Wavelet characterization of weighted spaces

北海道大学大学院理学研究院 立澤一哉 (Kazuya Tachizawa)
Department of Mathematics, Hokkaido University

1 Wavelets

In this article we investigate a generalization of the Sobolev-Lieb-Thirring inequality or Lieb's inequality for Bessel potentials. First we recall the definition of Meyer's wavelet basis. Let θ be a function which satisfies the following conditions.

- (i) θ is a real valued and even function in $C_0^{\infty}(\mathbb{R})$.
- (ii) $0 \le \theta(\xi) \le 1$ and supp $\theta \subset [-4\pi/3, 4\pi/3]$.
- (iii) $\theta(\xi) = 1$ for all $\xi \in [-2\pi/3, 2\pi/3]$.
- (iv) $\theta(\xi)^2 + \theta(2\pi \xi)^2 = 1$ for all $\xi \in [0, 2\pi]$.

We define a function $\psi \in \mathcal{S}(\mathbb{R})$ by

$$\hat{\psi}(\xi) = \int_{\mathbb{R}} \psi(x) e^{-i\xi x} dx = \{\theta(\xi/2)^2 - \theta(\xi)^2\}^{1/2} e^{-i\xi/2}.$$

For integers j, k we set $\psi_{j,k}(x) = 2^{j/2}\psi(2^jx - k)$. Then it turns out that $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$ is an orthonormal basis of $L^2(\mathbb{R})$ which we call Meyer's wavelet basis([8]).

We define *n*-dimensional Meyer's wavelet basis as follows. Let φ be a function in $S(\mathbb{R})$ such that $\hat{\varphi}(\xi) = \theta(\xi)$. Set $E = \{0,1\}^n \setminus \{0\}, \ \psi^0(x) = \varphi(x), \ \text{and} \ \psi^1(x) = \psi(x)$. For $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in E$ and $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ we define

$$\psi^{\varepsilon}(x) = \psi^{\varepsilon_1}(x_1) \cdots \psi^{\varepsilon_n}(x_n).$$

Let
$$\Lambda = \{ (\varepsilon, j, k) : \varepsilon \in E, \ j \in \mathbb{Z}, \ k \in \mathbb{Z}^n \}$$
. For $\lambda = (\varepsilon, j, k) \in \Lambda, x \in \mathbb{R}^n$, set
$$\psi_{\lambda}(x) = 2^{nj/2} \psi^{\varepsilon}(2^j x - k).$$

Then $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ is an orthonormal basis of $L^2(\mathbb{R}^n)$ which we call *n*-dimensional Meyer's wavelet basis([8]).

We can construct another orthonormal basis by φ and ψ . Let

$$\Lambda_0 = \{ (\varepsilon, j, k) : \varepsilon \in E, \ j \in \mathbb{Z}, \ j \ge 0, \ k \in \mathbb{Z}^n \},$$

$$\Phi(x) = \varphi(x_1) \cdots \varphi(x_n), \quad \text{and} \quad \Phi_k(x) = \Phi(x - k) \quad (k \in \mathbb{Z}^n).$$

Then we can prove that

$$\{ \Phi_k, \psi_\lambda : \lambda \in \Lambda_0, k \in \mathbb{Z}^n \}$$

is an orthonormal basis of $L^2(\mathbb{R}^n)([8])$. The function Φ is called a scaling function.

2 Weighted spaces

We recall the definition of A_p -weights. By a cube in \mathbb{R}^n we mean a cube which sides are parallel to coordinate axes. A locally integrable function w > 0 a.e. on \mathbb{R}^n is an A_p -weight for some $p \in (1, \infty)$ if there exists a positive constant C such that

$$\frac{1}{|Q|} \int_{Q} w(x) \, dx \left(\frac{1}{|Q|} \int_{Q} w(x)^{-1/(p-1)} dx \right)^{p-1} \le C$$

for all cubes $Q \subset \mathbb{R}^n$, where |Q| is the volume of Q.

We say that w is an A_1 -weight if there exists a positive constant C such that

$$\frac{1}{|Q|} \int_{Q} w(y) \, dy \le Cw(x) \qquad a.e. \ x \in Q$$

for all cubes $Q \subset \mathbb{R}^n$.

