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Abstract. In this article we study the HardyLittlewood max‐

imal operator in variable exponent spaces. For a given variable

exponent p on a domain  $\Omega$ for which the maximal operator is con‐

tinuous on  L^{p} () we construct an extension of p to \mathbb{R}^{n} such that

the maximal operator is continuous on \mathbb{R}^{n} . The variable exponent
will be constructed by means of a Whitney type extension. In this

paper we restrict ourselves to the case where  $\Omega$ is the half space.

But the technique applies to less regular domains. The application
to  $\epsilon$- $\delta$‐domains (Jones domains) is the subject of a forthcoming
article.

1. Introduction

Spaces of variable integrability have been the subject of quite a lot

of interest recently, as surveyed in [DHN04, Sam05]. The spaces can be

traced back to W. Orlicz [Orl31], but the modern development started

with the paper [KR91] of Kováčik and Rákosník. Apart from interest‐

ing theoretical considerations, the motivation to study such function

spaces comes from applications to fluid dynamics [RUž00], image pro‐

cessing [CLS03], PDE, and the calculus of variation [Zhi86, AM01].
A crucial step in the development of the theory was establishing

the boundedness of the HardyLittlewood maximal operator on  L^{p}

Many important properties, like density of smooth functions, continu‐

ity of singular integrals, Sobolev embeddings, can be deduced solely
from the boundedness of the maximal operator, see [\mathrm{D}\mathrm{i}\mathrm{e}04\mathrm{b} , DR03,
CUFMP06]. Of particular interest in this context is the article of

Cruz‐Uribe, Fiorenza, Martell, and Pérez [CUFMP06]. In that paper

the authors showed that it is possible to transfer many results known

for weighted Lebesgue spaces by the extrapolation technique of Rubio

de Francia to the spaces of variable exponent. The only requirements
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needed are some assumptions on the boundedness of the maximal op‐

erator. This includes the boundedness of the maximal operator on the

dual space together with some left‐openness result. In particular it is

needed that the maximal operator is bounded on L^{(p(\cdot)/s)'}(\mathbb{R}^{n}) for some

s>1.

The boundedness of the maximal operator on L^{p} (\mathbb{R}^{n}) was origi‐
nally proved by Diening [\mathrm{D}\mathrm{i}\mathrm{e}04\mathrm{a}] assuming that the variable exponent
is locally \log‐Hölder continuous, constant outside a compact set, and

bounded away from 1 and \infty . Pick and RUžička [PR01] complemented
this result by showing that the local \log‐Hölder continuity is the optimal
continuity modulus for this assertion. The assumption that  p be con‐

stant outside a compact set was replaced by Cruz‐Uribe, Fiorenza, and

Neugebauer [CUFN03] by a decay condition at infinity. The local con‐

tinuity condition and the decay condition are summarized in the term

globally \log ‐Hölder continuity of  p . These authors also showed that

their decay condition is the optimal decay condition for the bounded‐

ness of the maximal operator. Nekvinda [Nek04] independently proved
the same result under a slightly weaker decay assumption at infinity,
replacing the continuity modulus by an integral condition. While the

condition p^{-}>1 is necessary for the continuity of the maximal opera‐

tor [CUFN04, Die07] the condition  p^{+}<\infty was only needed for techni‐

cal reason, which is reflected in the fact that  M : L^{\infty}(\mathbb{R}^{n})\rightarrow L^{\infty}(\mathbb{R}^{n})
is obviously true. The case including  p^{+}=\infty was proved by Diening,
Harjulehto, Hästö, Mizuta, and Shimomura [DHHMS09], see Proposi‐
tion 2.2 below.

Although the global \log‐Hölder continuity of the variable exponent  p

with p^{-}>1 is sufficient for the boundedness of the maximal operator,
it is not necessary. Lerner [Ler05] constructed examples of variable

exponents which are not continuous at zero and infinity but for which

the maximal operator is nevertheless bounded. At the same time Dien‐

ing [Die05] gave a full charaterization of the boundedness of the maxi‐

mal operator for variable eponents p\in \mathcal{P}(\mathbb{R}^{n}) with 1<p^{-}\leq p^{+}<\infty.
This characterization is closely connected to the Muckenhoupt condi‐

tion for weighted Lebesgue spaces and is stated in terms of averaging
operators over families of disjoint cubes. Based on this characteriza‐

tion Diening also showed that the maximal operator M is bounded on

L^{p} (\mathbb{R}^{n}) if and only if it is bounded on L^{p} (\mathbb{R}^{n}) and L^{(p(\cdot)/s)'}(\mathbb{R}^{n}) for

some s>1 . This ensures that the application of the extrapolation
results of Cruz‐Uribe, Fiorenza, and Neugebauer [CUFN03] requires
only the boundedness of the maximal operator on L^{p} (\mathbb{R}^{n}) . Note that

the additional boundedness of the maximal operator on L^{p} (\mathbb{R}^{n}) and
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L^{(p(\cdot)/s)'}(\mathbb{R}^{n}) for some s>1 is immediate for globally \log‐Hölder con‐

tinuous variable exponents with  1<p^{-}\leq p^{+}<\infty but for general
variable exponents this is obvious by no means.

Many results for bounded domains  $\Omega$ can be deduced from the re‐

sult for the whole space \mathbb{R}^{n} in combination with an extension result.

Assume for example that  $\Omega$ and  q\in(1, n) are such that there ex‐

ists a continuous extension operator \mathcal{E} : W^{1,q}( $\Omega$)\rightarrow W^{1,q}(\mathbb{R}^{n}) . Then

the Sobolev embedding W^{1,q}( $\Omega$)\rightarrow L^{q^{*}}( $\Omega$) with \displaystyle \frac{1}{q^{*}}=\frac{1}{q}-\frac{1}{n} follows

immediately from the estimate \Vert f\Vert_{L^{q^{*}}(\mathbb{R}^{n})}\leq\Vert\nabla f\Vert_{L^{q}(\mathbb{R}^{n})} . This raises

the question under which conditions on  $\Omega$ and the variable exponent  p

there exists an extension operator \mathcal{E} : W^{1,p(\cdot)}( $\Omega$)\rightarrow W^{1,p(\cdot)}(\mathbb{R}^{n}) .

We have to distinguish two cases. In the first case the variable expo‐

nent p is given a priori for the whole space \mathbb{R}^{n} and the question is only
to find a proper Sobolev extension operator \mathcal{E} . If we have proper control

of the maximal operator, then this can be achieved by extrapolation
and the corresponding results for weighted Lebesgue spaces [Chu06].
The reduction to the boundedness of the maximal operator was used

in [DH07] for the Sobolev extensions from the half space to \mathbb{R}^{n} and

in [CUFMP06] for Sobolev extentions for domains satisfying the uni‐

form, interior cone condition.

In the second case the variable exponent p is only given on  $\Omega$ and

has to be extended as well. This should be done in such a way that the

maximal operator will be bounded on  L^{p} (\mathbb{R}^{n}) . If p is globally log‐
Hölder continuous on  $\Omega$

,
then it is not difficult to extend  p such that p is

globally \log‐Hölder continuous on \mathbb{R}^{n} . This can for example be achieved

with the help of the extension theorem of McShane [\mathrm{M}\mathrm{c}\mathrm{S}34] to \mathbb{R}^{n}
,

see

[\mathrm{D}\mathrm{i}\mathrm{e}04\mathrm{a}] , [CUFMP06], and [DHHMS09] for corresponding extension

results. In [CUFMP06] this was used to get a suitable extension of

the variable exponent to \mathbb{R}^{n} before the Sobolev extension result was

considered. The situation is much more difficult for measurable p.

