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Introduction

The aim of this note is to review and unify the authors’ recent papers [7, 20, 22], concerning
the Besov spaces, the Triebel-Lizorkin spaces, the Morrey spaces, the Besov-Morrey spaces and
the Triebel-Lizorkin-Morrey spaces. From the works [7, 20, 22] we conclude that the proof does
not depend heavily on the structure of the function spaces. The authors begin to be aware of
the fact that in order to obtain some (atomic) decomposition, we have only to require some
elementary axioms about the function spaces. One of such axims is the boundedness of the
powered maximal operator. As an example, in the present paper we develop the theory of
the Besov-Morrey spaces and the Triebel-Lizorkin-Morrey spaces coming with an A;?C-weight.
Analogous results will be obtained, for example, the Orlicz-Besov spaces and so on as long
as the function space satisfies the (local) maximal inequality. We define the weighted Besov-
Morrey spaces and the weighted Triebel-Lizorkin-Morrey spaces with the underlying weight w
in Aifc. After defining the function spaces, we formulate the atomic decomposition. Here we
content ourselves with the formulation of the atomic decomposition. The precise proof will be
published elsewhere.

This paper consists of four parts. The first part is devoted to the review of [20, 22]. The
second part is the weighted version of the first part. In the third part, which is the heart of this
paper, we consider the Besov-Morrey spaces and the Triebel-Lizorkin-Morrey spaces coming
with Al%¢-weights. As a preliminary step we investigate the function spaces coming with A!%°-
weights. A!%¢ will be of importance in the various field of mathematics such as differential
geometry and computational science, because it contains weights of exponential order. Finally
the fourth part contains two open problems on Morrey spaces.



Part I

Unweighted Besov-Morrey spaces and
unweighted Triebel-Lizorkin spaces

1 Introduction

The Besov-Morrey space emerged originally in [11]. H. Kozono and M. Yamazaki investi-
gated time-local solutions of the Navier-Stokes equations. Later it was investigated by A. Maz-
zucato. Mazzucato investigated the atomic decomposition and the molecular decomposition
(13, 14]. In [11, 13, 14] the authors developed a theory of the function space N, with
1<g<p<oo,l<r<ooands € R. L Tang and J. Xu defined the function spaces
Njyrand & with 0 < ¢ < p < 00,0 <7 < oo and s € R (see [25]). The present authors

par
developed a theory of decompositions in N;fqr and €5, with 0 < ¢ < p < o0, 0 <r < oo and
s € R. This type of decomposition results will be of more importance because it provides us
with a convenient way of analysis. For example, the synthesis result covers a part of theory of

wavelet analysis. For more details of this approach we refer to [8].

Before we go into the definitions of the Besov-Morrey spaces and the Triebel-Lizorkin-Morrey
spaces, let us recall the definitions of the Besov spaces and the Triebel-Lizorkin spaces, which
are prototypes of the Besov-Morrey spaces and the Triebel-Lizorkin-Morrey spaces respectively.
To describe these function spaces, we fix some notations. Let Ng = NU{0}. Define the Fourier
transform and its inverse by

FIE = 0mF | f)e ™ de, () = 0m) 7 | @)™ de

for f € L*(R™). Denote by xg the indicator function of a set E. B(r) means the open ball
centered at the origin of radius r > 0. Let {f;}jen, be a sequence of functions. Then define

1

q q

iieno = la(Lp)li= | Do IS5 = Loll® | I fidaemo = Lol i=|[{ D117 ] ¢ Ly

j€No J€ENy

for 0 < p,q < o0. Here a natural modification is made if ¢ = oo. Next we fix a sequence of
smooth functions {¢;},en, C S(R™) so that

XB@) < 0 < XB), XBA)\BE) < €1 < XBE)\BA): ¢5 = ¢1(277T1)
for j € N. Given f € §&'(R") and 7 € S(R"), we define 7(D)f := F (7 - Ff).

Under these notations, we define the Besov norm and the Triebel-Lizorkin norm. Let f €
S'(R™). We define

1+ Big®™)| = [{29°6;(D) fjem, ¢ L(Ly)]l. 0 <p<00,0< g <00, s€R
If = E5R™)| = [{29°6;(D) f}jen, : Lp(ly)], 0 < p < 00,0 < ¢ < o0, s €R.

Different admissible choices of ¢g and ¢; will yield equivalent quasi-norms. To unify the for-
mulation in the sequel, as was defined in [30], for example, we use A; (R") to denote either
By, (R") or Fy (R™) with 0 < p < 00,0 < ¢ <o0andséeR.



and &2

»gr briefly. Suppose that the parameters

Let us describe the function spaces N5,
p,q,r, s satisfy

0<g<p<oo,0<r<oo,seR.

Define the Morrey norm of a measurable function f by

1
IF s Myli= s EE( ] gpn) 0
z€R™, r>0 B(z,r)

The Besov-Morrey spaces and the Triebel-Lizorkin-Morrey spaces are obtained by replacing
the L, norm with the Morrey norm |- : MP]| given by (1). Given a sequence of measurable
functions {f;};jen,, we define

3=

I fiYema = LMD = | >0 I1f5 = MBI

j€No

=

{fitieny + M)l :

Il
™
=
<

q K

for0<g<p<oo, 0<r<oo.

Definition 1.1. [11, 25] Let f € S’(R™). Then define

1 N B = [{29°65(D) e, = (M)
If ¢ Epur®)] = [{27°65(D) fljen, = ME(L)]

for0<g<p<oo,0<r<oo,selk. N;fqr and &, are the set of all Schwartz distributions

f for which the norms are finite. A5, denotes either N, . or & ..

The crucial property is as follows:

Theorem 1.2. [25] The function space A, does not depend on the particular choice of
{®;j}jen,. The function space A}

bqr 1S @ quasi-Banach space.

2 Some elementary properties

Concrete spaces The function space A;, . (R™) covers many families of function spaces such
as the Holder-Zygmund space C*(R"), the Morrey space ML(R"), the Sobolev-Morrey space,
the Besov space B, (R™) and the Triebel-Lizorkin space F; (R™). As for the Sobolev-Morrey
space, we refer to [15, 16, 17]. Recall that the Holder space C*(R"), 0 < s < 1 is a set of all

continuous functions normed by

If : R = [If : Lo+ sup LEZTWI
wyyiR" |z —yl*
z£Y

Proposition 2.1. Suppose that 0 < ¢ <p < o0, 0<r < oo and s € R.



1. Let k € N. Then f € A5,.(R™) if and only if f € A5 F(R™) and 0;Ff € A5 F(R™) for

pqr pqr
every j = 1,2,...,n. Furthermore, we have the following norm equivalence

If = Apgr R = [1f 2 A PR+ Y1105 F + A kR
j=1

pqr )
A (R™).

for f e AS  (R™
2. As . (R™) = Ay
3. EDp(R™) = MP(R™), if 1 < ¢ < p < oco.

ppT
Pq2
4. B3, (R™) =C*(R"), if s € (0,1).

Assertions 1,3,4 can be found in [25, Proposition 2.15], [13, Proposition 4.1] and [24] re-
spectively, while the assertion 2 is immediate from the definition.

Proposition 2.2. Let the parameters p,q,r, 11,72, S, satisfy
O0<g<p<oo, 0<r,r,r3 <00, seR, €¢>0.

Then we have

1 NSHE(R™) € €5 (R™) and £375 (R™) € N

pgry pqrz pary pqrz

(R™).

2. AISNZ'H (Rn) - A;)q'r’g (Rn)v Zf 1 < 2.
3. ;q min(q,r)(Rn) c ggqr(Rn) - N;qoo (Rn)

The proof of this proposition is straightforward.
Proposition 2.3. Let 0 < g <p < 00,0 <r < o0 and s > ™ Then we have A (R™) C

p
BUC(R"™), where BUC(R™) denotes a set of all uniformly continuous and bounded functions.

Proof. A minor modification of the proof of [22, Proposition 3.7] readily gives us the inclusion
A3 (R™) C Biook (R™). Since it is known in [27, Chapter 2] that Biook (R™) C BUC(R™) (the

par
proof is simple), we obtain the desired result. |

3 Decompositions of the function spaces

Atomic decomposition

To describe the atomic decomposition, we introduce some notations, which are based on
those in [29, 30]. Now we follow [22, Section 4] to formulate the atomic decomposition.

We define two indices o, and o4, by

1
= min(Lg) 1, ogr := max{oy,0r).
n . . 1
Notation . 1. Let v € Z and m € Z™. Then define Q. = H [%, mjzj— ] .Call Quin a

j=1
dyadic cube in R" for each v € Z and m € Z™.



2. Let 0 < p< oo, veNyand m € Z™. X(p ) denotes the p-normalized indicator given by

X&), = 2% xq,..-

3. Given a doubly indexed sequence A\ = {A,n, }oen,, mezn, define

mezn

A = g (R™)] = { > )\l,mxl,m} t (M), 0<g<p<o0,0<r<oo
veNy

I\ 2 epgr(R™)] := { > )\,,mx,,m} t MP()|,0<g<p< oo, 0<r < oo
veNy

mezn

In order to unify the formulations in the sequel, denote by a,q-(R™) either np,-(R™) or
epqr(R™). We rule out apg,(R™) with p = oo and r < oc.
Following [29], let us recall the definition of atoms.

