
as a velocity field, Eq.(2.4) provides an equation of continuity \partial$\rho$_{t}/\partial t+\partial($\rho$_{t}v)/\partial $\theta$=0
known in fluid dynamics. It is easy to prove the low of conservation of mass:

(2.5) \displaystyle \int_{\mathrm{R}}\int_{0}^{2 $\pi$}$\rho$_{t}( $\theta$,  $\omega$)d $\theta$=\int_{\mathrm{R}}\int_{0}^{2 $\pi$}h( $\theta$,  $\omega$)d $\theta$=:g( $\omega$) .

A function g defined as above gives a probability density function for natural frequencies
 $\omega$\in \mathrm{R} such that \displaystyle \int_{\mathrm{R}}g( $\omega$)d $\omega$=1.

By using the characteristic curve method, Eq.(2.4) is formally integrated as follows:

Consider the equation

(2.6) \displaystyle \frac{dx}{dt}= $\omega$+K\sum_{l=-\infty}^{\infty}f_{l}Z_{l}^{0}(t)e^{-\sqrt{-1}lx}, x\in S^{1},
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which defines a characteristic curve. Let x=x(t, s; $\theta$,  $\omega$) be a solution of Eq.(2.6)
satisfying  x(s, s; $\theta$,  $\omega$)= $\theta$ . Then,  $\rho$_{t} is given as

(2.7) $\rho$_{t}( $\theta$,  $\omega$)=h(x(0, t; $\theta$,  $\omega$),  $\omega$)\displaystyle \exp[K\int_{0}^{t}\sum_{l=-\infty}^{\infty}\sqrt{-1}lf_{l}Z_{l}^{0}(s)e^{-\sqrt{-1}lx(s,t; $\theta,\ \omega$)}ds].
By using Eq.(2.7), it is easy to show the equality

(2.8) \displaystyle \int_{\mathrm{R}}\int_{0}^{2 $\pi$}a( $\theta$,  $\omega$)$\rho$_{t}( $\theta$,  $\omega$)d $\theta$ d $\omega$=\int_{\mathrm{R}}\int_{0}^{2 $\pi$}a(x(t, 0; $\theta$,  $\omega$),  $\omega$)h( $\theta$,  $\omega$)d $\theta$ d $\omega$,
for any continuous function a( $\theta$,  $\omega$) . In particular, the generalized order parameters

Z_{k}^{0}(t) are rewritten as

(2.9) Z_{k}^{0}(t)=\displaystyle \int_{\mathrm{R}}\int_{0}^{2 $\pi$}e^{\sqrt{-1}kx(t,0; $\theta,\ \omega$)}h( $\theta$,  $\omega$)d $\theta$ d $\omega$.
Substituting it into Eqs.(2.6), (2.7), we obtain

(2.10) \displaystyle \frac{d}{dt}x(t, s; $\theta$,  $\omega$)= $\omega$+K\int_{\mathrm{R}}\int_{0}^{2 $\pi$}f(x(t, 0;$\theta$', $\omega$')-x(t, s; $\theta$,  $\omega$))h($\theta$', $\omega$')d$\theta$'d$\omega$',
and

$\rho$_{t}( $\theta$,  $\omega$)=h(x(0, t; $\theta$,  $\omega$),  $\omega$)\times

(2.11) \displaystyle \exp[K\int_{0}^{t}ds\cdot\int_{\mathrm{R}}\int_{0}^{2 $\pi$}\frac{\partial f}{\partial $\theta$}(x(s, 0;$\theta$', $\omega$')-x(s, t; $\theta$,  $\omega$))h($\theta$', $\omega$')d$\theta$'d$\omega$'],
respectively. Even if h( $\theta$,  $\omega$) is not differentiable, we consider Eq.(2.11) to be a weak

solution of Eq.(2.4). It is easy in usual way to prove that the integro‐ODE (2.10) has a

unique solution for any t>0 ,
and this proves that the continuous model Eq.(2.4) has a

unique weak solution (2.11) for an arbitrary initial data h( $\theta$,  $\omega$) .

Throughout this paper, we suppose that the initial date h( $\theta$,  $\omega$) is of the form

h( $\theta$,  $\omega$)=\hat{h}( $\theta$)g( $\omega$) . This assumption corresponds to the assumption for the Kuramoto‐

Daido model (1.3) that initial values \{$\theta$_{j}(0)\}_{j=1}^{N} and natural frequencies \{$\omega$_{j}\}_{j=1}^{N} are

independently distributed. This is a physically natural assumption used in many liter‐

atures. In this case, $\rho$_{t}( $\theta$,  $\omega$) is written as $\rho$_{t}( $\theta$,  $\omega$)=\hat{ $\rho$}_{t}( $\theta$,  $\omega$)g( $\omega$) ,
where

\hat{ $\rho$}_{t}( $\theta$,  $\omega$)=\hat{h}(x(0, t; $\theta$,  $\omega$))\times

(2.12) \displaystyle \exp[K\int_{0}^{t}ds\cdot\int_{\mathrm{R}}\int_{0}^{2 $\pi$}\frac{\partial f}{\partial $\theta$}(x(s, 0;$\theta$', $\omega$')-x(s, t; $\theta$,  $\omega$))\hat{h}($\theta$')g($\omega$')d$\theta$'d$\omega$'],
and \hat{ $\rho$}_{t}( $\theta$,  $\omega$) satisfies the same equation as Eq.(2.4).
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§3. Linear stability of the incoherent solution

A trivial solution of the continuous model (2.4), which is independent of  $\theta$ and

 t
,

is given by $\rho$_{t}( $\theta$,  $\omega$)=g( $\omega$)/(2 $\pi$) ,
or equivalently \hat{ $\rho$}_{t}( $\theta$,  $\omega$)=1/(2 $\pi$) . It is called the

incoherent solution, which corresponds to the de‐synchronized state. Note that in this

case r=0 . In this section, we investigate the stability of the incoherent solution and

the order parameter.