This problem of a suitable extension of the variable exponent p was the

only restriction in [CUFMP06] that circumvented a Sobolev extension

theorem for measurable p . Due to this reason Cruz‐Uribe, Fiorenza,
Martell, and Pérez stated the following question:

(EP) Extension‐Problem [CUFMP06, Remark 4.4]:
It would be interesting to determine if every exponent

p\in B( $\Omega$) can be extended to an exponent function in

B(\mathbb{R}^{n})

Hereby, B( $\Omega$) denotes the set of variable exponents p\in \mathcal{P}( $\Omega$) such that

M is bounded on L^{p} (  $\Omega$ ) .
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It is the purpose of this paper to provide a positive (partial) an‐

swer to this question. Our final goal is to solve (EP) for  $\epsilon$- $\delta$‐domain.

These domains were introduced by Jones [Jon81] and are therefore also

called Jones domains. They are the natural domains for the extension

of Sobolev functions and it is therefore our aim to solve (EP) for the

same type of domains. Once this problem is solved, the extension re‐

sult for variable exponent Sobolev spaces will follow immediately from

extrapolation and the result of Chua [Chu06].
The extensions of Sobolev functions for  $\epsilon$- $\delta$‐domains and constant ex‐

ponent are constructed by the use of the Whitney extension, see [Jon81,
Chu06]. Therefore, it is natural to use a Whitney type extension to

extend the variable exponent  p . (Note that other methods like the

method of reflection require higher regularity of the boundary of  $\Omega$. )
However, instead of working with  $\epsilon$- $\delta$‐domains we will restrict ourselves

in this article to the case where  $\Omega$ is the half space. We are aware of

the fact that in the case of the half space (EP) can be solved far easier

by reflection of the exponent. However, the use of a Whitney type
extension shows the strong potential of the method in the sense that it

can also be applied in the context of  $\epsilon$- $\delta$‐domains. The solution of (EP)
for  $\epsilon$- $\delta$‐domains will be the subject of a forthcoming paper. Therefore,
we will keep the level of details low and concentrate on presenting the

essential ideas of the method. Detailed calculations for the case of the

half space can be found in [Frö08] and in the forthcoming article [DF08].

2. Notation and Basic Properties

By  c we denote a generic constant, i.e. its value may change from

line to line. We write f\sim g if there exist constants c_{1}, c_{2}>0 so

that c_{1}f\leq g\leq c_{2}g . For a measurable subset  $\Omega$\subset \mathbb{R}^{n} with posi‐
tive (Lebesgue) measure we denote by L^{0}() the space of real‐valued,
measurable functions on  $\Omega$ and by  L_{1\mathrm{o}\mathrm{c}}^{1}(\mathbb{R}^{n}) the space of real‐valued,
locally integrable functions on \mathbb{R}^{n} . We use $\chi$_{ $\Omega$} for the characteristic

function of  $\Omega$ . By  L^{p}( $\Omega$) with p\in[1, \infty] we denote the usual Lebesgue
spaces. We use | $\Omega$| for the n‐dimensional Lebesgue measure of  $\Omega$ . For

 f\in L^{1}() we write

f_{ $\Omega$}=\displaystyle \int_{ $\Omega$}f(y)dy:=| $\Omega$|^{-1}\int_{ $\Omega$}f(y)dy.
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By M we denote the (uncentered) HardyLittlewood maximal opera‐

tor, i.e for f\in L_{1\mathrm{o}\mathrm{c}}^{1}(\mathbb{R}^{n}) and x\in \mathbb{R}^{n} let

Mf(x):=\displaystyle \sup_{Q\ni x}\int_{Q}|f(y)|dy,
where the supremum is taken over all cubes which contain x . Through‐
out the paper all cubes will have sides parallel to the axes. If f\in L^{1}()
with measurable  $\Omega$\subset \mathbb{R}^{n} ,

then we often implicitly extend f outside of  $\Omega$

by zero, so that  f\in L_{1\mathrm{o}\mathrm{c}}^{1}(\mathbb{R}^{n}) . This is in particular used in the defini‐

tion of Mf for f\in L^{1}() . For a cube W\subset \mathbb{R}^{n} and  $\lambda$>0 we denote by
 $\lambda$ W the cube with the same center and  $\lambda$‐times the diameter. Analo‐

gously, for a family \mathcal{W} of cubes and  $\lambda$>0 we denote by  $\lambda$ \mathcal{W} the familiy
\{ $\lambda$ W:W\in \mathcal{W}\}.

A measurable function p: $\Omega$\rightarrow[1, \infty] will be called a variable expo‐

nent on  $\Omega$ . We write \mathcal{P}( $\Omega$) for the set of all variable exponents on  $\Omega$.

For p\in \mathcal{P}( $\Omega$) we define p_{ $\Omega$}^{+}=\displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\sup_{x\in $\Omega$}p(x) and p_{ $\Omega$}^{-}=\displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\inf_{x\in $\Omega$}p(x) ,

and abbreviate p^{+}=p_{\mathbb{R}^{n}}^{+} and p^{-}=p_{\mathbb{R}^{n}}^{-} . For p\in \mathcal{P}( $\Omega$) we define the

dual exponent p'\in \mathcal{P}( $\Omega$) pointwise by \displaystyle \frac{1}{p(x)}+\frac{1}{p(x)}=1 . Hereby and in

the following we use the convention \displaystyle \frac{1}{\infty}=0 . For q\in[1, \infty] and t\geq 0
we define $\varphi$_{q} : [0, \infty ) \rightarrow[0, \infty] by

$\varphi$_{q}(t):=\left\{\begin{array}{ll}
t^{q} & \mathrm{f}\mathrm{o}\mathrm{r} 1\leq q<\infty,\\
0 & \mathrm{f}\mathrm{o}\mathrm{r} q=\infty, t\in(0,1],\\
\infty & \mathrm{f}\mathrm{o}\mathrm{r} q=\infty, t\in(1, \infty) .
\end{array}\right.
The reason to define $\rho$_{\infty}(1)=0 is to get a left‐continuous function, as

in the general theory of OrliczMusielak spaces. Note that $\rho$_{\infty}(t)\leq
\displaystyle \lim_{q\rightarrow\infty}$\rho$_{q}(t)\leq$\rho$_{\infty}(2t) for all t\geq 0 . Let q, r, s\in[1, \infty] with \displaystyle \frac{1}{q}=\frac{1}{r}+\frac{1}{s}.
Then Young�s inequality reads

$\varphi$_{q}(ab)\leq$\varphi$_{r}(a)+$\varphi$_{s}(b)
for all a, b\geq 0.

The variable exponent modular is defined for measurable functions

by

$\rho$_{p}(f)=\displaystyle \int_{ $\Omega$}$\varphi$_{p(x)}(|f(x)|)dx.
The variable exponent Lebesgue space L^{p} (  $\Omega$ ) consists of measurable

functions  f: $\Omega$\rightarrow \mathbb{R} with $\rho$_{p} ( $\lambda$ f)<\infty for some  $\lambda$>0 . We define the

Luxemburg norm on this space by the formula

\displaystyle \Vert f\Vert_{L^{p(\cdot)}( $\Omega$)}=\inf\{ $\lambda$>0:$\rho$_{p} (f/ $\lambda$)\leq 1\}.
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The abbreviation \Vert f\Vert_{p(\cdot)} is used for the norm \Vert f\Vert_{L^{p(\cdot)}( $\Omega$)} over all of  $\Omega$.

We use $\varphi$_{p} for the function (x, t)\mapsto$\varphi$_{p(x)}(t) .

The following results are standard in the context of Orlicz spaces, see

e.g. [RR91], [Mus83], [Die07, Section 1.1]. A convex, left‐continuous

function  $\rho$ : [0, \infty ) \rightarrow[0, \infty] with  $\rho$(0)=0, \displaystyle \lim_{t\rightarrow\infty} $\rho$(t)=\infty ,
and

\displaystyle \lim_{t\searrow 0} $\rho$(t)=0 is called a  $\varphi$ ‐function. The complementary function  $\rho$^{*}
is defined by $\rho$^{*}(u) :=\displaystyle \sup_{t\geq u}(tu- $\rho$(t)) . Then ($\rho$^{*})^{*}= $\rho$ . Note that

 $\varphi$_{q}^{*}(t)\sim$\varphi$_{q'}(t) for  1\leq q\leq\infty and all  t\geq 0 . We define $\varphi$_{p}^{*} pointwise
with respect to x.