Definition 3.1. Let 0 <p<ocand se R. Fix K € Ny, LeZnN[-1,00) and d > 1.

1. Suppose further that v € Ny and m € Z". A C¥-function a is said to be an atom
centered at Q,,, if it is supported on d @Q,,, and satisfies the differential inequality and
the moment condition given below :

0% : Lol < 9=v(s=5) ol for o € No" with |a] < K (2)
and
/ 2Pa(x)dr =0 for § € Ng" with |3] < L,v > 1. (3)
Here condition (3) means no condition, if L = —1.
2. Define

Atomyg := {{aum }veNy, mezn : each a,y, is an atom centered at Qum},

Atom := {{avm }veny, mezn © {CQumtven,, mezn € Atomyg for some ¢ > 0}.

With this definition in mind, we formulate our atomic decomposition theorem.

Theorem 3.2 (Atomic decomposition). Suppose that the parameters K, L € Z and p,q,7,s,d € R
satisfy

0<g<p<oo,0<r<oo,d>1K2=>(1+[s])+, L >max(-1,[og —s])
for the N -scale and
0<qg<p<o0,0<r<oo,d>1 K= (1+[s])+, L >max(—1,[og — s])

for the E-scale.

1. Assume that {aym}ven,, mezn € Atomg and A = { A }ven,, mezn € apgr(R™). Then the

sum
= Z Z AvmGum

veENyg mezZ»

converges in S'(R™) and belongs to AS, (R™) with the norm estimate

par

||f qur(Rn)” § C”)‘ : aqu(Rn)”'

Here the constant ¢ does not depend on {Gym }veng,mezr nOT A



2. Conversely any f € A}, (R™) admits the following decomposition :

f= Z Z AvmQum-

veENg mez™

The sum converges in S'(R™). Here {aum }ven,, mezr € Atomg and the coefficient A =
{Avm veny, mezn € apgr(R™) fulfills the norm estimate

1A+ apgr (R < cllf = Ay (R™)]].

par

In view of our actual construction, unfortunately the coefficient A\ does not depend linearly
on f. We refer to [4, 22, 29] for more details.

Quarkonial decomposition

As we have noted, the atomic decomposition fails to enjoy linear dependency for the con-
stants. In [29, 30] H. Triebel proposed the quarkonial decomposition. The counterpart for

A, (R™) was obtained in [22, Section 5]. Following [30, Chapter 1, Section 1] and [22, Section

5], we describe the quarkonial decomposition for A}, (R™).

Notation . 1. Let v € S(R™) be a compactly supported function that generates the partition
of the unit:
Z Ple—m)=1
mezZn
with supp(y) C B(2‘Z).
2. For 3 € Ny define ¢ (z) := 2P(w).
3. For 5 € Ng, v € Ng, m € Z", define (Bqu),m(z) = 2_”(5_%)@[16(2”90 —m).
4. Let p > d, where d is a fixed constant appearing just above. Given a triply indexed
sequence A = {\2 Vscnin. e, mezn, we define

A nper(R™) ], o= ﬁsup 2001 g (R™)]], 0 < g <p < 00,0 <1 < 00
eNon

I\ = epgr(R™)||,p, := sup 2°PIIN e, (R™)]], 0 < ¢ < p <00, 0 <7 < o0,
BEN™

where M := {\2 1 en,. mezn -

5. We denote by [[A : ape-(R™)||, to denote either [|A : npq-(R™)||, or A : eper(R™)]|, as
usual. esoqr(R™) with r < oo will not appear for later considerations.
Theorem 3.3 (Quarkonial decomposition for the regular case). Suppose that the parameters
p’ q? r? S7p Satlsfy ~
0<g<p<oo,0<r<oo,8s>04 p>d

for the N -scale }
0<g<p<oo,0<r<oo,s8>04,p>d

for the E-scale. Then any f € A3, (R™) admits the following decomposition:

BeENy™ vENy meZ"



Here the coefficient A = {)\Em}BEN()",VENo,MGZ" depends linearly and continuously on f and it
satisfies

1A+ apgr (R, < ellf + Apg (RT)].

D DD RRL

veENy mezZn

If we set

for B € Nog™, then for all 6 € (0,p — cZ), there exists cs > 0 such that
£ A R < 5271 f A (R™)].

Conversely if X\ = {\2,.}genon, veny, mezn satisfies |\ 1 apgr||l, < oo, then

= 3 S SETHC I

BENy™ vENy meZL™
converges in S'(R™) and satisfies
I+ Apgr (RO < e A = apg, (R,

Theorem 3.4 (Quarkonial decomposition for the general case). Suppose that an odd integer L
and the parameters p,q,r, s, 0, p satisfy

0<g<p<oo,0<r<oo, scR, o>max(og,s), p>d, L>max(—1,[o, — s])
for the N -scale and
0<q§p<oo,0<r§oo,se]R,cr>max(crqr,s),p>(Z,L2max(—1,[aqr—s])

for the E-scale. Let f € S'(R™). Set

(Bqu)om(x) =277 5) B (22 — m)
(Bau) (@) =27 08) (—a) 5 07) (2 — m).

Then f € AS_.(R™) if and only if there exist triply indexed sequences

pq'r’(

1= {1} peon, vero, mezn and A = {X),, }genon, veno, mezn € apgr(R™)
such that f can be expressed as
S S Y et XS Y A G
BEN™ vENy meZn BEN™ vENy meZn

with
M+ apgr(R™) [+ A & apgr(R™)|, < oo. (4)

If this is the case, then \ can be taken so that it depends linearly and continuously on f and
the following norm equivalence holds:

11+ apgr(R)[p + [[A + apgr (R®)[l, = (| = Apgr (R[] (5)

As applications we obtained the trace results, the boundedness of the pseudo-differential
operators, the diffeomorphic property of the function spaces and so on. For details we refer to
[20].



Part I1

Function spaces coming with A, -weights

Now we shall begin with function spaces coming with weights somehow nicer than A°.
Namely, we are going to consider the weighted Morrey spaces whose norm is given by

I Myl s= sup w(@} ( /Q |f|qw)“ ,

where w € A.,. For the sake of convenience for readers we define the class A, with 1 < p < oco.

A brief introduction of the weight-class A, By “weight ” we mean a positive function
w which is locally integrable. For a cube @ and a weight w, we write w(Q) := wi and

mo(w) = % We also denote w{---} = f{ W for the sake of brevity.

Let 1 < p < 0. We define
Ap :={w : w is a weight satisfying A,(w) < oo},
where

Ai(w) = sup mo(w) - Ju : L¥(Q)]

p—1
Ap(w) := sup meo(w) - mg (w_ﬁ) if 1<p<oo.
Q:cube

We also define A, := U Ap. The following facts are well-known.
1<p<oo

Theorem 3.5. Let M be the Hardy-Littlewood mazimal operator and w a weight.

1. A, CA,, foralll <p; <py < oo.

2. Let w € As. Then
{pe(l,0) : weAi,}

is an open interval in (1, 00).
3. If w € A, then there exists a constant ¢ > 0 such that w(2Q) < cw(Q) for all cubes Q.

4. w € Aj is equivalent to the following weak-type inequality:

wptf >3 <5 [ 1w

for all measurable functions f.
5. Let 1 < p < 0. Then the following assertions are equivalent.

(a) we Ap.



(b) The following weak-type mazximal inequality holds :

widtf >0 < 5 15

for all measurable functions f.

(¢) The following strong-type mazximal inequality holds :

Mpwse [ |
RTL

Rn

for all measurable functions f.

For details we refer to [2, 6] for example.

Given a weight w, we also use the following vector-valued norm.

sl
Q=

I{fi}tsene = ME(n,w)|| = sup w(@)» 4 /Q Sl w]| - (6)

Q:cube jeNo

4 Function spaces coming with A, -weights

Having set down some elementary properties, let us consider the function spaces with A,o-
weights.

Let w € A. Below to be more precise let w € A, with 1 <u < oo.

For 0 < 1 < oo we define the powered Hardy-Littlewood maximal operator by

() . B "
M (@)= sup <|Q| /Q'f '")

for a measurable function f.

Theorem 4.1. Let 0 < g < p < 00 and 0 < r < co. Suppose that w € A,. Assume in addition
11

that 0 < n < min <—, —>. Then there exists ¢ > 0 such that
q u

KM f3}jeny = ME(Lyw)]| < el[{f;}en, : ME(L,w)|

for all sequences of measurable functions {f;};jen,-
Proof. The proof here is a mixture of [10, 21]. Note that

O f by MGl = [ 105, = MG )]

Therefore, we can assume that 7 = 1 and ¢ > u. Note that since w € A,,, we have

() Gl =)< o<



for all cubes Q. We let M,, be the maximal operator with respect to w:

M fw) = s (s / I )",Mwﬂx) = M f(2).