Let

(3.1)  Z_{j}(t,  $\omega$) :=\displaystyle \int_{0}^{2 $\pi$}e^{\sqrt{-1}j $\theta$}\hat{ $\rho$}_{t}( $\theta$,  $\omega$)d $\theta$
be the Fourier coefficients of \hat{ $\rho$}_{t}( $\theta$,  $\omega$) . Then, Z_{0}(t,  $\omega$)=1 and Z_{j}, j=\pm 1, \pm 2, \cdots satisfy
the differential equations

\displaystyle \frac{dZ_{j}}{dt}=\sqrt{-1}j $\omega$ Z_{j}+\sqrt{-1}jK\sum_{-\infty}^{\infty}f_{l}Z_{l}^{0}(t)Z_{j-l}
=\displaystyle \sqrt{-1}j $\omega$ Z_{j}+\sqrt{-1}jKf_{j}Z_{j}^{0}(t)+\sqrt{-1}jK\sum_{l\neq j}fiZ_{l}^{0}(t)Z_{j-l}.

The incoherent solution corresponds to the zero solution Z_{j}\equiv 0 for j=\pm 1, \pm 2, \cdots.

Since |Z_{j}(t,  $\omega$)|\leq 1, Z_{j}(t,  $\omega$) is in the Hilbert space L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) for every t :

||Z_{j}||_{L^{2}(\mathrm{R},g( $\omega$)d $\omega$)}^{2}=\displaystyle \int_{\mathrm{R}}|Z_{j}(t,  $\omega$)|^{2}g( $\omega$)d $\omega$\leq 1.
Thus we linearize the above equation as an evolution equation on L^{2}(\mathrm{R}, g( $\omega$)d $\omega$)

(3.2) \displaystyle \frac{dZ_{j}}{dt}=(j\sqrt{-1}\mathcal{M}+j\sqrt{-1}Kf_{j}\mathcal{P})Z_{j}, j=\pm 1, \pm 2, \cdots,
where \mathcal{M} : q( $\omega$)\mapsto $\omega$ q( $\omega$) is the multiplication operator on L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) and \mathcal{P} is the

projection on L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) defined to be

(3.3) \displaystyle \mathcal{P}q( $\omega$)=\int_{\mathrm{R}}q( $\omega$)g( $\omega$)d $\omega$.
If we put P_{0}( $\omega$)\equiv 1, \mathcal{P} is also written as \mathcal{P}q( $\omega$)=(q, P_{0}) ,

where (, ) is the inner

product on L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) :

(3.4) (q_{1}, q_{2}):=\displaystyle \int_{\mathrm{R}}q_{1}( $\omega$)\overline{q_{2}( $\omega$)}g( $\omega$)d $\omega$.
Note that the order parameter is given as Z_{1}^{0}=(Z_{1}, P_{0}) . To determine the stability of

the incoherent solution and the order parameter, we have to investigate the spectrum

and the semigroup of the operator T_{j}:=j\sqrt{-1}\mathcal{M}+j\sqrt{-1}Kf_{j}\mathcal{P}.
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§3.1. Analysis of the operator \sqrt{-1}\mathcal{M}

If f_{j}=0, T_{j}=j\sqrt{-1}\mathcal{M} . It is known that the multiplication operator \mathcal{M} on

L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) is self‐adjoint and its spectrum is given by  $\sigma$(\mathcal{M})=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(g)\subset \mathrm{R} , where

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(g) is a support of the density function g . Thus the spectrum of j\sqrt{-1}\mathcal{M} is

(3.5)  $\sigma$(j\sqrt{-1}\mathcal{M})=j\sqrt{-1}\cdot \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(g)=\{j\sqrt{-1} $\lambda$| $\lambda$\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(g)\}\subset\sqrt{-1}\mathrm{R}.

The semi‐group e^{j\sqrt{-1}\mathcal{M}t} generated by j\sqrt{-1}\mathcal{M} is given as e^{j\sqrt{-1}\mathcal{M}t}q( $\omega$)=e^{j\sqrt{-1} $\omega$ t}q( $\omega$) .

In particular, we obtain

(3.6) (e^{j\sqrt{-1}\mathcal{M}t}q_{1}, q_{2})=\displaystyle \int_{\mathrm{R}}e^{j\sqrt{-1} $\omega$ t}q_{1}( $\omega$)\overline{q_{2}( $\omega$)}g( $\omega$)d $\omega$
for any  q_{1}, q_{2}\in L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) . This is the Fourier transform of the function q_{1}( $\omega$)\overline{q_{2}( $\omega$)}g( $\omega$) .

Thus if q_{1}( $\omega$)\overline{q_{2}( $\omega$)}g( $\omega$) is real analytic on \mathrm{R} and has an analytic continuation to a neigh‐
borhood of the real axis, then (e^{j\sqrt{-1}\mathcal{M}t}q_{1}, q_{2}) decays exponentially as  t\rightarrow\infty

,
while if

 q_{1}( $\omega$)q_{2}( $\omega$)g( $\omega$) is C^{r} ,
then it decays as O(1/t^{r}) (see Vilenkin [21]).

These facts are summarized as follows:

Proposition 3.1. Suppose that f_{j}=0 and Eq.(3.2) is reduced to dZ_{j}/dt=
j\sqrt{-1}\mathcal{M}Z_{j} . A solution of this equation with an initial value q( $\omega$)\in L^{2}(\mathrm{R}, g( $\omega$)d $\omega$)
is given by Z_{j}(t)=e^{j\sqrt{-1}\mathcal{M}t}q( $\omega$)=e^{j\sqrt{-1} $\omega$ t}q( $\omega$) . In particular the linearized order

parameter Z_{1}^{0}(t)=(e^{\sqrt{-1}\mathcal{M}t}q, P_{0}) decays exponentially as  t\rightarrow\infty if  g( $\omega$) and q( $\omega$) have

analytic continuations to a neighborhood of the real axis.

The resolvent ( $\lambda$-j\sqrt{-1}\mathcal{M})^{-1} of the operator j\sqrt{-1}\mathcal{M} is calculated as

(3.7) (( $\lambda$-j\displaystyle \sqrt{-1}\mathcal{M})^{-1}q_{1}, q_{2})=\int_{\mathrm{R}}\frac{1}{ $\lambda$-j\sqrt{-1} $\omega$}q_{1}( $\omega$)\overline{q_{2}( $\omega$)}g( $\omega$)d $\omega$.
We define the function D( $\lambda$) to be

(3.8)  D( $\lambda$)=(( $\lambda$-j\displaystyle \sqrt{-1}\mathcal{M})^{-1}P_{0}, P_{0})=\int_{\mathrm{R}}\frac{1}{ $\lambda$-j\sqrt{-1} $\omega$}g( $\omega$)d $\omega$
(recall that  P_{0}( $\omega$)\equiv 1 ). It is holomorphic in \mathrm{C}\backslash  $\sigma$(j\sqrt{-1}\mathcal{M}) and will play an important
role in the later calculation.