We write A_p for the class of A_p -weights. An example of A_p -weight for $1 is given by <math>w(x) = |x|^{\alpha} \in A_p$ where $x \in \mathbb{R}^n$ and $-n < \alpha < p(n-1)$. The inclusion $A_p \subset A_q$ holds for p < q.

For $w \in A_p$ we set

$$L^p(w) = \{ f : \text{ measurable, } \|f\|_{L^p(w)} = \left\{ \int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx \right\}^{1/p} < \infty \}.$$

For $\lambda = (\varepsilon, j, k) \in \Lambda$ set

$$Q(\lambda) = \{(x_1, \dots, x_n) : k_i \le 2^j x_i < k_i + 1, i = 1, \dots, n\}$$

and

$$\tilde{\chi}_{\lambda}(x) = |Q(\lambda)|^{-1/2} \chi_{Q(\lambda)}(x),$$

where $\chi_{Q(\lambda)}(x)$ is the characteristic function of $Q(\lambda)$. The cube as above is called a dyadic cube.

Now we give the definition of an unconditional basis in a Banach space B over \mathbb{C} . Let $\{e_i\}_{i=1}^{\infty}$ be a family of elements in B. We say $\{e_i\}_{i=1}^{\infty}$ is a Schauder basis of B if every $f \in B$ can be written

$$f = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_k e_k + \dots \tag{1}$$

where the $\alpha_1, \alpha_2, \ldots, \alpha_k, \ldots$ are uniquely determined coefficients in \mathbb{C} and the convergence in (1) is defined by

$$\lim_{N\to\infty} \|f-\alpha_1e_1-\alpha_2e_2-\cdots-\alpha_Ne_N\|_B=0.$$

A Schauder basis $\{e_i\}_{i=1}^{\infty}$ in B is an unconditional basis if the following property is satisfied: for all $f \in B$ $f = \sum_{i=1}^{\infty} \alpha_{\sigma(i)} e_{\sigma(i)}$ in B for any permutation σ of \mathbb{N} , where α_i are coefficients given by (1).

The following theorem is a simple modification of results by Lemarié and Meyer([4],[5],[8]), where we use the notation

$$(f,g) = \int_{\mathbb{R}^n} f(x)\overline{g(x)} dx.$$

Theorem 2.1. Let

$$1 and $w \in A_p$.$$

Then $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ is an unconditional basis of $L^p(w)$. Furthermore for $f\in L^p(w)$ we have

$$f = \sum_{\lambda \in \Lambda} (f, \psi_{\lambda}) \psi_{\lambda}$$
 in $L^p(w)$ and

$$\|f\|_{L^p(w)} pprox \left\| \left(\sum_{\lambda \in \Lambda} (|(f, \psi_\lambda)| ilde{\chi}_\lambda)^2 \right)^{1/2} \right\|_{L^p(w)}.$$

Moreover

$$\{ \Phi_k, \psi_{\lambda} : \lambda \in \Lambda_0, k \in \mathbb{Z}^n \}$$

is an unconditional basis of $L^p(w)$. For $f \in L^p(w)$ we have

$$f = \sum_{k \in \mathbb{Z}^n} (f, \Phi_k) \Phi_k + \sum_{\lambda \in \Lambda_0} (f, \psi_{\lambda}) \psi_{\lambda}$$

in $L^p(w)$ and

$$\|f\|_{L^p(w)}pprox \left(\sum_k |(f,\Phi_k)|^p w(Q_k)
ight)^{1/p} + \left\|\left(\sum_{\lambda\in\Lambda_0}(|(f,\psi_\lambda)| ilde{\chi}_\lambda(x))^2
ight)^{1/2}
ight\|_{L^p(w)},$$

where

$$Q_k = \{(x_1, \dots, x_n) : k_i \le x_i < k_i + 1, i = 1, \dots, n\},\$$

and

$$w(Q_k) = \int_{Q_k} w \, dx.$$

We will use this result in the proofs of Theorem 3.2 in Section 3 and Theorem 6.2 in Section 6.

3 The Sobolev-Lieb-Thirring inequality

In 1976 Lieb and Thirring proved the following inequality([7]).

