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Wavelet characterization of weighted spaces
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1 Wavelets

In this article we investigate a generalization of the Sobolev-Lieb-Thirring in-
equality or Lieb’s inequality for Bessel potentials. First we recall the definition of
Meyer’s wavelet basis. Let 8 be a function which satisfies the following conditions.

(i) @ is a real valued and even function in C§°(R).
(if) 0<6(¢) <1 and suppf C [—4n/3,47/3] .
(iii) B(¢) = 1 for all £ € [-2m/3,27/3] .
(iv) 0(6)>+0(2r — €)2 =1 for all £ € [0,27] .

We define a function ¥ € S(R) by

B = [ Bl b = 0(e/2) - o(ef e

For integers j, k we set 1; x(z) = 2//2¢(2/z — k). Then it turns out that {¥sktikez
is an orthonormal basis of L%(R) which we call Meyer’s wavelet basis([8]).
We define n-dimensional Meyer’s wavelet basis as follows. Let ¢ be a function in

S(R) such that $(€) = 6(¢). Set E = {0, 1"\ {0}, ¥°(z) = ¢(z), and () = $(z).
For e ={ey,...,en) € E and z = (z1,...,2,) € R® we define

PE(x) = ¥ (21) -+ Y= (20)-
Let A={(e,5,k) :e€E, j€Z, k€ Z"}. For A= (¢,j,k) € A,z € R™, set
a(z) = 272y (P — k).

Then {¥»}rca is an orthonormal basis of L2(R"™) which we call n-dimensional
Meyer’s wavelet basis([8]).
We can construct another orthonormal basis by ¢ and . Let
Ao={(e,4,k) :e€E, j€Z >0 keZ"},
(z) = p(z1) - p(z,), and P(z) =(z—k) (ke€Z™).
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Then we can prove that
{q)k, oy e A € Ao, kEZn}

is an orthonormal basis of L2(R™)([8]). The function & is called a scaling function.

2 Weighted spaces

We recall the definition of A,-weights. By a cube in R™ we mean a cube which
sides are parallel to coordinate axes. A locally integrable function w > 0 a.e. on R™
is an A,-weight for some p € (1,00) if there exists a positive constant C such that

]Qil /Q w(z) do (I_é_l /Q w(ac)-”“’-“alac)p_1 <C

for all cubes Q C R™, where |Q| is the volume of Q.
We say that w is an A;-weight if there exists a positive constant C such that

1
1] /(;w(y) dy < Cuw(x) ae z€Q

for all cubes Q@ C R™.

We write A, for the class of Ap-weights. An example of Ap-weight for 1 <p < o0
is given by w(z) = |z|* € A, where z € R® and —n < a < p(n — 1). The inclusion
A, C Ag holds for p < g.

For w € A, we set

P(w) = {f + measwrable, [ lx = { [ 1£@Pu(z) dx}l/p <o}
For A= (c, 5, k) € A set
QW) = {(z1,...,Tn) : ki <2z <ki+1,3=1,...,n}
and

(@) = QM) x g0 (@),

where xg(») () is the characteristic function of @(A). The cube as above is called a
dyadic cube.

Now we give the definition of an unconditional basis in a Banach space B over C.
Let {e;}2, be a family of elements in B. We say {e;}32, is a Schauder basis of B
if every f € B can be written

f=oer +opes+---+ogep+ - 1)
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where the a1, @z, ..., a,. .. are uniquely determined coefficients in C and the con-
vergence in (1) is defined by

im ||f —oie1 —azeg — -+ — ayey|[p = 0.
N—co
A Schauder basis {e;}$2, in B is an unconditional basis if the following property

co
is satisfied: forall fe B f = Zaa(i)ea(i) in B for any permutation o of N, where
i=1
a; are coefficients given by (1).
The following theorem is a simple modification of results by Lemarié and Meyer([4],[5],[8]),

where we use the notation
(1.9 = [ @

Theorem 2.1. Let
1<p<oo and we A4,

Then {¥a}ren s an unconditional basis of LF(w). Furthermore for f € LP(w) we
have

f= Z(fyw,\)lb,\ in LP(w) and

A€A

£l e () =

1/2
(Z(l(f, ¢A)|>2A)2)

AEA

Lr(w)

Moreover
{‘:I'k, 1/},\ A E Ay, kGZn}

is an unconditional basis of LP(w). For f € LP(w) we have

F=2(£2)%%+ Y (f, 9%

kezn A€Ao
in LP(w) and
1/p 1/2
I1lLp ) = (Z I(f, <I>k)l”w(Qk)) + (Z (I(f,w)b”c,\(x)ﬁ) :
k AEAo
Lp(w)
where
Qr={(z1,.,2n) ki <z <k +1,i=1,...,n},

and

w(Qx) =/Qde%

We will use this result in the proofs of Theorem 3.2 in Section 3 and Theorem 6.2
in Section 6.
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3 The Sobolev-Lieb-Thirring inequality
In 1976 Lieb and Thirring proved the following inequality([7]).