The following has emerged as a central condition in the theory of

variable exponent spaces.

Definition 2.1. Let  $\alpha$\in C( $\Omega$) . We say that  $\alpha$ is locally \log‐Hölder

continuous if there exists  c_{\log}>0 so that

(2.1) | $\alpha$(x)- $\alpha$(y)|\displaystyle \leq\frac{c_{\log}}{\ln(e+1/|x-y|)}
for all x, y\in $\Omega$.

We say that  $\alpha$ is (globally) \log‐Hölder continuous if it is locally log‐
Hölder continuous and there exists $\alpha$_{\infty}\in \mathbb{R} so that the decay condition

(2.2) | $\alpha$(x)-$\alpha$_{\infty}|\displaystyle \leq\frac{c_{\log}}{\ln(e+|x|)}
holds for all  x\in $\Omega$ . The smallest constant  c_{\log} that satisfies (2.1)
and (2.2) is called the \log ‐Hölder constant of  $\alpha$.

The notation \mathcal{P}^{\ln}( $\Omega$) is used for the set of variable exponents  p\in

\mathcal{P}( $\Omega$) for which 1/p is globally \log‐Hölder continuous. Then  p\in \mathcal{P}^{\ln}()
if and only if p'\in \mathcal{P}^{\ln}() . If  $\Omega$\subset \mathbb{R}^{n} is an unbounded, open set and

p\in \mathcal{P}^{\ln}( $\Omega$) ,
then we define p_{\infty} to be the limit \displaystyle \lim_{|x|\rightarrow\infty}p(x) ,

which

is well defined, since \displaystyle \frac{1}{p} is globally \log‐Hölder continuous. We have

(p_{\infty})'=(p')_{\infty}.
The importance of \mathcal{P}^{\ln}(\mathbb{R}^{n}) becomes clear by the following result.

Proposition 2.2 (Theorem 3.6, [DHHMS09]). Let p\in \mathcal{P}^{\ln}(\mathbb{R}^{n}) with

 1<p^{-}\leq p^{+}\leq\infty . Then  M is bounded on L^{p} (\mathbb{R}^{n}) ,
i.e. to

\Vert Mf\Vert_{p(\cdot)}\leq K\Vert f\Vert_{p(\cdot)}.

Here K>0 depends only on the dimension n
,

the constant of log‐
Hölder continuity of \displaystyle \frac{1}{p} , and p^{-}
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3. The extension oF the variable exponents

In this section we will construct the extension of the variable expo‐

nent. By \mathbb{H} we denote the (positive) half space of \mathbb{R}^{n}
,

i.e.

\mathbb{H}:=\{(x_{1}, \ldots, x_{n})\in \mathbb{R}^{n}:x_{1}>0\}.

By -\mathbb{H} we denote the (negative) half space, i.e. -\mathbb{H}=\{-x : x\in \mathbb{H}\}.
We make in the following assumption on our variable exponent p for

the rest of the paper.

Assumption 3.1. Let p\in \mathcal{P}(\mathbb{H}) with  1<p^{-}\leq p^{+}<\infty be such that

the maximal operator  M is bounded on L^{p} ( \mathbb{H} ) ,
i.e. for some K>0

holds

(3.1) \Vert Mf\Vert_{L^{p(\cdot)}(\mathbb{H})}\leq K\Vert f\Vert_{L^{p(\cdot)}(\mathbb{H})}.
for all f\in L^{p} ( \mathbb{H} ) ,

where f is extended by zero outside of \mathbb{H}.

Note that (3.1) is equivalent to

(3.2) \Vert$\chi$_{\mathbb{H}}M(f$\chi$_{\mathbb{H}})\Vert_{p(\cdot)}\leq K\Vert f$\chi$_{\mathbb{H}}\Vert_{p(\cdot)}
for all f\in L^{p} (\mathbb{R}^{n}) .

3.1. The extension. We want to extend p outside of \mathbb{H} by means

of a Whitney type extension. Herefore, we take a suitable Whitney
decompositions \mathcal{W}_{1} and \mathcal{W}_{2} of \mathbb{H} and -\mathbb{H}

, respectively. In particular,
\mathcal{W}_{1} and \mathcal{W}_{2} are families of open cubes from \mathbb{R}^{n} that satisfy:

(W1) \displaystyle \bigcup_{W\in \mathcal{W}_{1}}125W\subset \mathbb{H}\subset\bigcup_{W\in \mathcal{W}_{1}}\frac{16}{17}W.
(W2) \displaystyle \bigcup_{W\in \mathcal{W}_{2}}125W\subset-\mathbb{H}\subset\bigcup_{W\in \mathcal{W}_{2}}\frac{16}{17}W.
(W3) \displaystyle \frac{1}{2}W\cap\frac{1}{2}Z=\emptyset for all  W, Z\in \mathcal{W}_{j}(j=1,2) with W\neq Z.
(W4) The family 125\mathcal{W}_{j}(j=1,2) can be written as the finite union

of pairwise disjoint families of cubes. The number of families

only depends on the dimension n.

(W5) \displaystyle \sum_{W\in \mathcal{W}_{j}}$\chi$_{125W}\leq c for j=1 ,
2.

(W6) For all W, Z\in \mathcal{W}_{j}(j=1,2) with  W\cap Z\neq\emptyset holds  Z\subset 5W.

(W7) There exist c_{1}, c_{2}>0 such that

c_{1} diam(W) \leq dist (x, \partial \mathbb{H})\leq c_{2} diam(W)
for all W\in \mathcal{W}_{1}(j=1,2) and all x\in W.

A construction of the families \mathcal{W}_{1} and \mathcal{W}_{2} can be found in the ap‐

pendix. For W\in \mathcal{W}_{2} we denote by W^{*} the reflected cube W^{*}:=

\{(x_{1}, \ldots, x_{n-1}, -x_{n}) : x\in W\} . We assume that the families \mathcal{W}_{1} and

\mathcal{W}_{2} are chosen such that W^{*}\in \mathcal{W}_{1} for every W\in \mathcal{W}_{2} (for example use

\mathcal{W}_{1}:=\{W^{*}:W\in \mathcal{W}_{2}\}) .
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To the family \mathcal{W}_{2} we find a subordinate partition of unity \{$\eta$_{W}\}_{W\in \mathcal{W}_{2}}
with $\eta$_{W}\displaystyle \in C_{0}^{\infty}(\frac{33}{34}W) , 0\leq$\eta$_{W}\leq 1, \Vert\nabla$\eta$_{W}\Vert_{\infty}\leq c\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(W)^{-\frac{1}{n}} for

all W\in \mathcal{W}_{2} and \displaystyle \sum_{W\in \mathcal{W}_{2}}$\eta$_{W}=$\chi$_{-\mathbb{H}} . Property (W3) implies that

$\eta$_{W}(x)=1 for all x\displaystyle \in\frac{1}{2}W with W\in \mathcal{W}_{2}.
For a subset U\subset \mathbb{R}^{n} with positive measure and p\in \mathcal{P}(U) we define

Pu\in[1, \infty] by

(3.3) \displaystyle \frac{1}{p_{U}}:=\int_{U}\frac{1}{p(y)}dy.
We are now able to define the extension of p to the complement of \mathbb{H}.

For x\in-\mathbb{H} we extend p by

(3.4) \displaystyle \frac{1}{p(x)}:=\sum_{H\in \mathcal{W}_{2}}$\eta$_{H}(x)\frac{1}{p_{5W^{*}}}.
Recall that 5W^{*} is the cube with the same center as W^{*} but five times

the diameter. Since \mathbb{R}^{n}\backslash (\mathbb{H}\cup(-\mathbb{H})) is a null set, this defines an

extension p\in \mathcal{P}(\mathbb{R}^{n}) . We use the same symbol p for p\in \mathcal{P}(\mathbb{H}) and its

extension p\in \mathcal{P}(\mathbb{R}^{n}) .