Theorem 3.1 (The Sobolev-Lieb-Thirring inequality). Suppose that $n \in \mathbb{N}$, $f_i \in H^1(\mathbb{R}^n)$ (i = 1, ..., N), and that $\{f_i\}_{i=1}^N$ is an orthonormal family in $L^2(\mathbb{R}^n)$. Then we have

$$\int_{\mathbb{R}^n} \rho^{1+2/n} dx \le c_n \sum_{i=1}^N \int_{\mathbb{R}^n} |\nabla f_i|^2 dx,$$

where

$$\rho(x) = \sum_{i=1}^{N} |f_i(x)|^2.$$

In the statement of the Sobolev-Lieb-Thirring inequality $H^1(\mathbb{R}^n)$ denotes the Sobolev space of order one. The Sobolev-Lieb-Thirring inequality has important applications such as the stability of matter or the estimates of the dimension of attractors of nonlinear equations([7]).

In this section we give a weighted version of the Sobolev-Lieb-Thirring inequality. Let $w \in A_2$ and $\mathcal{H}^1(w)$ be the completion of $C_0^{\infty}(\mathbb{R}^n)$ with respect to the norm

$$||f||_{\mathcal{H}^1(w)} = \left\{ \int_{\mathbb{R}^n} |\nabla f(x)|^2 w(x) \, dx + ||f||^2 \right\}^{1/2},$$

where $\|\cdot\|$ denotes the norm in $L^2(\mathbb{R}^n)$. We have the following generalization of the Sobolev-Lieb-Thirring inequality for $n \geq 3(\text{c.f.}[9])$.

Theorem 3.2. Let $n \in \mathbb{N}$, $n \geq 3$, $w \in A_2$ and $w^{-n/2} \in A_{n/2}$. Suppose that $f_i \in \mathcal{H}^1(w)$ (i = 1, ..., N), and $\{f_i\}_{i=1}^N$ is orthonormal in $L^2(\mathbb{R}^n)$. Then we have

$$\int_{\mathbb{R}^n} \rho(x)^{1+2/n} w(x) \, dx \le c \sum_{i=1}^N \int_{\mathbb{R}^n} |\nabla f_i(x)|^2 w(x) dx,$$

where

$$\rho(x) = \sum_{i=1}^{N} |f_i(x)|^2$$

and c is a positive constant depending only on n and w.

An example of w which satisfies the conditions in Theorem 3.2 is given by $w(x) = |x|^{\alpha}$ for $-n+2 < \alpha < 2$.

We explain about the outline of a proof of Theorem 3.2 in the next section. We use the estimates of some weighted integrals by means of wavelets. These estimates enable us to prove a weighted version of the Sobolev-Lieb-Thirring inequality.

4 Proof of Theorem 3.2

For $f \in L^1_{loc}(\mathbb{R}^n)$, we define the Hardy-Littlewood maximal operator as

$$M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ such that $x \in Q$.

The proof of the following proposition is in [3].

Proposition 4.1. (i) Let $1 and <math>w \in A_p$. Then M is bounded on $L^p(w)$.

(ii) Let
$$0 < \tau < 1, f \in L^1_{loc}(\mathbb{R}^n)$$
, and $M(f)(x) < \infty$ a.e.. Then $(M(f)(x))^{\tau} \in A_1$.

(iii) Let
$$1 and $w_1, w_2 \in A_1$. Then $w_1 w_2^{1-p} \in A_p$.$$

We may assume $f_i \in C_0^{\infty}(\mathbb{R}^n)$ for $i=1,\ldots,N$. Let $V(x)=\delta\rho(x)^{2/n}w(x)$ where δ is a positive constant. Then we get $\int_{\mathbb{R}^n}V^{1+n/2}w^{-n/2}\,dx<\infty$ and $w^{-n/2}\in A_{(1+n/2)/\kappa}=A_{n/2}$ for $\kappa=1+2/n$. Set $v(x)=M(V^\kappa)(x)^{1/\kappa}$. Then (i) of Proposition 4.1 leads to

$$\int_{\mathbb{R}^n} v^{1+n/2} w^{-n/2} \, dx = \int_{\mathbb{R}^n} M(V^{\kappa})^{(1+n/2)/\kappa} w^{-n/2} \, dx \le c_1 \int_{\mathbb{R}^n} V^{1+n/2} w^{-n/2} \, dx < \infty.$$

Furthermore we have $v \in A_2$ and $V \leq v$ a.e..