§3.2. Analysis of the operator T_{j}=j\sqrt{-1}\mathcal{M}+j\sqrt{-1}Kf_{j}\mathcal{P}

In what follows, we suppose that f_{j}\neq 0 . The domain \mathrm{D}(\mathrm{T}) of T_{j} is given by

\mathrm{D}(\mathcal{M})\cap \mathrm{D}(\mathcal{P})=\mathrm{D}(\mathcal{M}) . Since \mathcal{M} is self‐adjoint and since \mathcal{P} is bounded, T_{j} is a closed
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operator [8]. Let  $\rho$(T) be the resolvent set of T_{j} and  $\sigma$(T_{j})=\mathrm{C}\backslash  $\rho$(\mathrm{T}) the spectrum.

Since T_{j} is closed, there is no residual spectrum. Let $\sigma$_{p}(T) and $\sigma$_{c}(T) be the point

spectrum (the set of eigenvalues) and the continuous spectrum of T_{j} , respectively.

Proposition 3.2. (i) Eigenvalues  $\lambda$ of  T_{j} are given as roots of

(3.9) D( $\lambda$)=\displaystyle \frac{1}{j\sqrt{-1}Kf_{j}},  $\lambda$\in \mathrm{C}\backslash  $\sigma$(j\sqrt{-1}\mathcal{M}) .

(ii) The continuous spectrum of T_{j} is given by

(3.10) $\sigma$_{c}(T_{j})= $\sigma$(j\sqrt{-1}\mathcal{M})=j\sqrt{-1}\cdot \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(g) .

Proof. (i) Suppose that  $\lambda$\in$\sigma$_{p}(T_{j})\backslash  $\sigma$(j\sqrt{-1}\mathcal{M}) . Then, there exists  x\in

 L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) such that

 $\lambda$ x=(j\sqrt{-1}\mathcal{M}+j\sqrt{-1}Kf_{j}\mathcal{P})x, x\neq 0.

Since  $\lambda$\not\in $\sigma$(j\sqrt{-1}\mathcal{M}) , ( $\lambda$-j\sqrt{-1}\mathcal{M})^{-1} is defined and the above is rewritten as

x=( $\lambda$-j\sqrt{-1}\mathcal{M})^{-1}j\sqrt{-1}Kf_{j}\mathcal{P}x
=j\sqrt{-1}Kf_{j}(x, P_{0})( $\lambda$-j\sqrt{-1}\mathcal{M})^{-1}P_{0}( $\omega$) .

By taking the inner product with P_{0}( $\omega$) ,
we obtain

(3.11) 1=j\sqrt{-1}Kf_{j}(( $\lambda$-j\sqrt{-1}\mathcal{M})^{-1}P_{0}, P_{0})=j\sqrt{-1}Kf_{j}D( $\lambda$) .

This proves that roots of Eq.(3.9) is in $\sigma$_{p}(T_{j}) . The corresponding eigenvector is given

by x=( $\lambda$-j\sqrt{-1}\mathcal{M})^{-1}P_{0}( $\omega$)=1/( $\lambda$-j\sqrt{-1} $\omega$) . If  $\lambda$\in\sqrt{-1}\mathrm{R}, x\not\in L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) .

Thus there are no eigenvalues on the imaginary axis.

(ii) This follows from the fact that the essential spectrum is stable under the bounded

perturbation and that there are no eigenvalues on  $\sigma$(j\sqrt{-1}\mathcal{M}) ,
see [8]. \square 

§3.3. Eigenvalues of the operator T_{j} and the transition point formula

Our next task is to calculate roots of Eq.(3.9) to obtain eigenvalues of T_{j}=
j\sqrt{-1}\mathcal{M}+j\sqrt{-1}Kf_{j}\mathcal{P} . By putting  $\lambda$=x+\sqrt{-1}y, x, y\in \mathrm{R} , Eq.(3.9) is rewritten

as

(3.12) \left\{\begin{array}{l}
\int_{\mathrm{R}}\frac{x}{x^{2}+(j $\omega$-y)^{2}}g( $\omega$)d $\omega$=-\frac{{\rm Im}(f_{j})}{jK|f_{j}|^{2}},\\
\int_{\mathrm{R}}\frac{j $\omega$-y}{x^{2}+(j $\omega$-y)^{2}}g( $\omega$)d $\omega$=-\frac{{\rm Re}(f_{j})}{jK|f_{j}|^{2}}.
\end{array}\right.
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In what follows, we suppose that {\rm Im}(f_{j})<0 . The case {\rm Im}(f_{j})\geq 0 will be treated in

Sec.3.5. The next lemma is easily obtained.

Lemma 3.3.

(i) When {\rm Im}(f_{j})<0,  $\lambda$ satisfies {\rm Re}( $\lambda$)>0 for any K>0.

(ii) If K>0 is sufficiently large, there exists at least one eigenvalue  $\lambda$ near infinity.

(iii) If  K>0 is sufficiently small, there are no eigenvalues.