Remark 3.2. The extension of p can be interpreted as a Whitney ex‐

tension of \displaystyle \frac{1}{p} . One can ask the question: �Why do we extend \displaystyle \frac{1}{p} rather

than p^{j}?
� The reason is that \displaystyle \frac{1}{p} behaves much better than p , especially

with respect to duality. For example if we extend the dual exponent p'
by means of (3.4), then we will get the same result as if we take the dual

exponent of the extended variable exponent. So our extension operator
forp commutes with duality.

We can now state our main result:

Theorem 3.3. Let p\in \mathcal{P}(\mathbb{H}) with  1<p^{-}\leq p^{+}<\infty be as in As‐

sumption 3.1, i.e. the maximal operator  M is bounded on L^{p} () .

Then (3.4) defines an extension of p to \mathbb{R}^{n} such that M is bounded on

L^{p} (\mathbb{R}^{n}) .

This theorem provides a positive answer to (EP) for  $\Omega$=\mathbb{H} . The

proof of our main result is based on a fundamental characterization of

those variable exponents p\in \mathcal{P}(\mathbb{R}^{n}) for which the maximal operator is

bounded. To explain this we need a few more notations.

Definition 3.4. Let

\mathcal{Y}^{n} := { \mathcal{W} : \mathcal{W} is a fa mily of pairwise disjoint cubes fr om \mathbb{R}^{n} }.
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Then for \mathcal{Q}\in \mathcal{Y}^{n} we define \mathcal{T}_{\mathcal{Q}} : L_{1\mathrm{o}\mathrm{c}}^{1}(\mathbb{R}^{n})\rightarrow L_{1\mathrm{o}\mathrm{c}}^{1}() by

T_{Q}f:=\displaystyle \sum_{Q\in \mathcal{Q}}$\chi$_{Q}M_{Q}f,
where M_{Q}f:=-Q|f(x)|dx.

Let U\subset \mathbb{R}^{n} be an open set. We say that $\varphi$_{p} \in \mathcal{A}(U) if there

exists K>0 such that \Vert$\chi$_{U}\mathcal{T}_{\mathcal{Q}}(f$\chi$_{U})\Vert_{L^{p(\cdot)}(U)}\leq K\Vert f$\chi$_{U}\Vert_{L^{p(\cdot)}(U)} for all

\mathcal{Q}\in \mathcal{Y}^{n} and all f\in L^{p} (\mathbb{R}^{n}) . The smallest constant K is called the

\mathcal{A}(U) ‐constant of $\varphi$_{p}

Note that Assumption 3.1 implies that $\varphi$_{p} \in \mathcal{A}(\mathbb{H}) . The condi‐

tion $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) is closely related to the Muckenhoupt classes for

weighted Lebesgue space, see the remarks after Definition 3.1 in [Die05].
The following characterization is due to Diening.

Theorem 3.5 (Theorem 8.1, [Die05]). Let p\in \mathcal{P}(\mathbb{R}^{n}) with  1<p^{-}\leq
 p^{+}<\infty . The following are equivalent

(a) $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) .

(b) M is bounded on L^{p} (\mathbb{R}^{n}) .

\underline{p(\cdot)}

(c) M is continuous on Lq(\mathbb{R}^{n}) for some q>1(^{ $\zeta$(}left‐openness�).
(d) $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) .

(e) M is bounded on L^{p} (\mathbb{R}^{)}.
So instead of proving the boundedness of M on L^{p} (\mathbb{R}^{n}) for our

extended variable exponent p ,
it suffices to prove the simpler condi‐

tion $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) . The assumptions in Theorem 3.5 are the reason

that we exclude the case  p^{+}=\infty in Theorem 3.3. On the other hand

we get additionally the boundedness of  M on L^{p} (\mathbb{R}^{n}) and for this

 p^{+}<\infty is necessary.

Remark 3.6. If  p\in \mathcal{P}(\mathbb{R}^{n}) is constant outside a large ball, then it has

been shown by Kopaliani [Kop07] that the condition $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) can

be simplified. Instead of the boundedness of the T_{\mathcal{Q}} for all \mathcal{Q}\in \mathcal{Y}^{n} it is

enough to verify the boundedness of the T_{\{Q\}} ,
where the \{Q\} are just

the families consisting of one single cube.

3.2. Boundedness of T_{\mathcal{W}_{2}} . In order to apply Theorem 3.5 we have

to show that $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) . In particular, we have to show that the

averaging operators T_{\mathcal{Q}} are bounded on L^{p} (\mathbb{R}^{n}) uniformly in \mathcal{Q}\in \mathcal{Y}^{d}.
As a crucial step we begin with the boundedness of \mathcal{T}_{\mathcal{W}_{2}} . It will be an

important tool for the general case.

The idea is the following. First, we take the average on the left

side -\mathbb{H} but evaluate them on the right side \mathbb{H} . Second, we show how
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to tranfer these averages back to the left side -\mathbb{H} . In particular, our

proof for the boundedness of T_{\mathcal{W}_{1}} will look as follows

(3.5) \displaystyle \Vert\sum_{W\in \mathcal{W}_{1}}$\chi$_{W}M_{W}f\Vert \leq c\Vert\sum_{W\in \mathcal{W}_{1}}$\chi$_{W}*M_{W}f\Vert \leq c\Vert f\Vert_{p(\cdot)}.
p p

We explain both step in (3.5) separately. Let us begin with the second

part of (3.5). We will need the following assertion from [DHHMS09,
Lemma 6.1].

Lemma 3.7. For a cube Q\subset \mathbb{R}^{n} and p\in \mathcal{P}(Q) holds

(3.6) (\displaystyle \frac{t}{2})^{p_{Q}}\leq\int_{Q}t^{p(y)}dy
for all t\geq 0.

For p\in \mathcal{P}(\mathbb{R}^{n}) and a cube Q\subset \mathbb{R}^{n} we define

M_{Q}$\varphi$_{p} (t):=\displaystyle \int_{Q}$\varphi$_{p(x)}(t)dx=\int_{Q}t^{p(x)}dx.
for t\geq 0 . Analgously, we define M_{Q}$\varphi$_{p}^{*} (t)=-_{Q}$\varphi$_{p(x)}^{*}(t)dx . Then

t\mapsto M_{Q}$\varphi$_{p}^{*} (t) is a  $\varphi$‐function. We denote its complementary function

by (M_{Q}$\varphi$_{p(\cdot)}^{*})^{*} . It was proved in [Kop07] and [Die07, Lemma 4.6] that

(3.7) (M_{Q}$\varphi$_{p(\cdot)}^{*})^{*}(t)=f:M_{Q}f=tinf \displaystyle \int_{Q}|f(x)|^{p(x)}dx
and

(3.8) (M_{Q}$\varphi$_{p(\cdot)}^{*})^{*}(\displaystyle \frac{t}{2})\leq t^{p_{Q}}\leq M_{Q}$\varphi$_{p}(2t)
for all t\geq 0.