Q cube

In order to use the assumption that w € A,,, we rewrite M f(x) as follows:

Mf(x) =sup — /fw%~ ~u
z€Q |Q| | |

By the Holder inequality we obtain

wo V(L —ﬁ#
Mf() <i§8<|@|/'f' > <|@|/Qw ) '

From the definition of A,, we obtain

MF(x) < Ay(w) %i‘ég<|@| / e ) (ﬁ /Q w>_% < Au(w)E M f@). (1)

Furthermore, w is doubling. Therefore, we are in the position of using the vector-valued maxi-
mal inequality on the Morrey spaces coming with general Radon measures, in particular with
doubling Radon measures, (see [21]) to obtain

I{M D £} jene © ME(Le,w)|| < e |[{M £} jen, + ME(L,w)|

= ¢ ||l sene + MG Uryw)

g~

1
w

2 m
<e [l sen + ME@n)|
= c|{fi}tjen, + My, w)].
This is the desired result. il

5 Function spaces A;  .(w) with w € Ay

pgr

The goal of this section it to define the weighted function spaces A3, (w) with w € Ay as
a model case to Part III.

5.1 Definition

Definition 5.1. Suppose that the parameters p, q,r, s and the weight w satisfy
0<g<p<oo,0<r<oo,seR, we A,
Let ¢9 € S be taken so that xp1) < ¢o < xp(2). Define ¢;(z) := #(279z) — (279 ) for
7 € N. Then ones sets
1f + Nogr ()l == [{27°0;(D) f}jen, + Le(ME(w))]
1f+ Epgr (W)l = [I{27°0;(D) f}jem = My(lr, w)|

for f € §'. Below by A;, . (w) we denote either Npsq,,( w) or &y (w). .Af,qr( w) is the set of all

tempered distributions f € &' for which the quasi-norm || f : A;,.(w)]| is finite.

10



Theorem 5.2. Suppose that the parameters p,q,r, s and the weight w satisfy
0<g<p<oo,0<r<oo, seR we As.

Then the definition of the set A

oqr(Wloc does mot depend on {d;}jen, above.

The proof is based on the Plancherel-Polya-Nikolskij inequality, which can be formulated as
follows :

Theorem 5.3. [27, Theorem 1.3.1, Section 1.4.1] Let f € MP with 0 < ¢ < p < oo and
supp(F f) C B(1). Then for all n > 0, there exists ¢ > 0 such that there holds

sup —|f(x_yﬂ)| < cM(")f(:c)
yeRn 1+ [y|™

for every x € R™.

The following proposition is a corollary of the above theorem.
Proposition 5.4. Suppose that the parameters p,q,r and the weight w satisfy
0<g<p<oo, 0<r<oo,wé€ Ax.
1. Let o > 1. Suppose H € S(R™) and f € 8'(R™). Assume further that supp(F f) C B(R)
with 0 < R < co. Then we have
[H(D)f : Mg(w)|| < cl|H(R) : HFR™)|[-|[lf : ME(w)]l,
where ¢ is independent of H, f and R.

2. Let p < oo and o > 1. Suppose that we are given a sequence {f;}jen, in S'(R™) and
a positive sequence {R;}32 such that supp(Ff;) C B(R;) for every j € No. Assume
further that {H;}jen, C S(R™). Then we have

(D) f; Y jene = ME(w)]| < (:;5 | H(Re) Hg(Rn)H)‘H{fj}jeNo L M2 (1w,

where ¢ is independent of {Hj}jeny, {fi}jen, and {R;}jen, -

Completeness (quasi-Banach property)

Lemma 5.5. Let w € Ay and 0 < g < p < oo. Then there exist ¢, ag, 1 > 0 such that
|f(2)] < cR* (@) || f + ME(w)l

for all f € MB(w) with supp(F f) C B(R).

Proof. Let 0 < n < gq. We use the Plancherel-Polya inequality (see Theorem 5.3 above). Note
that

sup £ ()| < ¢ R inf MO f(x) < cow(@Q)# M = Mi(w)]|

z€Q T

for every cube @ with side-length 1. Recall that there exists a constant D > 1 such that
w([—2%,2%])) > D*w([~1,1]) for all k. Therefore, if we choose a; = max(log, D, cg,logn/n),
then we obtain

@) < eRMFa(z)* | f = Mb(w)]

by virtue of the boundedness of the maximal operator. The proof is now complete. ll

11



Corollary 5.6. A?

ogr(w) C S8 and A, (w) is complete.

Proof. By the Fatou lemma for the Morrey spaces the matter is essentially reduced to showing
A () C S
Let ag be a constant from Lemma 5.5. Choose an integer L so that L > oy —s. It is

not so hard to show that (1 — A)~F : A5 (w) — A5F25(w) is an isomorphism by virtue of

Proposition 5.4. We also remark that Af,:;? EFw) C Ny stL(w) is a continuous embedding. Pick

a test function ¢ € §. Then by Lemma 5.5, we obtaln
160151161 < 2o0lg;D)1 5 My [ 16ta)] )

This inequality is summable over j € Ny to a quantity less than ¢|| f : If;iL (w)||. As a result

we conclude A?

sqr(w) C &', proving completeness of A5 . (w). |

5.2 Atomic decomposition

Now we describe the atomic decomposition for the function space A3, . (w).

Definition 5.7. Suppose that the parameters p, q,r and the weight w satisfy

0<g<p<oo,0<r<oo,wé€ A,

1. Let A = {Aum tveny, mezn be a doubly indexed sequence. Then define

Hw%WM:{ZaMW} Ll (ME(w))
reNy

meznr

meznr

A epgr(w)] = { Z )\Vmem} s My(ly,w)
veNg

2. As before, to unify our formulation we use ayq-(w) to denote either npg,(w) or epqr(w)
according as A3 .(w) denotes Np,,.(w) or £, (w).

Theorem 5.8. Let w € A, with 1 < u < oo. Suppose that the parameters p,q,r,s and the
integers K, L satisfy

0<g<p<oo,0<r<oo,seR, K> (1+][s])s, L>max(—1,04+n(u—1)).

Assume in addition that L > [a% — | for the N-case and that L > [0%5 — s] for the E-case.
Then there exists a constant ¢ > 0 such that the following assertion holds.

1. Let f € A;,.(w) be taken arbitrarily. Then there exist A € ayq,(w) and a family of atoms
A= {ar/m}yeNon,meZn such that

f= Z Z Avm@um, [|A  apgr(w)| < ¢l f - Apgr(w w)|.

veENy mezZm™

12



2. Conversely suppose that A\ € apgr(w) and that A = {aum fvengn, mezn is a family of

atoms. Then f = Z Z Avm@Gum converges in the topology of &' and satisfies the
veENy mezZ™

1+ A (@)l < c|[A = apgr(w)]-

norm estimate

Proof. The proof is just a minor modification of the unweighted case. We omit the detail. Il

Part 111

Function spaces coming with ALOOC
weights

This part contains new results which we shall publish elsewhere. The key tool was obtained
by Rychkov [18]. For the sake of convenience for readers, we include the proofs.

6 Topological vector space S, and the maximal inequality

6.1 Topological vector space S,

The Besov spaces and the Triebel-Lizorkin spaces are subsets of §’. However, in the weighted
framework, it is not enough to consider the function spaces as a subset of S’. Indeed, if we do
so, then the completeness of the function spaces will fail. Instead, we enlarge the underlying
function spaces.

Definition 6.1. [18] Let N € Ng. Then define qn(f) := sup sup eV/*|0%f(z)| for f e C*°.
2€R™ |a|<N

S, is a set of all C*°-functions for which gy (f) is finite for all N € N. Topologize S, with ¢x.
From the very definition of the topology, the topology of S, is the weakest topology such
that f € Sc — gn(f) € R is continuous for all N € Nj.

Denote by S, the topological dual of S.. The following is an elementary fact from topological
vector space theory. However, for the sake of convenience for readers, we include its proof.

Proposition 6.2. A linear functional £ : Sc — C, which is not assumed continuous, belongs to

8! if and only if there exists Ny such that |€(¢)] < Nogqn,(v) for all p € Se.

Proof. The “if 7 part is obvious. Let us prove the “only if” part. Note that, assuming that £ is
continuous {¢ € S, : [£(p)| < 1} is an open set containing 0. Therefore, from the definition of
the topology in particular that of the open basis, there exists r1,79,...,73 and N1, No, ..., Nys
such that

{oeSe i qn,(p) <rjforall j=1,2,..., M} C{pcS.: |[((p)] <1}

13



Since g; is monotone, it suffices to set
No :=max (N1, Na, ..., Ny, [r1 + 1), [ra + 1], ..., [rar +1]) -

P
(1 + €)N0 dNy (4,0)

Ve €{p €St qn, (@) <rjforall j=1,2,..., M} C{pecS.: [l(p)] <1}

Indeed, if we consider . := for € > 0, then

As a result, we obtain [£(1.)| < 1, which gives us the desired result. il

From the definition it is easy to see

Proposition 6.3. S, C S and 8’ C S, in the sense of continuous embedding.
6.2 Local reproducing formula

Now we recall the local reproducing formula defined by Rychkov.
Proposition 6.4 ([18, Theorem 1.6]). Denote by X either S, Se or D. Suppose that ¢ € D and
that it satisfies /gp # 0. Define ¢;j,j € Ng by

po(z) = p(x)
©;(x) = 2" (27 x) — 20~V (21g) for j € N.

Then given an integer L, there exists a function ¥ € D such that
5= g,
j€Ng
in the topology of X' and that 11 has vanishing moment up to order L, where we have defined
Yo(z) = p(x)
V() = 20Mp(20 ) — 20 Vmp(297 1) for j € N.