Theorem 3.1 (The Sobolev-Lieb-Thirring inequality). Suppose that n € N, f; €
HYR™ (i=1,...,N), and that {f;}X, is an orthonormal famaly in L2(R™). Then

we have N
[ piran < ey [ 1vsPaz,
" =1 VB
where

N
p(z) =Y |fil=).
=1

In the statement of the Sobolev-Lieb-Thirring inequality H!(R™) denotes the
Sobolev space of order one. The Sobolev-Lieb-Thirring inequality has important
applications such as the stability of matter or the estimates of the dimension of
attractors of nonlinear equations([7]).

In this section we give a weighted version of the Sobolev-Lieb-Thirring inequality.
Let w € Ay and H!(w) be the completion of C§°(R™) with respect to the norm

1/2
oo = { [ Wr@Putaas 107}

where || - | denotes the norm in L2(R™). We have the following generalization of the
Sobolev-Lieb-Thirring inequality for n > 3(c.f.[9]).

Theorem 3.2. Letn € N, n > 3, w € Ay and w2 e Anjo- Suppose that
fie HY(w) (i =1,...,N), and {f;}Y, is orthonormal in L*(R™). Then we have

N
/Rn p(x)1+2/"w(a:) dr < c;An |Vf,~(:v)|2w(x)dx,

where
N
)= |fila)
i=1

and ¢ is a positive constant depending only on n and w.

An example of w which satisfies the conditions in Theorem 3.2 is given by w(z) =
|z|* for —n+2<a<?2.

We explain about the outline of a proof of Theorem 3.2 in the next section. We
use the estimates of some weighted integrals by means of wavelets. These estimates
enable us to prove a weighted version of the Sobolev-Lieb-Thirring inequality.
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4 Proof of Theorem 3.2

For f € L} _(R™), we define the Hardy-Littlewood maximal operator as

M) =sup o [ 1) ay,
ze@ 1@ Jo

where the supremum is taken over all cubes Q C R™ such that z € Q.

The proof of the following proposition is in [3].
Proposition 4.1. (i) Let1 <p < oo andw € A,. Then M is bounded on LP(w).

(1) Let0 <7 <1, f € L (R™), and M(f)(z) < 0o a.e.. Then (M(f)(z))" € A;.
(¥) Let 1 < p < oo and wy,wy € A;. Then wlwé Pe A,

We may assume f; € Cg°(R™) for @ = 1,...,N. Let V(z) = p(z)?™w(z)
where 6 is a positive constant. Then we get V202 g < 00 and w2 €
Rn
A(rin/2)/n = Anja for £ =1+ 2/n. Set v(z) = M(V*)(x)/*. Then (i) of Proposi-
tion 4.1 leads to

/ I 22 gy = M(V")(H'"/z)/”w_“/2 dz < 01/ VIHR/2n/2 gr < 0.

n

R‘I‘I
Furthermore we have v € 43 and V < v a.e..
The following lemma is essentially proved by Frazier and Jawerth (c.f.[9]).

Lemma 4.1. Let w € Ay. Then there exists a o > 0 such that

—2/n 2 1 2
@ S QI gy [ wds < [ 19sPwas

AEA
for all f € C§°(R™).
The next lemma is a corollary of Theorem 2.1.

Lemma 4.2. Let v € As. Then there exists a B > 0 such that

Jitvie <8 10 gy [ v

AEA
for all f e C§°(R™).
By Lemmas 4.1 and 4.2 we have for f € C§°(R™)
/ |Vf|2wdx —/ VIf[2 dz
—2/n 2 2+
>a RO gy [ wie =B Py [ v

AEA AEA
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Let
T={reh: [3/ vdx>a|Q(/\)|‘2/”/ wdz}
o o)

and {pux}1<x be the non-decreasing rearrangement of

{a@(A)r%—l [Q wdeBe /Q w”d‘”}

e = o QY)Y /Q e AR /Q e

we define ¥, = ¢¥,. Then we get

N N
Vfilfwdx — VIfi)* d
> [ Iviruds > [ it
ol 2 2/
3] >\ —2/n-1 - -1
>3 5 10 ) {am( ) /Q = PR /Q wm}

AT

When

i=1 A€A
N N

>SS (e W) =D e 10 W)
=1 k k i=1

>—c> |l
k

Now we use the following lemma in [9].

Lemma 4.3. There exists a positive constant ¢ such that
Zliukl < C/ v1+n/2w—n/2 dz,
k R~

where ¢ depends only on n and w.