Let us get back to the proof of the second part of (3.5). Let  f\in
 L^{p} (-\mathbb{H}) with \Vert f\Vert_{p(\cdot)}\leq 1 ,

so \displaystyle \int|f(x)|^{p(x)}dx\leq 1 . First, we decompose

f into functions f_{W}\in L^{p} (W) such that f=\displaystyle \sum_{W\in \mathcal{W}_{2}}f_{W} and

\displaystyle \sum_{W\in \mathcal{W}_{2}}\int_{W}|f_{W}(x)|^{p_{5W^{*}}}dx\leq c.
This is possible, since the extension of p ensures

(3.9) \displaystyle \min |f(x)|^{p_{5W^{*}}}\leq|f(x)|^{p(x)}
w\in \mathcal{W}_{2}:x\in W
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Then (3.8) and Jensen�s inequality imply

\displaystyle \sum |5W|(M_{5W^{*$\varphi$_{p(\cdot)}^{*}}})^{*}(\frac{1}{2}M_{5W}f_{W})
W\in \mathcal{W}_{2}

\displaystyle \leq c \sum |5W|(M_{5W}f_{W})^{p_{5W^{*}}}\leq c.
W\in \mathcal{W}_{2}

Now, $\varphi$_{p} \in \mathcal{A}(\mathbb{H}) (by Assumption 3.1) together with the characteri‐

zation (3.7) imply that

\displaystyle \sum |5W|(M_{5W^{*$\varphi$_{p}}} (\frac{1}{2}M_{5W}f_{W})\leq c.
W\in \mathcal{W}_{2}

This step is in detail explained in [Die05, Theorem 4.2]. Therefore,

\displaystyle \int_{\mathbb{R}^{n}}(\sum_{W\in \mathcal{W}_{2}}$\chi$_{5W}*M_{5W}f_{W})^{p(x)}dx\leq c.
The construction of the f_{W} finally ensures that

\displaystyle \int_{\mathbb{R}^{n}}(\sum_{W\in \mathcal{W}_{2}}$\chi$_{W}*M_{W}f)^{p(x)}dx\leq c.
This proves the second part of (3.5). Let us summarize that the main

ingredient in the proof was (3.8). It is important for (3.8) that p_{5W^{*}} is

defined via the reciprocal mean value of p ,
see (3.3).

The proof of the first part of (3.5) relies on the following important
fact: The mapping \displaystyle \frac{1}{q}\mapsto qt^{q} is convex for any t>0 . This and the

definition of p immediately imply that

\displaystyle \frac{1}{p(x)}t^{p(x)}\leq \sum$\eta$_{W}(x)\frac{1}{p_{5W^{*}}}t^{p_{5W^{*}}}W\in \mathcal{W}_{2}

The left hand side of this estimate corresponds to \displaystyle \sum_{W\in \mathcal{W}_{2}}$\chi$_{W}(x)t^{p(x)}
and the right hand side to \displaystyle \sum_{W\in \mathcal{W}_{2}}$\chi$_{\frac{1}{2}W^{*}}(x)t^{p(x)} . The rest of the proof
of (3.5) is straightforward.

3.3. Proof of Class \mathcal{A} . Let us now explain how to prove the bound‐

edness of T_{\mathcal{Q}} for general \mathcal{Q}\in \mathcal{Y}^{n} . First of all, it is important to realize

that we have to distinguish two cases of cubes. Such cubes with are

small compared to the cubes of our Whitney decompositions \mathcal{W}_{1} and

\mathcal{W}_{2} and the other cubes which are called big cubes.
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Definition 3.8. Let \mathcal{Q}\in \mathcal{Y}^{n}.

(a) A cube Q\in \mathcal{Q} is called small, if there exists W\in \mathcal{W}_{1}\cup \mathcal{W}_{2} such

that Q\subset W . We define

\mathcal{Q}_{1,small}:=\{Q\in \mathcal{Q} : \exists W\in \mathcal{W}_{1} with Q\subset W\},

\mathcal{Q}_{2,small}:=\{Q\in \mathcal{Q} : \exists W\in \mathcal{W}_{2} with Q\subset W\},
\mathcal{Q}_{small}:=\mathcal{Q}_{1,small}\cup \mathcal{Q}_{2,smah}.

(b) A cube Q\in \mathcal{Q} is called big, if it is not small.

Qig :=\mathcal{Q}\backslash \mathcal{Q}_{small}.

We will see later that big cubes are automatically close to \partial \mathbb{H} with

respect to their size. But let us concentrate in the first step on small

cubes. The family \mathcal{Q} 1,small is no problem, since these cubes are com‐

pletely inside \mathbb{H} and therefore the continuity of T_{\mathcal{Q}_{1,\mathrm{s}\mathrm{m}\mathrm{a}11}} is guaranteed
by Assumption 3.1.

3.4. Small cubes. So let Q\in \mathcal{Q}_{2,\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}1} . Then Q is contained in some

W_{Q}\in \mathcal{W}_{2} . If Q\displaystyle \subset\frac{1}{2}W_{Q} ,
then p is constant on Q (namely p=p_{5W_{Q}^{*}} )

and we are in the case of a constant exponent which is quite simple.
But if Q lies more at the boundary of W_{Q} ,

then p is variable. For

example if Z\in \mathcal{W}_{2} is another cube with Q\subset Z ,
then p varies on Q

between p_{5W_{Q}^{*}} and p_{5Z^{*}} . However, the regularity of p depends mostly
on the local regularity of the partition of unity $\eta$_{W} . So the bigger W_{Q} is,
the more regular p is on W_{Q} and Q . Certainly, the regularity of p on Q
also depends on |\displaystyle \frac{1}{p_{5W_{Q}^{*}}}-\frac{1}{p_{5Z^{*}}}| ,

but we will see that this difference is

rather nice. Indeed, the following Proposition 3.9 shows that oscillation

of \displaystyle \frac{1}{p} has a similar behaviour than \log‐Hölder continuous functions if

averaging operators over single cubes are bounded.

Proposition 3.9. Let  s\in \mathcal{P}(\mathbb{R}^{n}) , K>0 ,
and let Q\subset \mathbb{R}^{n} be an

arbitrary cube such that \Vert$\chi$_{Q}M_{Q}f\Vert_{s(\cdot)}\leq K\Vert f\Vert_{s(\cdot)} for all f\in L^{s} (\mathbb{R}^{n}) .

Then

(3.10) \displaystyle \int_{Q}\int_{Q}|\frac{1}{s(y)}-\frac{1}{s(z)}|dydz\leq\frac{\ln(40K^{2})}{\ln(e+|Q|+\frac{1}{|Q|})}.



EXTENSIONS IN SPACES WITH VARIABLE EXPONENTS 13

Proof. Note that T_{\{Q\}}f:=$\chi$_{Q}M_{Q}f . So by assumption \Vert T_{\{Q\}}f\Vert_{p(\cdot)}\leq
 K\Vert f\Vert_{p(\cdot)} for all f\in L^{p} (\mathbb{R}^{n}) . Therefore, we get

\displaystyle \Vert T_{\{Q\}g}\Vert_{p'(\cdot)}\leq 2\Vert h\Vert_{p(\cdot)}\leq 1\sup\int_{Q}T_{\{Q\}}g|h|dx
=2\displaystyle \Vert h\Vert_{p(\cdot)}\leq 1\sup\int_{Q}|g|T_{\{Q\}}hdx
\leq 2K\Vert g\Vert_{p'(\cdot)},

for all g\in L^{p} (Q) ,
where we have used in the first step the character‐

ization of the dual space of L^{p}
,

see Lemma 2.9 [Die07].
Define f:=$\chi$_{Q}|Q|^{-1/p} and u:=$\chi$_{Q}|Q|^{-1/p'} . Then $\rho$_{p} (f)\leq 1

and $\rho$_{p} (u)\leq 1 ,
which implies \Vert f\Vert_{p(\cdot)}\leq 1 and \Vert u\Vert_{p(\cdot)}\leq 1 . So with

Hölder�s inequality and the continuity of T_{\mathcal{Q}} ,
we get

|Q|M_{Q}fM_{Q}g=\displaystyle \int_{\mathbb{R}^{n}}$\chi$_{Q}M_{Q}fM_{Q}gdx
\leq 2\Vert T_{\{Q\}}f\Vert_{p(\cdot)}\Vert T_{\{Q\}}u\Vert_{p'(\cdot)}
\leq 4K^{2}\Vert f\Vert_{p(\cdot)}\Vert u\Vert_{p'(\cdot)}
\leq 4K^{2}