Proof. Part (i) of the lemma immediately follows from the first equation of Eq.(3.12).
To prove part (ii) of the lemma, note that if | $\lambda$| is large, Eq.(3.9) is rewritten as

\displaystyle \frac{1}{ $\lambda$}+O(\frac{1}{$\lambda$^{2}})=\frac{1}{j\sqrt{-1}Kf_{j}}.
Thus the Rouché�s theorem proves that Eq.(3.9) has a root  $\lambda$\sim j\sqrt{-1}Kf_{j} if K>0

is sufficiently large. To prove part (iii) of the lemma, we see that the left hand side of

the first equation of Eq.(3.12) is bounded for any x,  y\in R. To do so, let  G( $\omega$) be the

primitive function of g( $\omega$) and fix  $\delta$>0 small. The left hand side of the first equation
of Eq.(3.12) is calculated as

\displaystyle \int_{\mathrm{R}}\frac{xg( $\omega$)d $\omega$}{x^{2}+(j $\omega$-y)^{2}}
=\displaystyle \int_{y/j+ $\delta$}^{\infty}\frac{xg( $\omega$)d $\omega$}{x^{2}+(j $\omega$-y)^{2}}+\int_{-\infty}^{y/j- $\delta$}\frac{xg( $\omega$)d $\omega$}{x^{2}+(j $\omega$-y)^{2}}+\int_{y/j- $\delta$}^{y/j+ $\delta$}\frac{xg( $\omega$)d $\omega$}{x^{2}+(j $\omega$-y)^{2}}
=\displaystyle \int_{y/j+ $\delta$}^{\infty}\frac{xg( $\omega$)d $\omega$}{x^{2}+(j $\omega$-y)^{2}}+\int_{-\infty}^{y/j- $\delta$}\frac{xg( $\omega$)d $\omega$}{x^{2}+(j $\omega$-y)^{2}}

+\displaystyle \frac{x}{x^{2}+j^{2}$\delta$^{2}}(G(y/j+ $\delta$)-G(y/j- $\delta$))+\int_{y/j- $\delta$}^{y/j+ $\delta$}\frac{2jx(j $\omega$-y)}{(x^{2}+(j $\omega$-y)^{2})^{2}}G( $\omega$)d $\omega$.
The first three terms in the right hand side above are bounded for any x, y\in \mathrm{R} . Since

G is continuous, there exists a number  $\xi$ such that the last term is rewritten as

\displaystyle \int_{y/j- $\delta$}^{y/j+ $\delta$}\frac{2jx(j $\omega$-y)}{(x^{2}+(j $\omega$-y)^{2})^{2}}G( $\omega$)d $\omega$=2j $\delta$\cdot\frac{2x $\xi$}{(x^{2}+$\xi$^{2})^{2}}G(y/j+ $\xi$/j) .

This is bounded for any x,  y\in R. Now we have proved that the left hand side of the

first equation of Eq.(3.12) is bounded for any  x>0 , although the right hand side tends

to infinity as K\rightarrow+0 . Thus Eq.(3.9) has no roots if K is small. \square 

Lemma 3.3 shows that if K>0 is sufficiently large, the trivial solution Z_{j}=0
of the system dZ_{j}/dt=T_{j}Z_{j} is unstable because of the eigenvalues with positive real



Linear stability oF the incoherent solution F0R THE KuRAMOTO‐Daido model 119

Figure 3. A schematic view of behavior of roots  $\lambda$ of Eq.(3.9) when  K decreases.

parts. Our purpose in this subsection is to determine the bifurcation point K_{c}^{(j)} ,
which

is the minimum value of K such that if K<K_{c}^{(j)} ,
the operator T_{j} has no eigenvalues on

the right half plane. To calculate eigenvalues  $\lambda$= $\lambda$(K) explicitly is difficult in general.

However, note that since zeros of a holomorphic function do not vanish because of the

argument principle,  $\lambda$(K) disappears if and only if it is absorbed into the continuous

spectrum  $\sigma$(j\sqrt{-1}\mathcal{M}) ,
on which D( $\lambda$) is not holomorphic. This fact suggests that to

determine K_{c}^{(j)} ,
it is sufficient to investigate Eq.(3.9) or Eq.(3.12) near the imaginary

axis. Since we are interested in  $\lambda$(K) absorbed into  $\sigma$(j\sqrt{-1}\mathcal{M})\subset\sqrt{-1}\mathrm{R} ,
take the

limit x\rightarrow+0 in Eq.(3.12):

(3.13) \left\{\begin{array}{l}
\lim_{x\rightarrow+0}\int_{\mathrm{R}}\frac{x}{x^{2}+(j $\omega$-y)^{2}}g( $\omega$)d $\omega$=-\frac{{\rm Im}(f_{j})}{jK|f_{j}|^{2}},\\
\lim_{x\rightarrow+0}\int_{\mathrm{R}}\frac{j $\omega$-y}{x^{2}+(j $\omega$-y)^{2}}g( $\omega$)d $\omega$=-\frac{{\rm Re}(f_{j})}{jK|f_{j}|^{2}}.
\end{array}\right.
These equations determine K_{n} and y_{n} such that one of the eigenvalues $\lambda$_{n}(K) converges

to \sqrt{-1}y_{n} as K\rightarrow K_{n}+0 (see Fig.3). To calculate them, we need the next lemma.

Lemma 3.4. (i) Suppose that $\lambda$_{n}(K)\rightarrow\sqrt{-1}y_{n} as K\rightarrow K_{n} . Then, g( $\omega$) is

continuous at  $\omega$=y_{n}.

(ii) If g( $\omega$) is continuous at  $\omega$=y ,
then

(3.14) \displaystyle \lim_{x\rightarrow+0}\int_{\mathrm{R}}\frac{x}{x^{2}+(j $\omega$-y)^{2}}g( $\omega$)d $\omega$= $\pi$ g(y/j)/j.
Proof. To prove (i), suppose that g( $\omega$) is discontinuous at  $\omega$=0 without loss of

generality.
STEP 1: At first, we suppose that g( $\omega$) is piecewise continuous. Put g(+0)=

h_{+}, g(-0)=h_{-} and h_{+}\neq h_{-} . In this case, for any  $\epsilon$>0 ,
there exists  $\delta$>0 such
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that if - $\delta$< $\omega$<0 ,
then |g( $\omega$)-h_{-}|< $\epsilon$ and if  0< $\omega$< $\delta$ ,

then |g( $\omega$)-h+|< $\epsilon$ . For

Eq.(3.9), we suppose | $\lambda$|=|x+\sqrt{-1}y|< $\delta$ and  y>0 . The case y<0 is treated in a

similar manner. We calculate D( $\lambda$) as

 D( $\lambda$)=\displaystyle \int_{ $\delta$}^{\infty}\frac{g( $\omega$)}{ $\lambda$-j\sqrt{-1} $\omega$}d $\omega$+\int_{-\infty}^{- $\delta$}\frac{g( $\omega$)}{ $\lambda$-j\sqrt{-1} $\omega$}d $\omega$
+\displaystyle \int_{0}^{ $\delta$}\frac{1}{ $\lambda$-j\sqrt{-1} $\omega$}(g( $\omega$)-h++h_{+})d $\omega$+\int_{- $\delta$}^{0}\frac{1}{ $\lambda$-j\sqrt{-1} $\omega$}(g( $\omega$)-h_{-}+h_{-})d $\omega$