Proof. Without loss of generality we can assume / @ = 1. Define

go() := ¢ * ()
g;(x) == 27" p(20x) — 20D s (207 12) for j € N.

Then we have § = Zgj in the topology of X', no matter what X may be. From this we
jeN

0= Zgj * Zgj KLk Zgj (L + 2 times).

JEN JEN JjEN

deduce

Let us write ¢* as the L-fold convolution of g. A repeated application of the binomial expansion

gives us
*L4+2—m

5:ZLZ+2<L;;2>(93')W i 95

jENy m=1 k=j+1

14



We define

L2 *L4+2—m
L+2 RS
G=3 (10 )| S
m=1 k=j+1
Since, for every j € N, G, never contains gy and g; = 207Yng(2971) we have G; =

20-1n@G (2971 for j € N. Note that we can factor out ¢, from G for each j € Ny. Therefore,
if we set

Gj(x) = ¢j *¥;(x),
then we have 1, j € Ny is the desired family. |

The following is also an important observation on smooth functions made by Schott [23].

Lemma 6.5. Let L € N. Then there exists @y, VU € D such that

@L(l’) — 2_n<I)L(2_1$) = AL\IJL(x)

and that /@L(x) =1

Proof. The proof is a reproduction of [23, Proposition 4.1]. For the sake of convenience for
readers we supply the proof. First, we choose ¢; € D(R) so that

/000 é1(r)yr™ L dr = 1, supp(¢1) € (0,1).
We define ¢s, ¢3, . .. as follows: Suppose that we have defined ¢1,. Then define ¢y, 1(r)
Gr41(r) = pror(r) + Apor(2r),
where pr and A, are given by the following simultaneous equations.
pr 427" AL =1, up +27" 2N =0
Note that

supp(¢r) C supp(¢r—1) U %Supp(dm_l) C...c(0,1). (8)

Furthermore,
o0 o0 (o0}
/ dr(r)r"Vdr = pp_ / dr_1(r)r"tdr + Ay / br_1(2r)yr™tdr
0 0 0

= pr—1 / Gra(r)r"hdr +27" A / pra(r)r"~tdr

0 0

= (pr—1+27"Ap-1) / ¢r—1(r)r™tdr

/ pra(r)rtdr=... =

We define np(r) := ¢r(r) — 27 "¢ (r/2) for r € R. Then we have

pLnn(r) + ALnL(2r) = prL ¢n(r) — 27" uror(r/2) + Apgr(2r) — 27" Arer(r)
= ¢r1(r) =27 "dr+1(r/2)
=nr4+1(r).

15



As a result we have ng41(r) = prnp(r) + Ao n(2r).

We define a linear operator T : C[0,00) — C[0, c0) by

@)= [ (&) owas) ar

Note that a series of changing variables gives us

(Té)(2r) = /OQT </Ot (%)n_1¢(s) ds) dt = /O </02u (%)n_lqb(s) ds) 2 du
— g2 /0 </02u (%)"_1 (s) ds> du = 4/(: </0u (%)n_l $(20) dv) du

=4-T[p(2)](r).
Denote by T the L-fold composition of 7. As can be verified by induction on L and (8),

TEny, vanishes in a neighborhood of 0 € [0, c0).

We shall establish by induction that 777, agrees with an even polynomial of degree 2L — 2
on [2,00). This assertion is true for L = 0.

Let L > 0. Then we have
T o (r) = TP (2) = T[T np1a](r) — T[T nL44])(2)
t n—1 I
( T*np+1(s) ds> dt

n—1

(. TP () + A T e (2))(s) ds) dt

n—1

S+l | | ®»

— N

(ur TEnp(s) 4+ A 27257y (25)) ds> dt,

where for the last equality we used (T¢)(2r) = 4-T[¢(2-)](r). Now we use pr 27" 2L\, = 1.

T p () = T" 4 (2)
2t

= /27‘ </0t [L (%)n_lTLnL(S) ds + | AL (%)n_12_2L_"TL77L(5))d8> dt

- /QT </olt (%)”—1 (o + 27257 AL) TEnr (s) ds + /t:)t AL (%)n_l 2T 0 (s)) ds) «

T 2t n—1
=L 2_2L_"/2 </ (%) TIn(s) ds) dt.
¢

TP syt otk
Using this recurrence formula and / < / (;) 52k ds) = T(7"2’“Jr2 —22k+2) we see
2 t n

that our claim holds.

Let us define
L1

Y (r) == r(TEnL)(r) — Z ar? 0 <r < oo,
1=0
The 11, agrees with an even polynomial of degree 2L — 2 near a neighborhood of 0 € [0, o)
and vanishes outside B(2), so that

O (x) := vol(SH) o (|z])
Uy () == vol(SY) Lepr (|z])

16



are smooth function in D. Furthermore, it is easy to see that ®; has integral 1.

Finally we observe that

ATp(al) = [ (" (o) ()] = o),

r=|z|

whenever p : [0,00) — [0, 00) is a smooth function vanishing near 0. Using this observation, we
see that

ALypp () = vol(ST)TTAE

L—1
(ThnL)(r) =Y a 7“2[]
=0

vol(S1) AL (TEn) (|2))
= vol(§") 'L (|=])
=&p(x) —27"Pr(2/2).

This is the desired result. il

Remark 6.6 ([18, Remark 1.8]). Let M € N. Then there exist g, ® € D such that
M) = pola) - 2 "po(2 ), [0 =1 (9
Let us set ¢ = AM®. Define

i) = 2" [A™ (o + 27 "o (-/2))(2w), @5 = 2 [ANMTMD](2x)

for j € N. Then we have

§=1poxpo+ Y 1
jen

in the topology of X. This is another candidate of the Littlewood-Paley patch.
6.3 Maximal inequality

Now we take up the maximal operator. Throughout this section we assume that 0 <n <1
and ¢g, ¢ € D. Define . . . '
pi() = 2 p(2 ) — 207D (27 g

for j € N. We assume that ¢1 has vanishing moment up to order L.

Let A,B > 0 and j € Ng. Then we define m; 4 5(y) := (1 +27|y[)42P¥! and ©iapflx) =
up it F@ )]
yern My A,B(Y)

Lemma 6.7 ([18, Lemma 2.9]). For every A, B > 0 there exists a constant ¢ > 0 depending only
on A, B,n, ey such that

o * f(a)] < ¢ ZQ(i—k)Aan/ lor * fz —y)| dy. © € R

P n o mjABY)

for every f € S and j € Ny.
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Proof. By the local reproducing formula, there exists 19,1 € D such that / P P(x)dx =0
for all 8 € No™ with || < L and that

Z ’Q[)]*(p]:(s, inSé

J€E€Ng

where we have set 1;(z) := 2/"p(27z) — 20~Unp(20~ 1) for j € N. Define

(100)j(x) == 27" 0 (2 ), (o) (x) := 27"po(2 )

for j € Nog. We remark that (¢o); and (1o); are different from ¢; and 1); respectively. Along
this decomposition of §, we expand ¢; * f:

0 f = (W0)j* (wo)j x @i x [+ D @it xpnxf.

k=j+1

Observe that supp(p; * 1%) C supp(y;) + supp(ix) C B(c277) for k > j + 1. Furthermore,
| F(1)(€)] < c|€]E* by virtue of the moment condition of v;. Therefore,

\Flo)(©)F Wr) (€)] < c |27 FH F (1) (21 77¢)| = 20~ RUEAD pl=dg L+ 7 () (2177¢)].

A similar estimate holds for the partial derivatives. Along with this estimate, || Ff |lco < c|| f |1
gives us that ' '
|<Pj " ¢k(w)| < Cz(j—k)(L+1)+jn

for all x € R™. Combining the above observations, we conclude
s i ()] < c20TREFDTINy B o) (@)
for all x € R™. Since
mjap(y) <c
for y € B(c279). Therefore, it follows that
o o0 j ok * f(x —y)|
lpj * f(z)] < ¢ ZQ(J—k)AQJn/ LA ACEE 21

o n mjaB(Y)

which concludes the proof. il

Set Ma pf(x,7):=sup 2(3'_’“)‘4—“01C # Sl = y)|
’ k> m;A,B(Y)

Lemma 6.8 ([18, Lemma 2.9]). Let 0 < n < 1. For every A, B > 0 there exists a constant ¢ > 0
depending only on A, B,n,n, @y such that

< ) — )"
|¢j*f(x)|”SCZQ(J—k)AnQJn/ lor * flz —y)| dy

k=j m mj7A777B77 (y)

for every f € S, and each x € R™.

Proof. Note that we have proved in Lemma 6.7

- [+ flo—y —2)|
lon * Flz — )| < ¢ Zh2(k—l)A2ln/ @1 Y dz.