The following lemma is essentially proved by Frazier and Jawerth (c.f.[9]).

Lemma 4.1. Let $w \in A_2$. Then there exists a $\alpha > 0$ such that

$$\alpha \sum_{\lambda \in \Lambda} |Q(\lambda)|^{-2/n} |(f, \psi_{\lambda})|^2 \frac{1}{|Q(\lambda)|} \int_{Q(\lambda)} w \, dx \le \int_{\mathbb{R}^n} |\nabla f|^2 w \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$.

The next lemma is a corollary of Theorem 2.1.

Lemma 4.2. Let $v \in A_2$. Then there exists a $\beta > 0$ such that

$$\int_{\mathbb{R}^n} |f|^2 v \, dx \le \beta \sum_{\lambda \in \Lambda} |(f, \psi_\lambda)|^2 \frac{1}{|Q(\lambda)|} \int_{Q(\lambda)} v \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$.

By Lemmas 4.1 and 4.2 we have for $f \in C_0^{\infty}(\mathbb{R}^n)$

$$\begin{split} &\int_{\mathbb{R}^n} |\nabla f|^2 w \, dx - \int_{\mathbb{R}^n} V |f|^2 \, dx \\ & \geq \alpha \sum_{\lambda \in \Lambda} |Q(\lambda)|^{-2/n} |(f,\psi_\lambda)|^2 \frac{1}{|Q(\lambda)|} \int_{Q(\lambda)} w \, dx - \beta \sum_{\lambda \in \Lambda} |(f,\psi_\lambda)|^2 \frac{1}{|Q(\lambda)|} \int_{Q(\lambda)} v \, dx. \end{split}$$

Let

$$\mathcal{I} = \{\lambda \in \Lambda \,:\, eta \int_{Q(\lambda)} v \, dx > lpha |Q(\lambda)|^{-2/n} \int_{Q(\lambda)} w \, dx \}$$

and $\{\mu_k\}_{1\leq k}$ be the non-decreasing rearrangement of

$$\left\{\alpha|Q(\lambda)|^{-2/n-1}\int_{Q(\lambda)}w\,dx-\beta|Q(\lambda)|^{-1}\int_{Q(\lambda)}v\,dx\right\}_{\lambda\in\mathcal{I}}.$$

When

$$\mu_k = \alpha |Q(\lambda)|^{-2/n-1} \int_{Q(\lambda)} w \, dx - \beta |Q(\lambda)|^{-1} \int_{Q(\lambda)} v \, dx,$$

we define $\Psi_k = \psi_{\lambda}$. Then we get

$$\begin{split} & \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} |\nabla f_{i}|^{2} w \, dx - \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} V |f_{i}|^{2} \, dx \\ & \geq \sum_{i=1}^{N} \sum_{\lambda \in \Lambda} |(f_{i}, \psi_{\lambda})|^{2} \left\{ \alpha |Q(\lambda)|^{-2/n-1} \int_{Q(\lambda)} w \, dx - \beta |Q(\lambda)|^{-1} \int_{Q(\lambda)} v \, dx \right\} \\ & \geq \sum_{i=1}^{N} \sum_{k} \mu_{k} |(f_{i}, \Psi_{k})|^{2} = \sum_{k} \mu_{k} \sum_{i=1}^{N} |(f_{i}, \Psi_{k})|^{2} \\ & \geq -c \sum_{k} |\mu_{k}|. \end{split}$$

Now we use the following lemma in [9].

Lemma 4.3. There exists a positive constant c such that

$$\sum_{k} |\mu_{k}| \le c \int_{\mathbb{R}^{n}} v^{1+n/2} w^{-n/2} dx,$$

where c depends only on n and w.

Hence by Lemma 4.3 we have

$$\begin{split} & \sum_{i=1}^N \int_{\mathbb{R}^n} |\nabla f_i|^2 w \, dx - \sum_{i=1}^N \int_{\mathbb{R}^n} V |f_i|^2 \, dx \\ & \geq -c \int_{\mathbb{R}^n} V^{1+n/2} w^{-n/2} \, dx = -c \delta^{1+n/2} \int_{\mathbb{R}^n} \rho^{1+2/n} w \, dx. \end{split}$$

Therefore

$$\begin{split} \sum_{i=1}^N \int_{\mathbb{R}^n} |\nabla f_i|^2 w \, dx &\geq \delta \int_{\mathbb{R}^n} \rho^{1+2/n} w \, dx - c \delta^{1+n/2} \int_{\mathbb{R}^n} \rho^{1+2/n} w \, dx \\ &= \{ \delta - c \delta^{1+n/2} \} \int_{\mathbb{R}^n} \rho^{1+2/n} w \, dx. \end{split}$$

If we take δ small enough, then we get the inequality in Theorem 3.2.