=\displaystyle \int_{ $\delta$}^{\infty}\frac{g( $\omega$)}{ $\lambda$-j\sqrt{-1} $\omega$}d $\omega$+\int_{ $\delta$}^{\infty}\frac{g(- $\omega$)}{ $\lambda$+j\sqrt{-1} $\omega$}d $\omega$
+\displaystyle \int_{0}^{ $\delta$}\frac{1}{ $\lambda$-j\sqrt{-1} $\omega$}(g( $\omega$)-h_{+})d $\omega$+\int_{0}^{ $\delta$}\frac{1}{ $\lambda$+j\sqrt{-1} $\omega$}(g(- $\omega$)-h_{-})d $\omega$

(3.15) +\displaystyle \int_{0}^{ $\delta$}\frac{1}{ $\lambda$-j\sqrt{-1} $\omega$}(h+-h_{-})d $\omega$+h_{-}\int_{0}^{ $\delta$}\frac{d $\omega$}{ $\lambda$-j\sqrt{-1} $\omega$}+h_{-}\int_{0}^{ $\delta$}\frac{d $\omega$}{ $\lambda$+j\sqrt{-1} $\omega$}.
Since | $\lambda$|< $\delta$ ,

there exists a positive number  M
,

which is independent of  $\lambda$
,

such that

\displaystyle \int_{ $\delta$}^{\infty}\frac{g(\pm $\omega$)}{ $\lambda$\mp j\sqrt{-1} $\omega$}d $\omega$<M.
Thus |D( $\lambda$)| is estimated as

|D( $\lambda$)|\displaystyle \geq|h_{+}-h_{-}|\int_{0}^{ $\delta$}\frac{d $\omega$}{| $\lambda$-j\sqrt{-1} $\omega$|}- $\epsilon$\int_{0}^{ $\delta$}\frac{d $\omega$}{| $\lambda$-j\sqrt{-1} $\omega$|}- $\epsilon$\int_{0}^{ $\delta$}\frac{d $\omega$}{| $\lambda$+j\sqrt{-1} $\omega$|}
-|\displaystyle \frac{h_{-}}{j}\log(\frac{\sqrt{-1} $\lambda$+j $\delta$}{\sqrt{-1} $\lambda$-j $\delta$})|-2M.

Since y>0, | $\lambda$-j\sqrt{-1} $\omega$|<| $\lambda$+j\sqrt{-1} $\omega$| . This shows that

(3.16) |D( $\lambda$)|\displaystyle \geq(|h+-h_{-}|-2 $\epsilon$)\int_{0}^{ $\delta$}\frac{d $\omega$}{| $\lambda$-j\sqrt{-1} $\omega$|}-|\frac{h_{-}}{j}\log(\frac{\sqrt{-1} $\lambda$+j $\delta$}{\sqrt{-1} $\lambda$-j $\delta$})|-2M.
The right hand side tends to infinity as  $\lambda$\rightarrow 0 if 2 $\epsilon$<|h+-h_{-}| . This proves that

Eq.(3.9) has no roots at  $\lambda$=0 for positive K.

STEP 2: In general, since g( $\omega$) is a non‐negative measurable function, there exists

a monotonic increasing sequence \{g_{n}( $\omega$)\}_{n=1}^{\infty} of non‐negative simple functions such that

g_{n}( $\omega$)\rightarrow g( $\omega$) for each  $\omega$ . In particular if  g( $\omega$) is discontinuous at  $\omega$=0 ,
we can choose

\{g_{n}( $\omega$)\}_{n=1}^{\infty} so that g_{n}( $\omega$) is discontinuous at  $\omega$=0 for any n\in \mathrm{N} . Then, the proof is

done in the same way as STEP 1 by approximating g( $\omega$) by g_{n}( $\omega$) .

(ii) The formula Eq.(3.14) is proved in Ahlfors [1]. \square 

Let (y, K) be one of the solutions of Eq.(3.13). Since g( $\omega$) is continuous at  $\omega$=y,

substituting it into the first equation of Eq.(3.13) yields

(3.17)  $\pi$ g(y/j)=-\displaystyle \frac{{\rm Im}(f_{j})}{K|f_{j}|^{2}}.
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Substituting K=-{\rm Im}(f_{j})/( $\pi$|f_{j}|^{2}g(y/j)) obtained from the above into the second

equation of Eq.(3.13) results in

(3.18) \displaystyle \lim_{x\rightarrow 0}\int_{\mathrm{R}}\frac{j $\omega$-y}{x^{2}+(j $\omega$-y)^{2}}g( $\omega$)d $\omega$=\frac{ $\pi${\rm Re}(f_{j})}{j{\rm Im}(f_{j})}g(y/j) .

This equation for y determines imaginary parts to which  $\lambda$(K) converges as {\rm Re}( $\lambda$(K))\rightarrow
+0 . Let y_{1}, y_{2},

\cdots be roots of Eq.(3.18). Then,

(3.19)  K_{n}=\displaystyle \frac{-{\rm Im}(f_{j})}{ $\pi$|f_{j}|^{2}g(y_{n}/j)}, n=1, 2, \cdots
give the values such that {\rm Re}( $\lambda$(K))\rightarrow 0 as K\rightarrow K_{n}+0 . Now we obtain the next

theorem.

Theorem 3.5. Suppose that {\rm Im}(f_{j})<0 . Let y_{1}, y_{2},
\cdots be roots of  Eq.(3.18) .

Put

(3.20) K_{c}^{(j)}:=\displaystyle \inf_{n}K_{n}=\frac{-{\rm Im}(f_{j})}{ $\pi$|f_{j}|^{2}\sup_{n}g(y_{n}/j)}.
If 0<K<K_{c}^{(j)} ,

the operator T_{j} has no eigenvalues, while if K is slightly larger than

K_{c}^{(j)}, T_{j} has eigenvalues on the right half plane.