=k n M, A,5(2)
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which is the case when n = 1. With this inequality, we pass to the general case. First, this
inequality gives us

9(i—k)A oe * fle —y)| _ . iz(j—l)A2ln/ i x fz —y — 2)| ds

mj,a,B(Y) — R’ M5,A,8(Y)Mk,A,5(2)

<c Zg(j—l)AQZn/ lor* flx —y — 2)| ay

=k re M A B(Y)mj A B(2)

Now we make use of the Peetre inequality (a 4 b) < v/2{(a) - (b):
e fle—y=2) _ <|<pz *f(w—y—2)|>1_"_ <|<pz *f(ﬂc—y—Z)|>’7
mja,5(Y)mja,(2) mj (Y + 2) mj,a,B(y + z)

n
< o-NA-mA s 2, )0 . <|901 * flw —y— Z)|> '
< aBf(z,7) man(y+2)

Inserting this estimate, we obtain

i—kya e * fx —y)| S 1 * fz — 2)|"
PEAORN L2t Al )l (S VO TR ZQ(J—Z)AUQW/ s fle =2,
m;j a,B(Y) ey Re M, Ap,Bn(2)

Taking supremum of both side over k£ € N with k > j, we obtain

My Bf(x,]) = sup 2(j—k:)A |90k * f((IJ - y)|

k>j mj,a,B(Y)
yeR™
* T —z n
< eMapf(z,j)' 7" sup Zzw HAngin / leex fl@ =27 5
kZR? 1=k n My An.Bn(2
ye "

_ )|
<cMapf(z,j) "220 Z)A"2l"/ wd&
M An,Bn(2)

In summary we have obtained

> — )
My pf(w,j) < cMapf(e,j) ") 20-DAmin / Lol = 21, (10)
= n M An,Bn(2)

Therefore, the assetion in the theorem is obtained, once we justify we can divide My g f(x,7)"
in the above inequality. Since f € S., we have

lor* fx —2)] < can(i(z — 2z — %))
for some N € N with N depending on f. Note that

aquaa

an(pi(z — 2 —%)) = sup oi(r — 2z —w)|

|| <N, weR™
IN N|w|—-2' N|z—z—
<c2"Vgn(p) sup e || |z —z—wl|
weR™
IN Nlz—z—w|—2' N
< c2"Vgn(p) sup e |z—z—w| Jwl
weR™

< 2NV exp(Nlz — y|).
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Therefore, there exists A and B such that M gf(z,j) < oo, whenever A > Ay and B > By.
Dividing both sides by M4 g f(z,7)'™", we obtain

= o (j loox f(x = 2)|"
Mupf(x,j)T<c Zz(J_l)An2ln/ L dz,

1=j m mijTth (2)

whenever A > Ay and B > By. In particular

Sy g1 * f(z —2)["
lpj * f(x)]" < ¢ Z Q(J—I)Angln/ oex A& =20 4,

1= n Mg AgBy(%

provided A > Ay and B > By. Note that the constant ¢ in the above estimate does depend on
A and B. Therefore, we see that there exists ¢ = ¢y depending on f such that

o o o fla —2)|"
lpj * f(2)|" < ¢y Zzﬁ—l)f“"zl"/ LS R

1= n Mg AnBy(2

Since the right-hand side is decreasing with respect to A and B, we see that the formula is
valid for all A, B > 0. As a consequence, we obtain

< _ A\
|¢j s« f(z)]" < o ZQ(]—I)An2ln/ 1 * f(x — 2)] dz

= o MyAn,By(2

for all A, B > 0. Another application of the Peetre inequality gives us

Mapf(z,j)7 = sup <2(j—k)Aw>n

k>j mj,A,B(y)
yER™
S oo x fl@—y—2)|"
< ¢ Z2<j—l>A"2l”/ LA Ay
p R» T2, An,Bn(Y) 11, An, By (2)

o o1 * flw—y —2)|"
<cy sup 22(]_l)‘4’72l"/ d dz
P Rt o mjanBy (Y + 2)

yeR™ "

Notice that the most right-hand side is increasing with k. Therefore, after a change of variables
we obtain

%)
. — n
MAny(JI,j)" < cy sup E 2(]—l)A7]2ln/ w dz < oo.
Z€R™ 175 o M An,Bn(%

As a result we conclude My g f(z,j) < oo, whenever z satisfies

Zz(j—l)An2ln/ lgr * f(z —2)|" dz < oo
l=j "

mj, An,Bn(2)

We now return to (10) to conclude

— o (j _\|n
Mapf(z,j)<c 22(3‘”“‘"21"/ Lo fla =2

1=j n 1§, An,Bn (Z

This gives us the desired result in view of the definition of M4 5 f(x,j). |
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Now we return to the maximal operator given by
" lpj * fx —y)|
@japf(x) = sup —=———-=r (11)
pAB yern My A B(Y)
which we shall use in this paper.
Definition 6.9. Let us set

1
Mloc,grf(x) = sSup _/ |f| dx
veQ. i@ <r Q| Jg

1 0
Ml(cl)érf(x) ‘= sup <—/ ¥k d:c>
veq.u@<r \|Q| Jo

Moo f(x) := Mige <1 f(2)
i (z) = Ml?c),gL (2)

loc

for 0 < n,r < oo and a measurable function f.

To formulate our result, we define an operator Kp.

Definition 6.10. Let B > 0. Then define

Kpf(x) = / F@)2 Bl dy.

n

Proposition 6.11. [18] Let n > 0 and A > n/n. Then we have

Piapf(@)? <> 207 (A (o £7)(2) + Kayllew * £17](2))
k=j

Proof. Again by the Peetre inequality we obtain

o0
lj * f ()] <o almWAngs ok * flz —2)|" &
™M, An,Bn (Y) R M5, An, By (Y)M, An,Bn (2 — Y)

k=j

o9}
<Y pU-RAngin / e flo = 2",

k=j " mijnan(z)

We decompose the inner integral of the most right-hand side according to the unit ball.

/ lowx fle = 2" . oin / len* fl@=2)I" 1 ojn—an) / lewx f@—2)"
n o MgAn By (2) <t (L4 20y))7 2|51 2B12]

Since j > 0, the first term is bounded by the local maximal operator :

w [ Lo fe -2
! /Izlgl (42 dz < ¢ Myoc[|or * f|7] ().

This is a well-known technique that can be found in [24], for example. As for the second term
a crude estimate suffices:

) * flx — 2)|" ;
9 (n—An) / . % dz < ¢ AV K g o+ f|7](x)
z|>

Therefore the proof is now complete. ll
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Lemma 6.12. [18] Let s € R and w € Al°® for some 1 < u < oco. Pick po,%0 € D so that
/gao # 0. Define

3() 1= 2770 (2a) — 207D (29710, 4y () 1= 274 (2) — 20D (29 1)

for j € N. Assume in addition that ¢1 has vanishing moment up to order max(—1,[s]). Then
we have

2js¢;,A,Bf(x) <c Z TEU_kl?ks@Z,A,Bf(x)
keNo

for some constant ¢ >0 and € > 0.
Here that ¢ has vanishing moment up to order —1 means no condition.

Proof. Note that there exist 7g,71,... € D such that n; has vanishing moment up to order
sufficiently large, say M, and that
D ik =0

J€Ng

in S and n;(z) = 2077y, (277 1z) for j > 2. Therefore,

i % f@ =) < D7 by me % pr % fl — )l

keNg
<3 [y g -y 2]
keN, VE"
lor * flz—y —Z)| A |
= zein < mj.a.B(Z) ) /n [ e (2) g, a,5(2) 2.

Going through the same argument as before, we see

(2)] < €278+ (D) 4= (k=) (M) min(i. )

| * M XB(2- min<f1k>)(2)'

Therefore, it follows that

lok * flx —y — 2)| < 9~ G=k) £ (1+[s]) 4~ (k—5) - (M+1—A)n min(j.k)
mj,a,8(2) -

XB(Q* min(j,k))(z).
Choosing M sufficiently large, we obtain € > 0 such that
/ [ % i (2)[mya,p(2) dz < c27 VU7,
]Rn

Therefore, the desired result follows. il
7 Weight class A}?OC

We mean by “weight” a non-negative measurable function which is locally integrable on R™.
Rychkov defined the class of the weights as follows :

ALOC = {w : w is a weight with A;,Oc(w) <o}, 1<p<oo,
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where
AP(w) == sup mg(w) - [w™! : L¥(Q)|
()<t
Ag’c(w) = sup mg(w) - mQ(w_P_il)p_l, 1<p<oo.
{(Q)<1

We also define
1
A= | Ape
1<p<co
as a set. This class of weights enjoys properties analogous to A, such as the openness property
and the (local) reverse Holder inequality.

The class A;)OC (1 < p < 0) is independent of the upper bound for the length of cube used
in its definition. We define
M10C7§rw(x)

AP (w) = sup me(w) - [[w™ : L®(Q)|| = esssup, cgn
(Q)<r w(z)

Agjf,’,(w) = sup mg(w) 'mQ(w_ﬁ)p_l, l<p<oo
“Q)<r

for a weight w and r > 0.

The class of Ai,o" weights is independent of the upper bound for £(Q) used in its definition.
Namely, we can replace £(Q) < 1 by (Q) < r for any 0 < r < co. If 0 < < 1, then it is
obvious that

AR (w) < A (w).

Our purpose is to clarify the indepence for » > 1. Lemarié [12] first showed the independence
in the case of 1 < p < oo. Later, Rychkov [18] gave a more precise estimate for 1 < p < oo.
Now we reexamine their result.

Now motivated by argument of Rychkov, we prove the following, whose global counterpart
is well-known.

Proposition 7.1. Let p > 1.