By definition of f and u this implies

\displaystyle \int_{Q}\int_{Q}|Q|^{-\frac{1}{p(y)}+\frac{1}{p(z)}}dydz\leq 4K^{2}
By symmetry in y and z we get

\displaystyle \int_{Q}\int_{Q}\max\{|Q||\frac{1}{p(y)}-\frac{1}{p(z)}|, |Q|^{-1\frac{1}{p(y)}-\frac{1}{p(z)}}|\}dydz\leq 8K^{2}
Since maxt, 1/t} \geq c(e+t+1/t) for all t>0 ,

we get

\displaystyle \int_{Q}\int_{Q}(e+|Q|+\frac{1}{|Q|})^{|\frac{1}{p(y)}-\frac{1}{p(z)}|}dydz\leq 40K^{2}
The mapping s\mapsto(e+|Q|+1/|Q|)^{s} is convex, so by Jensen�s inequality
we get

(e+|Q|+\displaystyle \frac{1}{|Q|})^{-_{Q}-_{Q}|\frac{1}{p(y)}-\frac{1}{p(z)}|dyd\mathrm{z}}\leq 40K^{2}
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Taking the logarithm proves the claim. \square 

Remark 3.10. As we have mentioned above (see [Ler05] and [Die05]),
\log ‐Hölder continuity of \displaystyle \frac{1}{p} is not necessary for the boundedness of the

maximal operator M. However, Propositon 3.9 shows that the bound‐

edness of M implies that the oscillations of \displaystyle \frac{1}{p} satisfy the same esti‐

mates as a \log ‐Hölder continuous function. Since \displaystyle \int_{0}^{1}\frac{1}{t\ln(e+t)}dt=\infty,
it follows from [Spa65] that the estimates for the oscillations do not

imply the corresponding Hölder estimates. Note that the construction

by Lerner [Ler05] of a discontinuous, variable exponent p such that the

maximal operator M is bounded on L^{p} (\mathbb{R}^{n}) is based on oscillation

estimates similar to (3.10).

Propositon 3.9 and the properties of the decomposition of unity can

be used to deduce the following interesting result.

Lemma 3.11. Let W\in \mathcal{W}_{2} . Then there exists q\in \mathcal{P}^{\ln}(\mathbb{R}^{n}) with p=q

on W, q=p_{5W^{*}} on \mathbb{R}^{n}\backslash (5W) such that the \log ‐Hölder constant of  q

only depends on the \mathcal{A}(\mathbb{H}) ‐constant of p.

So for our small cube  Q\in \mathcal{Q} 1,small we can use the known results for

\log‐Hölder continuous exponents. In particular, we can use Proposi‐
tion 2.2 and related results. As a minor modification of Lemma 3.3

of [DHHMS09] we get the following result.

Lemma 3.12. Let  q\in \mathcal{P}^{\ln}(\mathbb{R}^{n}) with  1<q^{-}\leq q^{+}<\infty . Then there

exist constants  $\beta$, K>0 (only depending on q^{-}, q^{+} ,
and the \log ‐Hölder

constant of \displaystyle \frac{1}{q} ) such that for all f\in L^{p} (\mathbb{R}^{n}) with \Vert f\Vert_{p(\cdot)}\leq 1 ,
all cubes

Z\subset \mathbb{R}^{n} with M_{Z}f\geq 1 holds

(3.11) \displaystyle \int_{Z}(M_{Z}f)^{q(x)}dx\leq K\int_{Z}|f(x)|^{q(x)}dx.
Note that Lemma 3.3 of [DHHMS09] has an additional +1 on the

right hand side of (3.11) but does not require the assumption M_{Q}f>1.
The idea is that if M_{Q}f>1 ,

then \displaystyle \int_{Z}|f(x)|^{q(x)}dx\geq c ,
so we can omit

the +1 on the right hand side of (3.11).
Based on (3.7) it has been shown in [Die05, Theorem 4.2] and [Die07,

Theorem 4.17] that $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) if and only if for all families \mathcal{Z}\in \mathcal{Y}^{n}
of disjoint cubes

\displaystyle \sum_{Z\in \mathcal{Z}}|Z|(M_{z$\varphi$_{p(\cdot)}^{*}})^{*}(t_{Z})\leq 1
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implies

\displaystyle \sum_{Z\in \mathcal{Z}}|Z|(M_{Z}$\varphi$_{p(\cdot)})(ct_{Z})\leq 1
for all families t_{Z}\geq 0 . Due to (W4) the cubes Z\in \mathcal{Z} in the formulas

above can be replaced by 25Z . Based on these estimate it follows

exactly as in [Die05, (8.24)] and [Die07, Theorem 4.54] that there exists

a constant K>0 and a family b_{W}\geq 0 for W\in \mathcal{W}_{1} with

(3.12) \displaystyle \sum_{W\in \mathcal{W}_{1}}|W|b_{W}\leq c
such that for all t\geq 0 with |W|(M_{125W}$\varphi$_{p(\cdot)}^{*})^{*}(t)\leq 1\mathrm{o}\mathrm{r}(!)t\leq 1 holds

(3.13) (M_{125W}$\varphi$_{p(\cdot)})(t)\leq K(M_{125W}$\varphi$_{p}^{*})^{*}(t)+b_{W}.

If |W|(M_{25W}$\varphi$_{p(\cdot)}^{*})^{*}(t)\leq 1 and t\geq 1 ,
then additionally

(3.14) (M_{125W}$\varphi$_{p(\cdot)})(t)\leq K(M_{125W}$\varphi$_{p}^{*})^{*}(t) .

Note that b and K also depends only p^{-} and p^{+} and the \mathcal{A}(\mathbb{H}) ‐constant

of $\varphi$_{p} (which depends on (3.1)). Based on (3.13) and (3.14) we are

able to show the boundedness of \mathcal{T}_{\mathcal{Q}_{2,\mathrm{s}\mathrm{m}\mathrm{a}11}}.

Lemma 3.13. There holds

\Vert T_{\mathcal{Q}_{2,small}}f\Vert_{p(\cdot)}\leq c\Vert f\Vert_{p(\cdot)}.
The idea hereby is the following. First, we use Lemma 3.12 for

Q\in \mathcal{Q}_{2,\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}1} with M_{Q}f\geq 1 . So the additional regularity of p on -\mathbb{H}

is quite crucial for our proof. Second, we use (3.13) for Q\in \mathcal{Q}_{2,\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}1}
with M_{Q}f<1 and

(M_{125Z^{*$\varphi$_{p}^{*}}} *(t)\leq c\mathrm{i}\mathrm{n}\mathrm{f}t^{p(x)}x\in W

for all t\geq 0 and all Z, W\in \mathcal{Z} with Z\cap W\neq\emptyset.
Together with the boundedness of T_{\mathcal{Q}_{1,\mathrm{s}\mathrm{m}\mathrm{a}11}} we get the boundedness

of T_{\mathcal{Q}_{\mathrm{s}\mathrm{m}\mathrm{a}11}} on L^{p} () .

Corollary 3.14. There holds

\Vert T_{\mathcal{Q}_{small}}f\Vert_{p(\cdot)}\leq c\Vert f\Vert_{p(\cdot)}.



16 L. DIENING, S. FRÖSCHL

3.5. Big cubes. Let us now turn to the boundedness of T_{\mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}} . Since

the Q\in \mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}} are covered by the familiy \displaystyle \{\frac{16}{17}W\}_{W\in \mathcal{W}_{1}\cup \mathcal{W}_{2}} but are con‐

tained in none of the W\in \mathcal{W}_{1}\cup \mathcal{W}_{2} ,
it follows easily that

(3.15) dist (x, \partial \mathbb{H})\leq c\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(Q) ,

for all Q\in \mathrm{Q}_{\mathrm{i}\mathrm{g}} and x\in Q . Moreover, if Q\in \mathrm{Q}_{\mathrm{i}\mathrm{g}} and W\in \mathcal{W}_{1}\cup \mathcal{W}_{2}
with \displaystyle \frac{16}{17}W\cap Q\neq\emptyset ,

then  W\subset $\gamma$ Q for some  $\gamma$>0 (independent of W

and Q) .

