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Abstract. We consider the sharp constants in a Brézis‐Gallouet‐Wainger type in‐

equality with a double logarithmic term in the Hölder space in a bounded domain in

R. Ibrahim, Majdoub and Masmoudi gave the sharp constant in the 2‐dimensional

case. We make precise estimates to give the sharp constants in the higher dimensions

n\geq 2 . Solving a minimizing problem of the L^{n}‐norm of the gradients in a ball with

a unilateral constraint plays an essential role for the proof of our results. When the

domain is a ball, we also show the existence of an extremal function of that inequality
with some suitable constants.
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1. Introduction and main results

This paper is based on the joint work with T. Sato and H. Wadade [9].
In this paper, we are mainly concerned with Brézis‐Gallouet‐Wainger type inequalities

with sharp constants to the embeddings of the critical Sobolev space W_{0}^{1,n}( $\Omega$) with the

aid of the homogeneous Hölder space \dot{C}^{ $\alpha$}( $\Omega$) for any bounded domain  $\Omega$ in \mathbb{R}^{n}, n\geq 2.

Here, \dot{C}^{ $\alpha$}( $\Omega$) denotes the subspace of the homogeneous Hölder space of order  $\alpha$ endowed

with the seminorm

\displaystyle \Vert u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)}=x,y\in $\Omega$\sup_{x\neq y}\frac{|u(x)-u(y)|}{|x-y|^{ $\alpha$}}
with 0< $\alpha$\leq 1.

First we recall the Sobolev embedding theorem. Namely, for s\geq 0 and 1<p<\infty,
the embedding W^{s,p}(\mathbb{R}^{n})\mapsto L(R) holds if

(i) 0\leq s<n/p and p\leq q\leq 1/(1/p-s/n) ,

(ii) s=n/p and p\leq q<\infty,

(iii) s>n/p and p\leq q\leq\infty.

In addition, if n/p<s<n/p+1 in (iii), then W^{s,p}(\mathbb{R}^{n})\mapsto\dot{C}^{ $\alpha$}(\mathrm{R}) holds with

 $\alpha$=s-n/p<1 . We also remark that W^{n/p,p}(R) cannot be embedded into L^{\infty}(\mathrm{R})
in the critical case (ii). However, with the partial aid of the W^{s,r}‐norm with s>n/r
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and  1\leq r\leq\infty ,
we can estimate the  L^{\infty} ‐norm by the W^{n/p,p}‐norm as follows:

(1.1) \Vert u\Vert_{L^{\infty}(\mathbb{R}^{n})}^{p/(p-1)}\leq C(1+\log(1+\Vert u\Vert_{W^{s,r}(\mathbb{R}^{n})}))
holds for all u\in W^{n/p,p}(\mathbb{R}^{n})\cap W^{s,r}(R) with \Vert u\Vert_{W^{n/p,p(\mathbb{R}^{n})}}=1 ,

which is known as the

Brézis‐Gallouet‐Wainger inequality. Originally, Brézis‐Gallouet [2] proved (1.1) for the

case n=p=r=s=2 . Later on, Brézis‐Wainger [3] obtained (1.1) for the general case,

and remarked that the power p/(p-1) in (1.1) is optimal in the sense that one cannot

replace it by any larger power. However, little is known about the sharp constants in

Brézis‐Gallouet‐Wainger type inequalities.
In the special case p=n ,

if  $\Omega$ is a domain in \mathbb{R}^{n} satisfying the strong local Lip‐
schitz condition, then the inequality (1.1) holds for all u\in W_{0}^{1,n}( $\Omega$)\cap W^{s,r}( $\Omega$) with

\Vert u\Vert_{W^{1,n}( $\Omega$)}=1 ,
where s>n/r,  1\leq r\leq\infty . If  s>0 and n/s<r<n/(s-1)_{+},

then the embedding W^{s,r}( $\Omega$)\mapsto\dot{C}^{ $\alpha$}( $\Omega$) holds with  $\alpha$=s-n/r ,
and we can consider a

slightly better inequality

(1.2) \Vert u\Vert_{L^{\infty}( $\Omega$)}^{n/(n-1)}\leq C(1+\log(1+\Vert u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)}))
for u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert u\Vert_{W^{1,n}( $\Omega$)}=1 ,

with 0< $\alpha$<1 . In the case n=2,

Ibrahim‐Majdoub‐Masmoudi [6] investigated the sharp constant in the inequality (1.2)
with  $\Omega$=B_{1} . Moreover, they also studied the crucial case more precisely as follows.

We remark that they also proved similar estimates on an arbitrary bounded domain  $\Omega$

in \mathbb{R}^{2} instead of B_{1} . Here, B_{1} denotes the unit open ball centered at the origin in \mathbb{R}^{n}

with n\geq 2.

Theorem \mathrm{A} (Ibrahim‐Majdoub‐Masmoudi [6, Theorems 1.3 and 1.4]). Let n=2 and

0< $\alpha$<1.