Hence by Lemma 4.3 we have

N N
S [ ViPwaz =Y [ VigPde
i=1 /R" i=1 YR®
> _c/ V1+n/‘2w—n/2 dz = _d1+n/2/ P1+2/nwd1,'
Rn

n

Therefore
N
Z/ ]Vfi|2wd:c > 5/ p1+2/"wd:r _ c&l+n/2/ p1+2/"wd:r
=1 /R R» R

— {(S _ cal—l-n/?.}/ p1+2/nwdx’
R"

If we take § small enough, then we get the inequality in Theorem 3.2.
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5 [LP Sobolev-Lieb-Thirring inequality

By Theorem 3.2 we are able to prove the following LP version of the Sobolev-
Lieb-Thirring inequality.
Theorem 5.1 ([10]). Let n € N, n > 3 and 2n/(n + 2) < p < n. Then there

exists a positive constant ¢ such that for every family {f;}X¥, in L*(R™) which is

orthonormal and |V fi(z)| € LP(R™), (i=1,...,N), we have

N p/2
/ p(z) P2 g < ¢ / <Z|Vf,-(x)|2> dz,
R Rn =1

where

N
p(z) =D |filz)?

i=1

and ¢ depends only on n and p.

Proof

Our proof is very similar to that of the extrapolation theorem in harmonic
analysis(c.f.[2, Theorem 7.8]). Let 2 < p < n and 2/p + 1/g = 1. Let u € LY,
v > 0 and |lullze = 1. We take a v such that n/(n — 2) < v < ¢. Then we
have u < M(u)'/7 a.e and M(u?)!/7 € A;. Furthermore let a = Zn_-nzﬁ Then

0<a<1and
M)y = (M) P2 € A, p,

where we used M (u7)™ € A; and (iii) of Proposition 4.1. Therefore we have

N
/p1+2/"uda: < /p1+2/"M(u7)1/7d33 < C/ (ZIsz|2) M(u'y)l/'ydx

i=1

) ooy

N p/2 2/p
<c ( / <Z|Vf,~|2) dx) ,
i=1

where we used Theorem 3.2 and the inequality
/M(u7)‘3’/7dx < c/uqda: =c.

If we take the supremum for all w € L9, u > 0 and |jul|rs = 1, then we get

2/p N i "
(/p(1+2/n)p/2 dx) <c (/ <Z |Vf,~|2) da:) ’

i=1

67
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Next we consider the case 2n/(n +2) < p < 2. Let

N 1/2
f= (Z IVfAZ) :

i=1

We can take v such that (2 — p)n/2 < v < p. Then we have
M(f7)~@=P7 ¢ A,

because
M(f)@P/ ¢ 4

by (ii) of Proposition 4.1. Furthermore we have
{M(f7)—(2—p)/'y}—n/2 — M(f“l)(?—?)ﬂ/@’?’) €A C An/?'
Therefore

/ 2R/ g / A2 Ip/2 g 1y~ =PI/ g (1) (PIP/ @) g

< ( / p1+2/" M( fv)-(Z—p)/"r dx)p/2 ( / M( f‘r)P/v dx)l_plz

/2 1-p/2
Sc(/sz(f7)_(2_p)/7 d:,;)p </fpdx) "

/2 1-p/2
<c (/M(f7)2/7M(f7)~(2—P)/7 dx>p (/f”d:c) 3

Sc</M(f7)1"/"d:c)p/2 (/f”d:c)l_p/2 Sc/f”fix,

where we used Theorem 3.2 in the second inequality.

6 Lieb’s inequality for Bessel potentials
Lieb proved the following inequality in [6].

Theorem 6.1. Letn € N, s> 0, n> 2s andm > 0. Let fi1,..., fn be orthonormal
in L2(R") and
U; = (—A + mz)—s/in.

N n/(n—2s)
/ (Z |ui(x)|2) dz < CpsN.
R* ;21

Then
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Battle and Federbush([1]) proved this inequality for n = 3 and s = 1 in 1982.
They applied it to the quantum field theory. Lieb proved the case n > 4 and s > 0.

We can prove the following generalization of Lieb’s inequality by means of Theo-
rem 2.1.

Theorem 6.2 (Tachizawa, 2007). Letn € N, s > 0, n > 25 and m > 0. Let
w € An/(n——Zs) N Ay and w/(2) ¢ An/(?s)' Let fi,...,fN be orthonormal in
LY R™), f; € L*(w), and

u; = (~A+m?)7f,

Then

N n/(n—2s) N
() w(z)dz () 2w(z
/I;n(;luz( )I) (z)d sc;/mm( )Pw(z) dz,

where the constant C depends only on n,s, and w.

The proof of Theorem 6.2 is given by a similar argument to that of Theorem 3.2.
We use the characterization of weighted spaces by means of wavelets and scaling
function. The detail will appear elsewhere.
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