For Q\in \mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}} we define

 Q^{\#}:=W^{*}W\displaystyle \in \mathcal{W}_{2}:\frac{\bigcup_{16}}{17}W\cap Q\neq\emptyset
Note that  Q^{\#}\subset \mathbb{H} ,

since W^{*}\subset \mathbb{H} for W\in \mathcal{W}_{2} . Moreover, if Q\in \mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}},
then Q^{\#}\subset$\gamma$_{2}Q for some $\gamma$_{2}>0 (independent of Q ). So the sets Q and

Q^{\#} have a similar size and are both close to the boundary with respect
to the size of Q . Hence, Q^{\#} can be interpreted as a reflection of Q,
although it is not a cube itself.

We want to show the following result

Lemma 3.15. There holds

\Vert T_{\mathcal{Q}_{big}}(f$\chi$_{\mathbb{H}})\Vert_{p(\cdot)}\leq c\Vert f$\chi$_{\mathbb{H}}\Vert_{p(\cdot)}
for all f\in L^{p} (\mathbb{R}^{n}) .

The proof of this result is split into several parts.

(3.16) \Vert$\chi$_{\mathbb{H}}T_{\mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}}(f$\chi$_{\mathbb{H}})\Vert_{p(\cdot)}\leq c\Vert f\Vert_{p(\cdot)},
(3.17) \Vert$\chi$_{\mathbb{H}}T_{\mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}}(f$\chi$_{-\mathbb{H}})\Vert_{p(\cdot)}\leq c\Vert f\Vert_{p(\cdot)},
(3.18) \Vert$\chi$_{-\mathbb{H}}T_{\mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}}(f$\chi$_{\mathbb{H}})\Vert_{p(\cdot)}\leq c\Vert f\Vert_{p(\cdot)},
(3.19) \Vert$\chi$_{-\mathbb{H}}T_{\mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}}(f$\chi$_{-\mathbb{H}})\Vert_{p(\cdot)}\leq c\Vert f\Vert_{p(\cdot)}.
The validity of (3.16) follows immediately from Assumption 3.1 but the

other estimate require some work. Let us explain the proof for (3.19),
since the others work similarily. The idea is to shift the averages M_{Q}f
from -\mathbb{H} to \mathbb{H} by means of the following estimate

\displaystyle \Vert$\chi$_{-\mathbb{H}}\sum_{Q\in \mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}}$\chi$_{Q}M_{Q}(f$\chi$_{-\mathbb{H}})\Vert_{p} \leq c\Vert$\chi$_{\mathbb{H}}\sum_{Q\in \mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}}$\chi$_{Q\#}M_{Q}(f$\chi$_{-\mathbb{H}})\Vert_{p}
Now, that we are on \mathbb{H} we can use the pointwise estimate

$\chi$_{Q\#}M_{Q}(f$\chi$_{-\mathbb{H}})\displaystyle \leq c$\chi$_{\mathbb{H}}M(\sum_{W\in \mathcal{W}_{2}}$\chi$_{W}*M_{W}(f$\chi$_{-\mathbb{H}}))
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and our Assumption 3.1 to get the estimate

\displaystyle \Vert x_{-\mathbb{H}}\sum_{Q\in \mathcal{Q}_{\mathrm{b}\mathrm{i}\mathrm{g}}}$\chi$_{Q}M_{Q}(fx_{-\mathbb{H}})\Vert_{p} \leq c\Vert\sum_{W\in \mathcal{W}_{2}}$\chi$_{W}*M_{W}(f $\chi$-\mathbb{H})\Vert_{p}
The boundedness of T_{\mathcal{W}_{1}} finally implies (3.19).

Overall, we have shown the following result.

Theorem 3.16. Let \mathcal{Q}\in \mathcal{Y}^{n} . Then

\Vert T_{\mathcal{Q}}f\Vert_{p(\cdot)}\leq c\Vert f\Vert_{p(\cdot)}
for all f\in L^{p} (\mathbb{R}^{n}) ,

where c only depends on p^{-}, p^{+} ,
and the constant

in (3.1). In particular, $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) .

Now, our main result follows easily.

Proof of Theorem 3.3. Due to Theorem 3.16 we know that our ex‐

tended variable exponent satisfies $\varphi$_{p} \in \mathcal{A}(\mathbb{R}^{n}) . So the boundedness

of M on L^{p} (\mathbb{R}^{n}) follows by the characterization in Theorem 3.5. \square 

Appendix

In this appendix we construct a Whitney decomposition as needed

in Section 3.1 to ensure the properties see (W1)(W7).
For a given cube Q in \mathbb{R}^{n} we denote by \ell(Q) its length. We say that

Q is dyadic, if it is of the form 2^{-k}m+[0, 2^{-k}]^{n} for some k\in \mathbb{Z} and

m\in \mathbb{Z}^{n} . In particular, our dyadic cubes are closed.

The following proposition is a slight modification of the proposition
in Appendix \mathrm{J} of [Gra04]. Since our constants are slightly sharper, we

include a proof.

Proposition 3.17. Let  $\Omega$ be an open nonempty proper subset of \mathbb{R}^{n}.

Then there exists a countable family \mathcal{F} of closed, dyadic cubes such that

(A1) \displaystyle \bigcup_{Q\in \mathcal{F}}Q= $\Omega$ and the  Q\in \mathcal{F} have disjoint interiors.

(A2)\sqrt{n}\ell(Q)< dist ( Q, $\Omega$^{\mathrm{C}})\leq 4\sqrt{n}\ell(Q) for all Q\in \mathcal{F}.
(A3) If Q, Q'\in \mathcal{F} intersect, then

\displaystyle \frac{1}{2}\leq\frac{\ell(Q)}{\ell(Q')}\leq 2.
(A4) For given Q\in \mathcal{F} , there exists at most 4^{n}-2^{n} cubes Q'\in \mathcal{F}

touching Q (boundaries intersect but not the interiors).
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Proof. Let \mathcal{D}_{m} denote the collection of all dyadic cubes of length 2^{-m}.

Each cube in \mathcal{D}_{m} gives rise to 2^{n} cubes in \mathcal{D}_{m+1} by bisecting each side.

Decompose  $\Omega$ into the sets

 $\Omega$_{m}:=\{x\in $\Omega$ : 2\sqrt{n}2^{-m}< dist ( x, $\Omega$^{\mathrm{C}})\leq 4\sqrt{n}2^{-m}\}
for m\in \mathbb{Z} . Let \mathcal{F}_{m}:=\{Q\in \mathcal{D}_{m} : Q\cap$\Omega$_{m}\neq\emptyset\} for m\in \mathbb{Z} and \mathcal{F}':=

\displaystyle \bigcup_{m\in \mathbb{Z}}\mathcal{F}_{m} . Let Q\in \mathcal{F}_{m} and x\in Q\cap$\Omega$_{m} . Then

\sqrt{n}2^{-m}< dist (x, $\Omega$^{\mathrm{C}})-\sqrt{n}2^{-m}\leq dist (Q, $\Omega$^{\mathrm{C}})
\leq dist (x, $\Omega$^{\mathrm{C}})\leq 4\sqrt{n}2^{-m}

This proves (A2) for every Q\in \mathcal{F}'.
Next we observe that \displaystyle \bigcup_{Q\in \mathcal{F}},  Q= $\Omega$ . Indeed, every  Q\in \mathcal{F}' is con‐

tained in  $\Omega$ and every  x\in $\Omega$ is contained in some  $\Omega$_{m} and in some

dyadic cube Q\in \mathcal{D}_{m}.
Unfortunately, the cubes in the collection \mathcal{F}' may not be disjoint and

we need to eliminate the cubes that are contained in some other cubes

of the collection. Observe that two dyadic cubes have either disjoint
interiors or one contains the other. On the other hand if Q\in \mathcal{F}' ,

then

by condition (A2) the cubes of \mathcal{F} containing Q cannot be arbitrary
large. Therefore, we can define for each Q\in \mathcal{F}' a unique maximal

dyadic cube Q^{\max}\in \mathcal{F}' that is contained in no other cube of \mathcal{F} and

that contains Q . Now set \mathcal{F} :=\{Q^{\max} : Q\in \mathcal{F} By maximality two

different cubes of \mathcal{F} have disjoint interiors. We still have \displaystyle \bigcup_{Q\in \mathcal{F}}Q= $\Omega$.
This proves (A1) for the familiy \mathcal{F}.