Note that \displaystyle \inf_{n}K_{n} is positive because of Lemma.3.3 (iii). As a corollary, we obtain

the transition point (bifurcation point to the partially locked state) conjectured by
Kuramoto [10]:

Corollary 3.6 (Kuramoto�s transition point). Suppose that the probability den‐

sity function g( $\omega$) is even and \displaystyle \max g( $\omega$)=g(0) . If {\rm Re}(f_{1})=0 and {\rm Im}(f_{1})=-1/2 (it
corresponds to  f( $\theta$)=\sin $\theta$ in  Eq.(1.3)), then K_{c}^{(1)} defined as above is given by

(3.21) K_{c}^{(1)}=\displaystyle \frac{2}{ $\pi$ g(0)}.
When K>K_{c}^{(1)} ,

the solution Z_{1}=0 of Eq. (3.2) is unstable.

§3.4. Semi‐group generated by the operator T_{1}({\rm Im}(f_{1})<0)

Since we are interested in the dynamics of the order parameter Z_{1}^{0}(t)=(Z_{1}, P_{0}) ,

in what follows, we consider only j=1 while cases j=2 , 3, \cdots are investigated in

the same way. Theorem 3.5 shows that  K_{c}^{(1)} is the least bifurcation point and the



122 Hayato Chiba

trivial solution Z_{1}(t,  $\omega$)=0 of Eq.(3.2) is unstable if K is slightly larger than K_{c}^{(1)} . If

0<K<K_{c}^{(1)} ,
the spectrum of T_{1} is on the imaginary axis:  $\sigma$(T_{1})= $\sigma$(\sqrt{-1}\mathcal{M}) ,

and

thus the dynamics of Z_{1} is nontrivial. In this subsection, we investigate the dynamics
of Z_{1} and the order parameter for 0<K<K_{c}^{(1)} . We will see that the order parameter

may decay exponentially even if the spectrum lies on the imaginary axis because of

existence of resonance poles.
Since \sqrt{-1}\mathcal{M} has the semi‐group e^{\sqrt{-1}\mathcal{M}t} and since \mathcal{P} is bounded, the operator

T_{1}=\sqrt{-1}\mathcal{M}+\sqrt{-1}Kf_{1}\mathcal{P} also generates the semi‐group (Kato [8]), say e^{T_{1}t} . A solution

of Eq.(3.2) with an initial value q( $\omega$)\in L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) is given by e^{T_{1}t}q( $\omega$) . The e^{T_{1}t} is

calculated by using the Laplace inversion formula

(3.22) e^{T_{1}t}=\displaystyle \lim_{y\rightarrow\infty}\frac{1}{2 $\pi$\sqrt{-1}}\int_{x-\sqrt{-1}y}^{x+\sqrt{-1}y}e^{ $\lambda$ t}( $\lambda$-T_{1})^{-1}d $\lambda$,
where x>0 is chosen so that the contour is to the right of the spectrum of T_{1}

(Yosida [22]). At first, let us calculate the resolvent ( $\lambda$-T_{1})^{-1}.

Lemma 3.7. For any q( $\omega$)\in L^{2}(\mathrm{R}, g( $\omega$)d $\omega$) ,
the equality

(3.23) F_{0}( $\lambda$) :=(( $\lambda$-T_{1})^{-1}q, P_{0})=\displaystyle \frac{(( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q,P_{0})}{1-\sqrt{-1}Kf_{1}D( $\lambda$)}
holds.

Proof. Put

R( $\lambda$)q:=( $\lambda$-T_{1})^{-1}q=( $\lambda$-\sqrt{-1}\mathcal{M}-\sqrt{-1}Kf_{1}\mathcal{P})^{-1}q,

which yields

( $\lambda$-\sqrt{-1}\mathcal{M})R( $\lambda$)q=q+\sqrt{-1}Kf_{1}\mathcal{P}R( $\lambda$)q

=q+\sqrt{-1}Kf_{1}(R( $\lambda$)q, P_{0})P_{0}.

This is rearranged as

R( $\lambda$)q=( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q+\sqrt{-1}Kf_{1}(R( $\lambda$)q, P_{0})( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}P_{0}.

By taking the inner product with P_{0} ,
we obtain

(R( $\lambda$)q, P_{0})=(( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q, P_{0})+\sqrt{-1}Kf_{1}(R( $\lambda$)q, P_{0})D( $\lambda$) .

This proves Eq.(3.23).
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Let Z_{1}^{0}(t)=(Z_{1}, P_{0}) be the order parameter with the initial condition Z_{1}(0,  $\omega$)=
q( $\omega$) . Eqs.(3.22) and (3.23) show that Z_{1}^{0}(t) is given by

(3.24) Z_{1}^{0}(t)=(e^{T_{1}t}q, P_{0})=\displaystyle \lim_{y\rightarrow\infty}\frac{1}{2 $\pi$\sqrt{-1}}\int_{x-\sqrt{-1}y}^{x+\sqrt{-1}y}e^{ $\lambda$ t}\frac{(( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q,P_{0})}{1-\sqrt{-1}Kf_{1}D( $\lambda$)}d $\lambda$.
One of the effective way to calculate the integral above is to use the residue theorem.

Recall that the resolvent ( $\lambda$-T_{1})^{-1} is holomorphic on \mathrm{C}\backslash  $\sigma$(T_{1}) . Since we assume that

0<K<K_{c}^{(1)}, T_{1} has no eigenvalues and the continuous spectrum lies on the imaginary
axis:  $\sigma$(T_{1})= $\sigma$(\sqrt{-1}\mathcal{M})=\sqrt{-1}\cdot supp (  g) . Thus the integrand e^{ $\lambda$ t}F_{0}( $\lambda$) in Eq.(3.24)
is holomorphic on the right half plane and may not be holomorphic on  $\sigma$(T_{1}) . However,
under assumptions below, we can show that F_{0}( $\lambda$) has an analytic continuation F_{1}( $\lambda$)
through the line  $\sigma$(T) from right to left. Then, F_{1}( $\lambda$) may have poles on the left

half plane (the second Riemann sheet of the resolvent), which are called the resonance

poles [17]. The resonance pole  $\mu$ affects the integral in Eq.(3.24) through the residue

theorem (see Fig.4). In this manner, the order parameter  Z_{1}^{0}(t) can decay with the

exponential rate {\rm Re}( $\mu$) . Such an exponential decay caused by resonance poles is well

known in the theory of Schrödinger operators [17], and for the Kuramoto model, it is

investigated numerically by Strogatz et al. [19] and Balmforth et al. [2].
At first, we construct an analytic continuation of the function F_{0}( $\lambda$) .