5 L^p Sobolev-Lieb-Thirring inequality

By Theorem 3.2 we are able to prove the following L^p version of the Sobolev-Lieb-Thirring inequality.

Theorem 5.1 ([10]). Let $n \in \mathbb{N}$, $n \geq 3$ and $2n/(n+2) . Then there exists a positive constant c such that for every family <math>\{f_i\}_{i=1}^N$ in $L^2(\mathbb{R}^n)$ which is orthonormal and $|\nabla f_i(x)| \in L^p(\mathbb{R}^n)$, $(i=1,\ldots,N)$, we have

$$\int_{\mathbb{R}^n} \rho(x)^{(1+2/n)p/2} dx \le c \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\nabla f_i(x)|^2 \right)^{p/2} dx,$$

where

$$\rho(x) = \sum_{i=1}^{N} |f_i(x)|^2$$

and c depends only on n and p.

Proof

Our proof is very similar to that of the extrapolation theorem in harmonic analysis(c.f.[2, Theorem 7.8]). Let 2 and <math>2/p + 1/q = 1. Let $u \in L^q$, $u \ge 0$ and $\|u\|_{L^q} = 1$. We take a γ such that $n/(n-2) < \gamma < q$. Then we have $u \le M(u^{\gamma})^{1/\gamma}$ a.e and $M(u^{\gamma})^{1/\gamma} \in A_1$. Furthermore let $\alpha = \frac{n}{(n-2)\gamma}$. Then $0 < \alpha < 1$ and

$$M(u^{\gamma})^{-n/(2\gamma)} = \{M(u^{\gamma})^{\alpha}\}^{1-n/2} \in A_{n/2},$$

where we used $M(u^{\gamma})^{\alpha} \in A_1$ and (iii) of Proposition 4.1. Therefore we have

$$\int \rho^{1+2/n} u \, dx \le \int \rho^{1+2/n} M(u^{\gamma})^{1/\gamma} \, dx \le c \int \left(\sum_{i=1}^{N} |\nabla f_i|^2 \right) M(u^{\gamma})^{1/\gamma} \, dx$$

$$\le c \left(\int \left(\sum_{i=1}^{N} |\nabla f_i|^2 \right)^{p/2} dx \right)^{2/p} \left(\int M(u^{\gamma})^{q/\gamma} dx \right)^{1/q}$$

$$\le c \left(\int \left(\sum_{i=1}^{N} |\nabla f_i|^2 \right)^{p/2} dx \right)^{2/p},$$

where we used Theorem 3.2 and the inequality

$$\int M(u^{\gamma})^{q/\gamma} dx \le c \int u^q dx = c.$$

If we take the supremum for all $u \in L^q$, $u \ge 0$ and $||u||_{L^q} = 1$, then we get

$$\left(\int \rho^{(1+2/n)p/2}\,dx\right)^{2/p} \leq c\left(\int \left(\sum_{i=1}^N |\nabla f_i|^2\right)^{p/2}dx\right)^{2/p}.$$

Next we consider the case 2n/(n+2) . Let

$$f = \left(\sum_{i=1}^{N} |\nabla f_i|^2\right)^{1/2}.$$

We can take γ such that $(2-p)n/2 < \gamma < p$. Then we have

$$M(f^{\gamma})^{-(2-p)/\gamma} \in A_2$$

because

$$M(f^{\gamma})^{(2-p)/\gamma} \in A_1$$

by (ii) of Proposition 4.1. Furthermore we have

$$\{M(f^{\gamma})^{-(2-p)/\gamma}\}^{-n/2} = M(f^{\gamma})^{(2-p)n/(2\gamma)} \in A_1 \subset A_{n/2}.$$