1. Letr > 0. Then

3P Alog (w
w{Mloc,grf > A} < I/)\,—;Q;T() / |f|pw (12)
for every f € LP(w).
2. Conwversely
M p
w{Mloc,grf > /\} < V |f| w (13)
implies AS(w) < M.
Proof. Note that
Mloc,grf(x) = sup mQ(|f|)
z€Q,L(Q)<r
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Therefore, a standard argument shows that for every compact set K C {Mioc, <, f > A}, we can
find a finite collection of cubes @1, Qs2,...,Q with side length less than r such that

L

L
XK < ZX3Qj, ZXQj <1
j=1 j=1

and that mgq, (|f|) > A. As a result we obtain

1

L Tp-1
ola) <3 w00y < a3 0 [ w7 )
/ Jj=1 3Q;

Jj=1
1

37 A, (w) & ' L\ T
- AP Z </Qj |f|> </3Qj ‘ )

=1

3P Aloc
< p,3’l‘(w) /|f|pw

AP

Therefore 1 is established. To prove 2, it suffices to test the inequality with f = xq W
and A = mg(f), as we did for the classical case. Il

The following is a corollary of the above observation. This fact seems somehow well-known.
However, for the sake of convenience for readers we supply the proof.

Corollary 7.2. If w € A% | then there exists c,, such that

w(@ + [—’I“, ,r]n) < cy U)(Q)

for all cubes. Here we have set

Q+[-rr":={a+b:acQ,bec[-rr"}.

Proof. 1f we choose f = xq(r), then we obtain

'LU(Q =+ [_T/2ar/2]n) < w{Mloc,SMf > 2—n} < Cw,0 U)(Q)

Hence the constant ¢, can be taken as cw,OQ. |

It is obvious that
loc loc .
Agr(w) < APS(w) if 0<r <L

In the case of r > 1, the following proposition shows the independence.

Proposition 7.3.
1. (See [12, Lemma 7).1) Let w € A" and 0 < r < co. Then we have
Al () < 47 4B W)’
2. Letl <p<oo, wE A;,OC and r > 1. Then we have

loc
Ap,r(w) < exp(cw ), (14)

where ¢, > 0 is a constant independent of r.

1[12] is written in French. So in the actual article one should refer to Lemme 7.
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Proof. Lemarié-Rieusset [12] proved I for n = 1. The proof we give here is the generalization
for the multi-dimensional case. On the other hand, Rychkov [18, Subsection 1.1,p148-p151]
proved 2. We follow his proof and investigate how the estimate depends on r.

Let x,(x) = r7"Xq(r). Then we have

Mloc,grf(x) = sup sup |XR(' - a) * f(x)l
0<R<racQ(R)

In view of this remark, we have
Mloc,Ser(x) <2" MIOC,Seroc,ggrw(x)
< 4" Mloc,ngloc,ngloc,Srw(aj)
<4" A;,fﬁ(w)3w(x).
This is the desired result for p = 1.

With the estimate
w(Q') < cww(Q)
for all cubes @, Q" such that £(Q) < 4(Q') <4(Q)+1, Q C Q. It is not so hard to see

Ap,r—i—l(w) S Cy A;D,T(w)'
This proves the assertion 2. il
The following proposition is a tool that allows us to reduce the matter to the theory of
Ao-weights.

Proposition 7.4. [18] Let r > 0, Q be a cube with {(Q) =r and w € Aifc with 1 <p < co. Then
there exists W € A, such that

Ay(w) < cAg’c(w) and W= w on Q.
Proof. We content ourselves with constructing w. It is straightforward to check that w is the

desired weight. Rychkov [18] proved above for r = 1. The passage to the general case is
essentially the same.

Let us write Q = H[Qz‘,%‘ +7r]. For v € R and u € [v,v + 2r), define
i=1

ro(u) = u if welv,v+r),
ST 2w+r)—uw if w€vtru+2r),

and the 2rZ"-periodic function w by

w(x) = w(tg, (z1),...,7q, (xn)) if z€ H[Qi,(h + 2r).
i=1

Then @ is the desired weight. |l

8 Weighted function space A5, (w)ic
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8.1 Weighted local-Morrey maximal inequality

Throughout this part we assume that w € A°° with 1 < u < oo for definiteness.

Proposition 8.1. Let 0 < ¢ < p < o0 and 0 < r < oco. Suppose that w € Alfc and that
0 <n<min(g~t,u™t). Then

[0 f3bsem = M o

< ¢ |[{fitene + MU, w)ioc|

for some constant ¢ > 0.

Proof. To prove this, from the definition of the norm we have only to prove that

L
4 q
=

/ DoMRLT | w| < [{fikien : M whocl|

j€No

'til»—\
-QI»—\

w(@Q)

for all cubes @ having sidelength less than 1. Fix such a cube Q. Let R be a cube which has
side-length 1 and is concentric to Q.

By Proposition 7.4, there exists a weight w € A, such that
w=won 3R, A,(W) < CALOC(w).

Observe that

S
I
g
)
Sk
|
Q=

w(Q) %_% / ZM&;

J€Ng

/Q S MO yaq-f17 | @

J€ENg

Now let us use the vector-valued maximal inequality (for A..-weights) to the right-hand side.
Using this inequality, we obtain

w(Q)r s /Q S MPao- 7] w| <clfxsq- fitien : ME(L@)]

S\
<cl{xsq " fitjen, + ME(Lr, w)l|.

Since we are assuming that @) has sidelength less than 1, it follows that

{xaq - fitieny = MY w)|l = [{xaq - fitien, + MY, w)iocll-
Therefore, putting our observations all together, we obtain
s\ 4

w(Q)r s SSMPE | w| <el{filiens : Mb(r,whoell

Q J€Ng

The proof is now therefore complete. ll
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Proposition 8.2. Let 1 < g<p< oo and 1l <r < oo. Assume that w € A}JOC. Then there exist
constants ¢, B(w) > 0 such that

I{KBfi}jeny @ MEUr, whoo|| < ¢ |[{fi}iene + ML, w)ioc||

B
for all B with B > #

Proof. Let @ be a fixed cube with sidelength 1. Since Kp is a linear operator, we can assume
that fi = f, fo=fs = ... = f; = ... = 0. For details of this technique, we refer to [19] for
example. Note that

Kpf(z)<c Ze_Blr m'/ | ]

meznr m+(0,1]"
<c e Ble=mly(m + 0, 1)) (/ Iflqw>
m%" m—+[0,1]"

<e Y e Prmuim £ [0,1]") T f 5 ME(whioe|

meznr

As a consequence

—B\c(Q) m)| %
1Ke : M2(Whoo| < elf + ME(hoc - sup Z( w@))

Q:cube n m+ [0 ]_] )%
Z(Q)<1m€Z

< C”f : Ms(w)locn'

This is the desired result. 1

8.2 Definition and elementary properties

Now we define the function space keeping the results due to Rychkov in mind.
Definition 8.3. Suppose that the parameters p, ¢, r, s satisfy
0<g<p<oo,0<r<oo,seR.

Let ¢o € D. Define ' ' . '
pi(a) = 2o (2z) — 2V (271 2)

for j € N. Assume that / wo # 0 and ¢ has vanishing moment up to order max(—1,[s]).
Then define
I1f + Nogr(@hiocll == [{27°0; * f}jem, = lL(ME(w)ioe)|
I Epgr(Whocll := [{27%¢; * f}jeny + Myl w)iocll-
AS - (W0)10e denotes either N (w)ioe or €y (W)10c-
Theorem 8.4. Suppose that the parameters p,q,r,s and the weight w satisfy
we A 0<g<p<oo,0<r<oo, seR.

Then the definition of the set A5 .(w)ioe does not depend on {p;} above.

pqr
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Proof. Let us concentrate on the &-case, the proof for the A/-case being similar. Suppose that
{@j}jen, is a family that satisfies the same condition as {¢;};jen,. Then we have

2°G; 4 pfz) <c Z 2ok pr | pf(@),
keNy

where 7 4 pf and ¢} 4 pf are the maximal operators given by (11). Therefore, it follows that

I3 I3

Z 2]57"()0] A, B ) <c Z 2]57“()0] A, B )

j€No J€Ny
By the definition of the maximal operator &3‘7 A,B> We obtain
||2Js<53 wf Mp(lrvw)locn < ||2JSSDJ,A gl + MY (ZT,'LU 1oc” <c ||2JS<PJ apf: Mg(lraw)locn-
Now we invoke estimate
o0
Gianf@)? < e > 20N (Moo« 17 (@) + K ollpn + fI7)(2)),
k=j

which yields

3=

r

SV anf@) | <e | S (2 Ml M@ + 2 Kyl  £7)(@)F)

j€Ng j€Ng
Hence it follows that
”{2j590;,A Bf}jeNo : Mp(lmw)loc”
< ([t M les + Fhiens + 27 Kaulls 177 Y jens + M3, whoc
< cl{2%¢; * fljen © M (r w)iocl.
Putting our observations all together, we obtain
I{27°%; * fYiema = My, whocll < e {2705 % fYjem, + Myl whioc]|,

which shows that the function space &;,.(w)ioc is defined independently of {¢;}jen,- |

)

It is helpful to summarize our observation above in a quantified form.