Lemma 3.8. Suppose that the probability density function g( $\omega$) and an initial

condition q( $\omega$) are real analytic on R. If g( $\omega$) and q( $\omega$) have meromorphic continuations

g^{*}( $\lambda$) and q^{*}( $\lambda$) to the upper half plane, respectively, then the function F_{0}( $\lambda$) defined
on the right half plane has the meromorphic continuation F_{1}( $\lambda$) to the left half plane,
which is given by

(3.25) F_{1}( $\lambda$)=\displaystyle \frac{(( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q,P_{0})+2 $\pi$ q^{*}(-\sqrt{-1} $\lambda$)g^{*}(-\sqrt{-1} $\lambda$)}{1-\sqrt{-1}Kf_{1}D( $\lambda$)-2 $\pi$\sqrt{-1}Kf_{1}g^{*}(-\sqrt{-1} $\lambda$)}.
Proof. By the formula (3.14), we obtain

(3.26)
\displaystyle \lim (( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q, P_{0})- \displaystyle \lim (( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q, P_{0})=2 $\pi$ q({\rm Im}( $\lambda$))\cdot g({\rm Im}( $\lambda$)) .

{\rm Re}( $\lambda$)\rightarrow+0 {\rm Re}( $\lambda$)\rightarrow-0

Thus the meromorphic continuation of (( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q, P_{0}) from right to left is given

by

(3.27) \left\{\begin{array}{l}
(( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q, P_{0}) ({\rm Re}( $\lambda$)>0) ,\\
(( $\lambda$-\sqrt{-1}\mathcal{M})^{-1}q, P_{0})+2 $\pi$ q^{*}(-\sqrt{-1} $\lambda$)g^{*}(-\sqrt{-1} $\lambda$)({\rm Re}( $\lambda$)<0) .
\end{array}\right.
This proves Eq.(3.25).
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Poles of F_{1}( $\lambda$) (resonance poles) on the left half plane are given as roots of the

equation

(3.28) D( $\lambda$)+2 $\pi$ g^{*}(-\displaystyle \sqrt{-1} $\lambda$)=\frac{1}{\sqrt{-1}Kf_{1}}, {\rm Re}( $\lambda$)<0
and poles of the function q^{*}(-\sqrt{-1} $\lambda$) . In the next theorem, we suppose for simplicity
that q^{*}(-\sqrt{-1} $\lambda$) has no poles. Now we calculate the order parameter Z_{1}^{0}(t) .

Theorem 3.9. For Eq. (3.2) with j=1 , suppose that

(i) {\rm Im}(f_{1})<0 and 0<K<K_{c}^{(1)}.
(ii) the probability density function g( $\omega$) is real analytic on \mathrm{R} and has meromorphic
continuation g^{*}( $\lambda$) to the upper half plane.

(iii) an initial condition q( $\omega$) is real analytic on \mathrm{R} and has analytic continuation q^{*}( $\lambda$)
to the upper half plane.

(iv) there exists a positive number  $\delta$ such that |F_{1}( $\lambda$)|\rightarrow 0 as | $\lambda$|\rightarrow\infty in the angular
domains

(3.29) |\arg( $\lambda$)|\leq $\delta$, |\arg( $\lambda$)- $\pi$|\leq $\delta$.

(v) there exist positive constants D and  $\beta$ such that

(3.30) |F_{1}( $\lambda$)|\leq De^{ $\beta$| $\lambda$|}

in the angular domain  $\pi$/2+ $\delta$\leq\arg( $\lambda$)\leq 3 $\pi$/2- $\delta$.

Then, there exist resonance poles of T_{1} on the left half plane. Let $\alpha$_{1}, $\alpha$_{2},
\cdots be resonance

poles such that |$\alpha$_{1}|\leq|$\alpha$_{2}|\leq\cdots . Then, there exists a positive constant  t_{0} such that the

order parameter is given by

(3.31) Z_{1}^{0}(t)=(e^{T_{1}}{}^{t}q, P_{0})=\displaystyle \sum_{n=1}^{\infty}p_{n}(t)e^{$\alpha$_{n}t}, t>t_{0}
where p(t) is a polynomial in t . In particular, Z_{1}^{0}(t) decays exponentially as t\rightarrow\infty.

Proof. At first, we prove the existence of resonance poles. Resonance poles are

roots of Eq.(3.28), which is the analytic continuation of the equation (3.9) for j=1.
Thus one of the resonance poles is obtained as a continuation of an eigenvalue  $\lambda$(K) .

Recall that  $\lambda$(K) converges into the imaginary axis as K\rightarrow K_{c}^{(1)}+0 . To prove that

there exists a resonance pole on the left half plane when K<K_{c}^{(1)} ,
we have to show

that  $\lambda$(K) does not stay on the imaginary axis for K<K_{c}^{(1)} . Differentiating Eq.(3.9)
with respect to K

,
we obtain

(3.32) $\lambda$'(K)\displaystyle \int_{\mathrm{R}}\frac{1}{( $\lambda$-\sqrt{-1} $\omega$)^{2}}g( $\omega$)d $\omega$=\frac{1}{\sqrt{-1}K^{2}f_{1}},
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Figure 4. The contour for the Laplace inversion formula.

which proves that $\lambda$'(K)\neq 0 . Further, roots y of Eq.(3.18), which determines eigenval‐
ues on the imaginary axis, are isolated because both side of Eq.(3.18) are analytic with

respect to y . This means that  $\lambda$(K) can not move along the imaginary axis. This proves

that an eigenvalue  $\lambda$(K) gets across the imaginary axis from right to left as K decreases

from K_{c}^{(1)} ,
which gives a root of Eq.(3.28). Note that there may exist resonance poles

which are not continuations of eigenvalues (see Example 3.11).
Next, let us prove Eq.(3.31). Let d>0 be a small number and r sufficiently large

number. Take paths C_{1} to C_{6} as are shown in Fig.4:

C_{1}=\{d+\sqrt{-1}y|-r\leq y\leq r\},

C_{2}=\{x+\sqrt{-1}r|0\leq x\leq d\},

C_{3}=\{re^{\sqrt{-1} $\theta$}| $\pi$/2\leq $\theta$\leq $\pi$/2+ $\delta$\},
C_{4}=\{re^{\sqrt{-1} $\theta$}| $\pi$/2+ $\delta$\leq $\theta$\leq 3 $\pi$/2- $\delta$\},

and C_{5} and C_{6} are defined in a similar way to C_{3} and C_{2} , respectively. We put C=

\displaystyle \sum_{j=1}^{6}C_{j}.
Let $\alpha$_{1}, $\alpha$_{2}, \cdots, $\alpha$_{n(C)} be resonance poles inside the closed curve C ,

where we assume

that there are no resonance poles on the curve C by deforming it slightly if necessary.