Therefore

$$\int \rho^{(1+2/n)p/2} dx = \int \rho^{(1+2/n)p/2} M(f^{\gamma})^{-(2-p)p/(2\gamma)} M(f^{\gamma})^{(2-p)p/(2\gamma)} dx
\leq \left(\int \rho^{1+2/n} M(f^{\gamma})^{-(2-p)/\gamma} dx \right)^{p/2} \left(\int M(f^{\gamma})^{p/\gamma} dx \right)^{1-p/2}
\leq c \left(\int f^2 M(f^{\gamma})^{-(2-p)/\gamma} dx \right)^{p/2} \left(\int f^p dx \right)^{1-p/2}
\leq c \left(\int M(f^{\gamma})^{2/\gamma} M(f^{\gamma})^{-(2-p)/\gamma} dx \right)^{p/2} \left(\int f^p dx \right)^{1-p/2}
\leq c \left(\int M(f^{\gamma})^{p/\gamma} dx \right)^{p/2} \left(\int f^p dx \right)^{1-p/2} \leq c \int f^p dx,$$

where we used Theorem 3.2 in the second inequality.

6 Lieb's inequality for Bessel potentials

Lieb proved the following inequality in [6].

Theorem 6.1. Let $n \in \mathbb{N}$, s > 0, n > 2s and $m \ge 0$. Let f_1, \ldots, f_N be orthonormal in $L^2(\mathbb{R}^n)$ and

$$u_i = (-\Delta + m^2)^{-s/2} f_i.$$

Then

$$\int_{\mathbb{R}^n} \left(\sum_{i=1}^N |u_i(x)|^2 \right)^{n/(n-2s)} dx \le C_{n,s} N.$$

Battle and Federbush([1]) proved this inequality for n=3 and s=1 in 1982. They applied it to the quantum field theory. Lieb proved the case $n \geq 4$ and s > 0.

We can prove the following generalization of Lieb's inequality by means of Theorem 2.1.

Theorem 6.2 (Tachizawa, 2007). Let $n \in \mathbb{N}$, s > 0, n > 2s and $m \geq 0$. Let $w \in A_{n/(n-2s)} \cap A_2$ and $w^{-n/(2s)} \in A_{n/(2s)}$. Let f_1, \ldots, f_N be orthonormal in $L^2(\mathbb{R}^n)$, $f_i \in L^2(w)$, and

$$u_i = (-\Delta + m^2)^{-s/2} f_i.$$

Then

$$\int_{\mathbb{R}^n} \left(\sum_{i=1}^N |u_i(x)|^2 \right)^{n/(n-2s)} w(x) dx \le C \sum_{i=1}^N \int_{\mathbb{R}^n} |f_i(x)|^2 w(x) dx,$$

where the constant C depends only on n, s, and w.

The proof of Theorem 6.2 is given by a similar argument to that of Theorem 3.2. We use the characterization of weighted spaces by means of wavelets and scaling function. The detail will appear elsewhere.

参考文献

- [1] Battle, G. and Federbush, P. (1982). A phase cell cluster expansion for Euclidean field theories, *Ann. Physics*, **142**, no.1, 95–139.
- [2] Duoandikoetxea, J. (2001). Fourier analysis, Graduate Studies in Mathematics,29, American Mathematical Society, Providence, RI.
- [3] García-Cuerva, J. and Rubio de Francia, J.L. (1985). Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116, North-Holland.
- [4] Lemarié-Rieusset, P.G. (1994). Ondelettes et poids de Muckenhoupt, Studia Math., 108, 127-147.
- [5] Lemarié, P.G. and Meyer, Y. (1986). Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana, 2, 1–18.
- [6] Lieb, E. (1983). An L^p bound for the Riesz and Bessel potentials of orthonormal functions, J. Funct. Anal., 51, 159–165.
- [7] Lieb, E. and Thirring, W. (1976). Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics, Princeton University Press, 269–303.

- [8] Meyer, Y. (1992). Wavelets and operators, Cambridge Studies in Advanced Mathematics 37, Cambridge University Press, Cambridge.
- [9] Tachizawa, K. (2005). Weighted Sobolev-Lieb-Thirring inequalities, Rev. Mat. Iberoamericana, 21, 67–85.
- [10] Tachizawa, K. (2005). Weighted L^p Sobolev-Lieb-Thirring inequalities, Proc. of the Japan Acad., 81, Ser. A, 8, 141-143.