Lemma 8.5. Let 0 < ¢ <p < o0, 0<r<oo,s€R. There exists a constant ¢ > 0 such that

|f o+ y(x — )
sup —A ‘ |B
yern (1+ |y])A20v

: Mg( )loc

< CHf qur( )1OC|| Sup |Da7|

la|<
for all f € A3, (0)oc and v € D.

Proposition 8.6. The function space .qur( W)loc 18 complete.

Proof. Note that

_1
[f#7(0)] < cw(BL)77|If = Apgr(wiocl| - sup D%

for all f € A% (W) and v € D. This fact yields that any Cauchy sequence in A5 (w)ioc

converges at least in D’. Once we show the convergence in D', it is the same as before that we

conclude the convergence of the sequence in A, (w)ioc by using the Fatou type inequality. |
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8.3 Atomic decomposition

Now we describe the atomic decomposition for the function space Aj,.(w)ioc-

Definition 8.7. Suppose that the parameters p, q,r, s satisfy
0<g<p<oo, 0<r<oo.

1
Let w € AYC.

1. Let A = {Aum toeny, mezn be a doubly indexed sequence. Then define

meznr

A+ Dpgr (Wiocl| = { Z Avaum} f (MY (w)ioc)
reNy

meznr

”)\ : epqr(w)loc” = { Z )\V'mem} : M:Z(lraw)loc
v€Ny

2. As before, to unify our formulation we use apq(w)ioc t0 denote either npg,(w)ioc or
€pgr(W)1oe according as A (w)oc denotes Ny, (w)ioc O E5pp(W)ioe-

Theorem 8.8. Let w € Al°°. Suppose that the parameters p,q,r,s and the integers K, L satisfy
0<g<p<o0,0<r<oo,seR, K>(1+][s])4, L>max(—1,04+n(u—1)).
Assume in addition that L > [0a — s] for the N'-case and that L > [oar — s] for the E-case.

Then there exists a constant ¢ > 0 such that the following assertion holds.

1. Let f € quT( W)ioc be taken arbitrarily. Then there exist X € apgr(W)ioc and a family of
atoms A = {aym }vengr, mezn such that

f = Z Z )\”ma”m’ ||A : anT( )100” < C”f 'qur( )loc”-

veNg mezZm

2. Conversely suppose that A\ € apgr(W)ioec and that A = {aum }vengr, mezn 15 a family of

atoms. Then f = Z Z Avm@um converges in the topology of S. and satisfies the
veNy mezZn

||f pqr( )1OC|| § C”/\ : apqr(w)loc”-

norm estimate

Let us remark that if w = 1, then the conditions on K and L are exactly the ones in [29].

The proof of this theorem consists of several steps, which are split into a series of lemmas.
Let us first prove

Lemma 8.9. Suppose that A € apgr(W)ioe and that A = {avm fvengn, mezr is a family of atoms.
Then f := Z Z Avm@um converges in the topology of S..

veNg mezn
Proof. By virtue of the Minkowski inequality it is trivial that

lmin(q,r) (Mg(w)loc) C Mg(lTaw)loc - loo(Mg(w)loc)
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in the sense of the continuous embedding. Therefore, let us assume that a = n and that » = oo,
that is, we concentrate on the case of Besov-Morrey type.

First, let us check that the sum Z Aum@um converges in the topology of S., for every fixed

mezn
v € Ng. Then we obtain

w(Qum) > ¢ exp(—No 277 [m|)w(2"2m|Qum) > ¢ exp(—No 27" |m|)w(Q,0),
where Ny and ¢ are numbers depending on the weight w. Furthermore, we have

|/\Vm| < Cw(Ql/m)_l/p'

Therefore, the coupling < Z /\,,ma,,m,<p> = Z / Avm@ump converges absolutely for all
]Rn

mezn mezr

w € Se.

P
In vi f thi h ly ¢ li A in S.
n view of this we have only to prove lim Z ( Z ,,ma,,m> converges in S,

v=1 \mezZn

Pick a test function ¢ € S, again. Then by virtue of the moment condition we have

(5 (35 ron) )5 s

v=1 \mezZn v=1mezn

where ¢, is a remainder term of the Taylor expansion given by

3Bp(27"m)

7 (x —27"m)P

Pum(®) = () — Z

IBI<L

By the mean value theorem we have

[pvm ()] < c27"EFD | sup |07(y)]
[v[=L+1
yedQV'In

for z € dQum. Thus, the pointwise estimate |aym ()| < 2775 2 € R" yields

Ny (@) pum ()] < 273D qup N9 0(y)] | Xe g (@)
Iy|=L+1
yedQum

< 27 G5 ) g0 (0)xe o (2).

Here N is a constant chosen as large as we wish. Below let us assume that N is sufficiently
large, say, N > 1. Adding the estimate above over m € Z"™, we obtain

Z [ Avm@um (@) pum(@)] < C2_V(5_%+L+1)QN(<P) LNl Z [Avm|Xd Q@ (2)-
mezn mezZn

Let us write Q(r) := {z € R™ : max(|z1], |x2|,...,|zn|) <r}. Inserting this pointwise estimate,
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we have

Z /n |/\1/ma1/m90um|

mezn

SC2_V(S_%+L+1)QN(<P)/ e NN mlXa g, (o) da

mezn

< o3 g ZeXp ok 1N/ S Pomlxaon,

Q(2*) pezm
< o E ) gy () S o2 [ S o) de
— Q(2%) mez”

Here the constant ¢ > 0 depends on N. We define two auxiliary constants 0 < n < 1 and
1 <p < oo by
q

T TR w—1)q

and p:= 4 =1+ (u—1)g.
Ui
Denote by ' the conjugate exponent of p: u' = Ll Then we have
—

e 1
p—1 wu—1

np' =

Let us assume for the time being that n < 1. Keeping this in mind, we estimate the integral in

question :
n 5
dr < / dx
( Q") )

Jo
_MJ’_"(V‘F’C) ( ) !
27 g Z AomXahn ()| dx
Q(2F)

mezn

/\

Z /\Vmem

mezr

Z /\VmXI(]Zr)z

mezn

S|=

If n > 1, a similar calculation works and we obtain

n
n(u+k)
dr <27% / > AmxI(@)| da
/Q@k ( Q(2+)

mezZn
Applying the Holder inequality, we obtain

)\l/m
/Q (28 Z XQm

mezr

n(v+k) K %
<27 T - w'dx
- </Q<2k> )

1
ny | n(v+k) / w
<27 T / w(z)”™ dx / Apmx' D)
( Q) ) ( Q) 2 Qe

mezLn
Since w™ ™ = w"wT € A10C we see

3=

Z /\VmXum

mezn

Z )‘VmXVm

mezn

N
w)

/ w(z)™™ do < ¢ exp(Ng,nuw - 2’“)/ w(ac)_ﬁ dz < c exp(Nypuw - 25),
Q(2%) Q)
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where ¢ and Ny, . depend on ¢,7,u and the Al°°-constant of w. Recall that N is at our
disposal. Let us choose it so that N > Ny, . Thus, we finally obtain

Z AvmGum, M:Z(w)loc

mezn

> / Momum () @om ()| dz < c27 (55t L) o)

mezn

Now by the assumption, L is sufficiently large:

1
s—ﬁ—l—n+L+1>aq+un—ﬁ:aq—n<——1> > 0.
n U q

Thus, we are in the position of adding these inequalities over v € Ny :

oo
Z / ( Z /\Vmaum> ol <can(p) [N : npqw(w)locn' (15)
v=0 [/R" mezn
P
. . . . ,
This proves Plgnooz ( Z /\,,ma,,m> exists in S,. [ |
v=0 \megzZn

Proof of Theorem 8.8 1. Denote by {¢,}uen, the family described above. Let {¢,},en, be

taken so that
> puxth, =0
veNy

in 8 and that Ly, > L. Here 6 means the Dirac delta distribution. Then we have

f= Z@V*wu*f: Z Z Qum(f)s

A veNy mezZ™

where ®@,,,,(f)(x) := / U (x — y)p, * f(y)dy. If v € N, then it enjoys the same moment

condition as 1, and the order L of the moment condition can be made as large as we wish.
Observe also that ®,,, is supported on d @, for some d > 1. Denote

Aum 1= sup 2°C78) V11900, () ¢ L. (16)

Define

{ )\um_l N (I’um if A1/m 7é 0
Qym, —

0 otherwise. (17)

Then we have from the observation above {aym }ven,, mezn € Atom. Furthermore f is decom-

posed as
f - Z Z )\l/mal/’H’L'

veNy mezZn

Let us see the size of coefficients. To do this we majorize the coefficient with the maximal

32



operator which is given by ¢} 4 pf(x) = sup w
yekr  My,A,B(Y)

Aom < sup sup 2703Vl / 102 W (= — )] oo * F(5)] dy

a€Ng™ zeR™ Qum
loe| <K
<2675 sup i * f(y)l

YEQum+Q(27¥ 1)

<c2"C78) sup o, x fla—y)]
ly|<ec2—v

n

< e2"CV g pf(@)

for all x € dQ,,,. As a consequence

Z Z Avmx ) (2) < 2"y 4 pf(x).

veNy mezn

In view of the maximal estimate, which can now be formulated as
H2VSQP;A,Bf : Mg(lrvw)locn <cl|f: gzqr(w)locu
under our notation, we obtain
1A+ epgr(@hoell < c[lf + Epgr(wWhiocll-

Thus, f was decomposed as we wish. |

Proof of 2. We deal with the F-scale, the proof for the B-scale being similar. Suppose that we
are given
{avm}ven,, mezn € Atom and X\ = {Aum}reny, mezn € -

Assume that v > k > 0 or v = k = 0 for the time being and let us estimate @i * a,,. The
same argument as the non-weighted case works to obtain

| <ec 2—(V—k)(L+1+s+n)+nV/p

|2ks<)0k *al/m(x) Xeo 28 =% Qum (SC),

for some ¢ > 0. For details of this calculation we refer to [28]. Keeping this in mind, let us

estimate
Z |2VSAVmSDk * aum(w)|-
mezn
We adopt the following notations:
Q(z,0) :={y € R" : max(|y1 — 21|, [y2 — 2|, .-, [yn — zn]) < £}

Bz, ) :={y e R" : |z —y| < {}.