Let R_{1}(t) , R_{2}(t) , \cdots, R_{n(c)}(t) be corresponding residues of e^{ $\lambda$ t}F_{1}( $\lambda$) , respectively. Note

that if $\alpha$_{j} is a pole of F_{1}( $\lambda$) of order m_{j}, R(t) is of the form R_{j}(t)=p_{j}(t)e^{$\alpha$_{j}t} with a
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polynomial p_{j}(t) of degree m_{j}-1 . By the residue theorem, we have

2 $\pi$\displaystyle \sqrt{-1}\sum_{j=1}^{n(C)}R_{j}(t)=\int_{C_{6}+C_{1}+C_{2}}e^{ $\lambda$ t}F_{0}( $\lambda$)d $\lambda$+\int_{C_{3}+C_{4}+C_{5}}e^{ $\lambda$ t}F_{1}( $\lambda$)d $\lambda$.
The integral \displaystyle \int_{C_{1}}e^{ $\lambda$ t}F_{0}( $\lambda$)d $\lambda$/(2 $\pi$\sqrt{-1}) converges to Z_{1}^{0}(t) as  r\rightarrow\infty . It is easy to show

that the integrals along  C_{2}, C_{3}, C_{5}, C_{6} tend to zero as  r\rightarrow\infty because of the assumption

(iv). We have to estimate the integral along  C_{4} as

|\displaystyle \int_{C_{4}}e^{ $\lambda$ t}F_{1}( $\lambda$)d $\lambda$|\leq\int_{ $\pi$/2+ $\delta$}^{3 $\pi$/2- $\delta$}re^{rt\cos $\theta$}|F_{1}(re^{\sqrt{-1} $\theta$})|d $\theta$
\displaystyle \leq $\pi$/2+ $\delta$\leq $\theta$\leq 3 $\pi$/2- $\delta$\max|F_{1}(re^{\sqrt{-1} $\theta$})|\int_{ $\pi$/2+ $\delta$}^{3 $\pi$/2- $\delta$}re^{rt\cos $\theta$}d $\theta$
\displaystyle \leq De^{ $\beta$ r}\int_{ $\delta$}^{ $\pi$/2}2re^{-rt\sin $\phi$}d $\phi$
\displaystyle \leq De^{ $\beta$ r}\int_{ $\delta$}^{ $\pi$/2}2r_{2}e^{-2rt $\phi$/ $\pi$}d $\phi$

(3.33) \displaystyle \leq De^{ $\beta$ r}\cdot\frac{ $\pi$}{t}(e^{-2rt $\delta$/ $\pi$}-e^{-rt}) .

Thus if t>t_{0}:=\displaystyle \max\{ $\beta$,  $\pi \beta$/(2 $\delta$)\} ,
this integral tends to zero as r\rightarrow\infty. \square 

Example 3.10. If g( $\omega$) is a rational function, the assumptions are satisfied when

q^{*}( $\lambda$) is bounded on the upper half plane. In this case, the number of resonance poles
is finite and thus Eq.(3.31) becomes finite sum. For example if g( $\omega$)=1/( $\pi$(1+$\omega$^{2})) is

the Lorentzian distribution, a resonance pole is given by  $\lambda$=\sqrt{-1}Kf_{1}-1 (a root of

\mathrm{E}\mathrm{q}.(3.28)) . Therefore Z_{1}^{0}(t) decays with the exponential rates {\rm Re}(\sqrt{-1}Kf_{1}-1) .

Example 3.11. If g( $\omega$) is the Gaussian distribution, the assumptions are sat‐

isfied when q^{*}( $\lambda$) is of exponential type; that is, there exist positive constants C and

 $\beta$ such that |q^{*}( $\lambda$)|\leq Ce^{ $\beta$| $\lambda$|} . Since the analytic continuation g^{*}( $\lambda$) has an essential

singularity at infinity, there exist infinitely many resonance poles and they accumulate

at infinity.

§3.5. Semi‐group generated by the operator T_{1}({\rm Im}(f_{1})\geq 0)

In Sec.3.1 and Sec.3.4, we investigate the semi‐group generated by the operator

T_{1}=\sqrt{-1}\mathcal{M}+\sqrt{-1}Kf_{1}\mathcal{P} for the cases f_{1}=0 and {\rm Im}(f_{1})<0 , respectively. In this

subsection, we consider the case {\rm Im}(f_{1})\geq 0.

Theorem 3.12. Suppose that the assumptions (ii) to (v) of Thm.3.9 hold. If {\rm Im}(f_{1})\geq
 0 ,

for an arbitrarily fixed K>0 ,
the order parameter Z_{1}^{0}(t)=(e^{T_{1}t}q, P_{0}) decays
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exponentially as t\rightarrow\infty.

We show an idea of the proof. If {\rm Im}(f_{1})=0, T_{1}/\sqrt{-1}=\mathcal{M}+K{\rm Re}(f_{1})\mathcal{P} is self‐adjoint
and a rank one perturbation of the multiplication \mathcal{M} . By Theorem X‐4.3 in [8], T_{1}/\sqrt{-1}
and \mathcal{M} are unitarily equivalent. Since (e^{\sqrt{-1}\mathcal{M}t}q, P_{0}) decays exponentially (see Sec.3.1),
we can prove that so is (e^{T_{1}t}q, P_{0}) .

If {\rm Im}(f_{1})>0 , change the parameter as K\mapsto-K . Then, the problem is reduced

to the case K<0 and {\rm Im}(f_{1})<0 ,
and Thm.3.12 is proved in a similar manner to the

proof of Thm.3.9.
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