Let us now prove (A3). If Q, Q'\in \mathcal{F} with  Q\cap Q'\neq\emptyset ,
then using (A2)

we estimate

\sqrt{n}\ell(Q)< dist (Q, $\Omega$^{\mathrm{C}})\leq dist (Q, Q')+ dist ( Q', $\Omega$^{\mathrm{C}})
\leq 0+4\sqrt{n}\ell(Q') .

Thus, \ell(Q)<4\ell(Q') . Since \ell(Q) and \ell(Q) are of the special form

2^{-m_{1}} and 2^{-m_{2}}
, respectively, for some m_{1}, m_{2}\in \mathbb{Z} ,

we get the stricter

estimate \ell(Q)\leq 2\ell(Q') . This proves (A3).
Let Q\in \mathcal{F} . Then Q\in \mathcal{D}_{m} for some m\in \mathbb{Z} . Due to (A3) every cube

from \mathcal{F} touching Q contains at least one cube from \mathcal{D}_{m+1} touching Q.
Since there are exactly 4^{n}-2^{n} cubes from \mathcal{D}_{m+1} touching Q ,

there are

also at most 4^{n}-2^{n} cubes from \mathcal{F} touching Q. \square 

Corollary 3.18. Let  $\Omega$ be an open nonempty proper subset of \mathbb{R}^{n}.

Then there exists a family \mathcal{W} of open cubes such that

(B1) \displaystyle \bigcup_{W\in \mathcal{W}}\frac{16}{17}W=\bigcup_{W\in \mathcal{W}}125W= $\Omega$.
(B2) \displaystyle \frac{1}{2}W\cap\frac{1}{2}Z=\emptyset for all  W, Z\in \mathcal{W} with W\neq Z.
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(B3) If W, W'\in \mathcal{W} intersect, then W\subset 5W' and W'\subset 5W.

(B4) The family 125\mathcal{W} can be written as the finite union of at most

256^{n} pairwise disjoint families of cubes.

(B5) \displaystyle \sum_{W\in \mathcal{W}}$\chi$_{125W}\leq 256^{n}.
(B6) There holds

(256-\displaystyle \frac{1}{8})\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(W)< dist ( W, \partial $\Omega$)\leq 1024\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(W)

for every W\in \mathcal{W}.

Proof. Let \mathcal{F} denote the family of closed dyadic cubes of Proposi‐
tion 3.17. Let \mathcal{F}^{\#} denote the family of closed dyadic cubes that we get
if we slit every cube of \mathcal{F} by repeated bisection into 256^{n} closed dyadic
cubes of length \displaystyle \frac{1}{256}\ell(Q_{j}) . The new family still satisfies (A1), (A3), and

(A4) of Proposition 3.17, but (A2) has to be replaced by

(\mathrm{A}2\mathrm{b})256\sqrt{n}\ell(Q)< dist ( Q, $\Omega$^{\mathrm{C}})\leq 1024\sqrt{n}\ell(Q)
for all  Q\in \mathcal{F}\# . For  Q\in \mathcal{F}\# define  W_{Q}:=\displaystyle \frac{9}{8}\mathrm{i}\mathrm{n}\mathrm{t}(Q) ,

where int (Q)
denotes the interior of Q . Let \mathcal{W}:=\{W_{Q} : Q\in \mathcal{F}\#\} . Then it follows

easily from (A1) and (\mathrm{A}2\mathrm{b}) that \mathcal{W} satisfies (B1), (B2), and (B6).
We claim that

(3.20) (W_{Q}\cap W_{P}\neq\emptyset and  P\neq Q) \Rightarrow  Q and P touch

for all Q,  P\in \mathcal{F}\# . Due to (A3)  Q is completely surrounded by a belt

of cubes of length at least \displaystyle \frac{1}{2}\ell(Q) . So \displaystyle \frac{9}{8}Q can only penetrate the first

quarter of this belt. This together with the same consideration for \displaystyle \frac{9}{8}P
implies that \displaystyle \frac{9}{8}Q and \displaystyle \frac{9}{8}P can only intersect if P is one of the cubes in

the belt around Q . In particular, Q and P touch, which proves (3.20).
Let us prove (B3). Let Q,  P\in \mathcal{F}\# with  W_{Q}\cap W_{P}\neq\emptyset . Then

by (3.20)  Q and P touch. Now it follows with \ell(P)\leq 2(Q) that

P\subset 5Q and W_{P}\subset 5W_{Q} . This proves (B3).
It remains to prove (B4) and (B5). In the construction of \mathcal{F}\# have

split every cube  Q into 256^{n} closed dyadic cubes of length \displaystyle \frac{1}{256}\ell(Q) .

We can sort these cubes lexicographically by the coordinates of its

center. Now, let us place each subcube according to its position in the

sorted list into the families \mathcal{F}_{1} ,
. . .

, \mathcal{F}_{256^{n}} . In particular, we use up to

translation and scaling for every splitting the same order of numbering,
e.g. the

(

(\mathrm{t}\mathrm{o}\mathrm{p}‐left‐most� subcube has always the same index from the

sorting. We claim that

(3.21) ( P_{j}, Q_{j}\in \mathcal{F}_{j} and P_{j}\neq Q_{j} ) \Rightarrow  W_{P_{j}}\cap W_{Q_{j}}=\emptyset
for  j\in\{1 ,

. . .

,
256 \} . Indeed, let P, Q\in \mathcal{F} and let P_{j}, Q_{j}\in \mathcal{F}_{j} be

the subcubes of P, Q with the same number. Since P_{j}\neq Q_{j} ,
we have
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P\neq Q by construction ot the \mathcal{F}_{j} . It is easy to see that (3.21) holds

if P and Q do not touch, so let us concentrate on the case, where P

and Q touch. Without loss of generality \ell(Q)\geq\ell(P) and therefore

with (A3) \ell(P_{j})\leq\ell(Q_{j})\leq 2\ell(P_{j}) . By construction of the \mathcal{F}_{j} we have

d_{\infty}(P_{j}, Q_{j})\geq(256-1)\ell(P_{j}) ,
where d_{\infty} is the l^{\infty}‐metric and therefore

d_{\infty}(125W_{P_{j}}, 125W_{Q_{j}})=d_{\infty}(\displaystyle \frac{125\cdot 9}{8}P_{j}, \frac{125\cdot 9}{8}Q_{j})

\displaystyle \geq d_{\infty}(P_{j}, Q_{j})-(\frac{125\cdot 9}{8}-1)\frac{\ell(P_{j})}{2}-(\frac{125\cdot 9}{8}-1)\frac{\ell(Q_{j})}{2}
\displaystyle \geq(255-(\frac{125\cdot 9}{8}-1)\frac{1}{2}-(\frac{125\cdot 9}{8}-1))\ell(P_{j})=\frac{729}{16}\ell(P_{j})>0.

This proves (3.21). Thus  125W_{P_{j}}\cap 125W_{Q_{j}}=\emptyset . Therefore each family
 125\mathcal{F}_{j} consists of pairwise disjoint cubes, which implies (B4). Now,
(B5) is an immediate consequence of (B4) \square 
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