Let n < min (1, %, %) A trivial inequality (a +b)? < a® 4+ for 0 < 6 < 1 gives us

S|=

Z |/\Vm|XcQ(2*“m,2*’°)(x) < Z |/\mn| < Z |Aym|n
mezn mez" mez”
z€B(2 Vm,c27F) z€B(27"m,c27%)
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Therefore, it follows that

1
n n
Z |)\Vm|XcQ(2*"m,2*k) <c2™ (/ Z AvmXQum (Y) dy)
mezn B(,c027") [mezn
n(v—k)
=c2 7 mB(mCOQ ") ( Z /\VmXQum>
mezn
<c lz AmeQum] ( )
meZ"
Inserting this estimate, we are led to
Z |2ks)\um90k >kal/Tl’L( )| < 02 260(’/ k M("7 [ Z )\Vle/m‘| ) (18)
mez™ mez”

for some dg > 0 and some 7 which is slightly less than min (1, g, i) Jifv>k>0orv=k=0.
u U

Let us turn to the remaining case when k& > v > 0 with & # 0, which requires us an
elaboration. Let L > 1. We can assume p; = APp for some L € Ny sufficiently large and
p € C. For details, we refer to Lemma 6.5. Once ¢; is decomposed as above, the same
argument as the non-weighted case again works and we obtain

12501 * aym(@)] < 2 ETIETIIN g (1) 27N o, () (19)

for some dp > 0. We remark that the constants dg in (18) and (19) can be assumed identical if
we replace them by smaller numbers if necessary. Therefore, going through a similar argument,
we obtain

Z |2ks)\ym30k*aym( )| <2 260(v—Fk) M(’? [Z Aumem] )

mezr mezLn

for k> v > 0 with k& # 1.

In view of this estimate, an argument similar to the non-weighted case works to obtain

Z Z AvmGum pqr( )loc

veNy mezn

<c

M("]) [Z )\VmXI(/Z':‘Bl‘| : Mg(lmw)loc

mezn

< cl[A t epgr(wocl|-

This is the desired result. |l

9 Function spaces generated by the weighted global Mor-
rey spaces

Finally in this report we consider the weighted Morrey spaces whose norm is given by

If = o] = sup w2y ([ 11 ) ,

Q:cube
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where we assume w € A;fc again. We also use the following vector-valued norm.
1
4 q
11
I8+ Myl i= sup w2 H | [ [T ] w
Q

Q:cube jeN,

As was shown in [21], the number 2 can be replaced by any number strictly greater than 1.
It will give equivalent norm.

9.1 Weighted global maximal inequalities

Theorem 9.1. Suppose that l < g<p< oo and 1l <r <oo. Ifw € A};’C, then
[{Miocfitjen, + My )|l < c|[{fj}jen, + ME(Ur, w)||

for all {f;}jen,-

Proof. Going through an argument similar to (7), we can deduce

1

1 ” u
Mo fi(z) <c QS:EE%E <m/Q|fj| w> .

As a result we can use the non-doubling theory in [21]. I

Theorem 9.2. Suppose that 1 < ¢ <p < oo and1l <r <oo. Ifw e AEIOC, then

I{KBfi}jen, + Mglr, w)|| < cll{fj}jen, : MGl w)

Bw)
—

whenever B >

Proof. Note that

(Kpf(z)| <c> e P M f(a),
j=1

where

M}ch(:c) = su |f(y)| dy

P o
0<t<j | B(@: )| JB(2.5)

If we reexamine the proof of [21], we obtain
1Mo f = ME()| < e exp(D)IIf = ME(u)|
for some D > 0. As a result, taking B > D, we have
IKpf : MGl < cllf + MG,

which is the desired result. B
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9.2 Definition and elementary properties

Keeping to the notation used in this section, we define the function space.
Definition 9.3. Suppose that the parameters p, ¢, r, s satisfy
0<g<p<oo,0<r<oo, seR.

Let ¢p € D. Define A ) ) .
;@) = 27"po(27) — 20727 )

for j € N. Assume that / o # 0 and that ¢; has vanishing moment up to order max(—1, [s]).
Then define

1f = Nogr(@)ll := {27205  f}jeny = lr(MG(w))]
I+ Eqr()ll == {275 * f}jema = My, w)l-

As (w) denotes either N, .(w) or & ,.(w).

Theorem 9.4. Suppose that the parameters p,q,r,s and the weight w satisfy
weAL‘;C,0<q§p<oo,0<r§oo,seR.

Then the definition of the set A, (w) does not depend on {p;}32, above.

Proposition 9.5. A3, (w) C A, (W0)ioc-

Proof. This is clear from the structure of the underlying function spaces M (w) C Mb(w)ioc-

|

Corollary 9.6. A3, (w) is complete.

pqar

9.3 Atomic decomposition

Now we describe the atomic decomposition for the function space A3, . (w).

Definition 9.7. Suppose that the parameters p, q,r, s satisfy
0<qg<p<oo,0<r<oo.

1
Let w € A,

1. Let A = {Avm tveny, mezn be a doubly indexed sequence. Then define

mezr

A npqr(w)” = { Z )\vaym} : lr(Mf;’(W))
veNy

A+ epgr(w)] := { Z )\VmXVm} s My(lr, w)
veNy

mezr
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2. As before, to unify our formulation we use a,q-(w) to denote either n,q.(w) or eyq,(w)
according as A3 (w) denotes Nj,,.(w) or £5 . (w).

Theorem 9.8. Let w € Alfc. Suppose that the parameters p,q,r,s and the integers K, L satisfy
0<g<p<oo,0<r<oo,seR, K> (1+][s])s, L>max(—1,04+n(u—1)).

Assume in addition that L > [0 — s] for the N'-case and that L > [oax — s] for the E-case.
Then there exists a constant ¢ > 0 such that the following assertion holds.

1. Let f € A;,.(w) be taken arbitrarily. Then there exist A € ayq,(w) and a family of atoms

A= {ar/m}yeNon,meZn such that

f= Z Z AvmQum, ||)\ : apqr(w)” < CHf : ’Alsﬂﬁ”(w)

veENy mezZnr

2. Conversely suppose that A\ € apgr(w) and that A = {aum}venyn, mezn is a family of

atoms. Then [ := Z Z AvmGum converges in the topology of 8’ and satisfies the

veENy mezZn™
norm estimate

1+ Apgr (W)l < c[[A = apgr(w)]-

pqr

The fact that the series converges in S, is clear from Proposition 9.5. The remaining part
will be proved elsewhere.

Part IV

Open problems

Finally to conclude this report we present some problems.

10 Weighted Morrey maximal inequality

First we consider the Morrey counterpart of the A,-class.

Problem 10.1. Let 1 < ¢ < p < co. Characterize the weight w satisfying
[Mf = MEw)|| <clf : M{(w)l|.
We note that if we replace MY (w) to ML (w)ioc, then the problem was solved recently.

As for this problem Komori and Shirai [10] gave a partial answer. They showed, as we have
seen in this paper, that w € A, is a sufficient condition.
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11 Characterization of predual of the Morrey spaces

It is not easy to characterize the dual of the Morrey spaces. However, we are still able to
construct the predual of the Morrey spaces. The second question is whether we can obtain a
characterization of the predual space.

Definition 11.1. Let 1 < p < ¢ < co. An L7 function a is said to be a block, if it is supported
1

on a cube @ and |afq < |Q|%_p.

Definition 11.2. Let 1 < p < g < oo. Hg is a set of all functions f such that it can be written as
o0 (o0} o0

f= Z)\j a; where each a; is a block and Z |Aj| < 0o. One defines || f : HP| := infz [Aj1,
j=1 j=1 j=1

where the sequence in inf runs over all admissible expression above.

The following are due to Zorko for example.

Theorem 11.3. [1, 31] Let 1 < ¢ < p < oco. Then Hgi is a Banach space and the dual is MY.

Problem 11.4. Let 1 < q <p < 00. Let f be a measurable function such that

1591 = ¢l az)

for all g € MY. Then can we conclude that f € HY ?

It is a well-known fact that the answer is yes in the case p = ¢. It is also easy to see that
the converse of the above conjuncture holds. However, given a function above, can we really
prove that f admits the decomposition described above ?
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