(i) If $\lambda$_{1}>1/(2 $\pi \alpha$) ,
then there exists a constant C>0 such that

(1.3) \Vert u\Vert_{L^{\infty}(B_{1})}^{2}\leq$\lambda$_{1}\log(\Vert u\Vert_{\dot{C}^{ $\alpha$}(B_{1})}+C)
holds for all u\in W_{0}^{1,2}(B_{1})\cap\dot{C}^{ $\alpha$}(B) with \Vert\nabla u\Vert_{L^{2}(B_{1})}=1 . Furthermore, if $\lambda$_{1}\leq

 1/(2 $\pi \alpha$) ,
then the inequality (1.3) does not hold for some u\in W_{0}^{1,2}(B_{1})\cap\dot{C}^{ $\alpha$}(B_{1})

with \Vert\nabla u\Vert_{L^{2}(B_{1})}=1.
(ii) If $\lambda$_{1}=1/(2 $\pi \alpha$) ,

then there exists a constant C>0 such that

(1.4) \Vert u\Vert_{L^{\infty}(B_{1})}^{2}\leq$\lambda$_{1}\log(e^{3}+C\Vert u\Vert_{\dot{C}^{ $\alpha$}(B_{1})}(\log(2e+\Vert u\Vert_{\dot{C}^{ $\alpha$}(B_{1})}))^{1/2})
holds for all u\in W_{0}^{1,2}(B_{1})\cap\dot{C}^{ $\alpha$}(B) with \Vert\nabla u\Vert_{L^{2}(B_{1})}=1 . Furthermore, if $\lambda$_{1}<

1/(2 $\pi \alpha$) ,
then the inequality (1.4) does not hold for some u\in W_{0}^{1,2}(B_{1})\cap\dot{C}^{ $\alpha$}(B_{1})

with \Vert\nabla u\Vert_{L^{2}(B_{1})}=1.

In this paper, in general dimensions n\geq 2 ,
we consider a similar inequality on an

arbitrary bounded domain  $\Omega$ in \mathbb{R}^{n} . Instead of the inequalities (1.3) and (1.4), we

introduce a new formulation of the inequality:

(1.5) \Vert u\Vert_{L\infty( $\Omega$)}^{n/(n-1)}\leq$\lambda$_{1}\log(1+\Vert u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)})+$\lambda$_{2}\log(1+\log(1+\Vert u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)}))+C
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for u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}() with \Vert\nabla u\Vert_{L^{n}( $\Omega$)}=1 . We are here concerned with the sharpness
of both constants $\lambda$_{1} and $\lambda$_{2} ,

where C is a constant which may depend on  $\Omega$,  $\alpha$, $\lambda$_{1} and

$\lambda$_{2} . We remark that the power n/(n-1) in (1.5) is also optimal in the sense that one

cannot replace it by any larger power (see also Remark 3.4 below).
Our main purpose is to show that  $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$ and  $\lambda$_{2}=$\Lambda$_{2}/ $\alpha$ are the sharp constants

in (1.5). Here, we define

 $\Lambda$_{1}=\displaystyle \frac{1}{$\omega$_{n-1}^{1/(n-1)}}, $\Lambda$_{2}=\frac{$\Lambda$_{1}}{n}=\frac{1}{n$\omega$_{n-1}^{1/(n-1)}}
and $\omega$_{n-1}=2$\pi$^{n/2}/ $\Gamma$(n/2) is the surface area of the unit sphere S^{n-1}=\{x\in \mathbb{R}^{n};|x|=
1\} . More precisely, we have the following theorems.

Theorem 1.1. Let n\geq 2, 0< $\alpha$\leq 1 and  $\Omega$ be a bounded domain in \mathbb{R}^{n} . Assume that

either

(I) $\lambda$_{1}>\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$} ( and $\lambda$_{2}\in \mathbb{R}) or (II) $\lambda$_{1}=\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$} and $\lambda$_{2}\displaystyle \geq\frac{$\Lambda$_{2}}{ $\alpha$}
holds. Then there exists a constant C such that the inequality (1.5) holds for all  u\in

 W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert\nabla u\Vert_{L^{n}( $\Omega$)}=1.

Theorem 1.2. Let n\geq 2, 0< $\alpha$\leq 1 and  $\Omega$ be a bounded domain in \mathbb{R}^{n} . Assume that

either

(III) $\lambda$_{1}<\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$} ( and $\lambda$_{2}\in \mathbb{R}) or (IV) $\lambda$_{1}=\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$} and $\lambda$_{2}<\displaystyle \frac{$\Lambda$_{2}}{ $\alpha$}
holds. Then for any constant C

,
the inequality (1.5) does not hold for some  u\in

 W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert\nabla u\Vert_{L^{n}( $\Omega$)}=1.

We are also interested in the existence of an extremal function of the inequality (1.5).
Here, for fixed $\lambda$_{1} and $\lambda$_{2} such that (1.5) holds, the supremum of

\Vert u\Vert_{L^{\infty}( $\Omega$)}^{n/(n-1)}-$\lambda$_{1}\log(1+\Vert u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)})-$\lambda$_{2}\log(1+\log(1+\Vert u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)}))
over \{u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$);\Vert\nabla u\Vert_{L^{n}( $\Omega$)}=1\} is called the best constant for (1.5), and u_{0}

is called an extremal function of (1.5) if u_{0} attains its supremum. Since the inequality
(1.5) corresponds to the critical embedding, we cannot expect any compactness property
for treating that maximizing problem, and it is difficult to ensure the existence of an

extremal function, in general. However, in the special case  $\Omega$=B_{1} ,
we can find an

extremal function in some cases.

Theorem 1.3. Let n\geq 2, 0< $\alpha$\leq 1 and  $\Omega$=B_{1} . Fix $\lambda$_{1}, $\lambda$_{2}\geq 0 satisfy ing the

assumption (I) or (II) in Theorem 1.1. If the best constant C for the inequality (1.5)
(with  $\Omega$=B_{1} ) is positive, then there exists an extremal function u_{0}\in W_{0}^{1,n}(B_{1})\cap\dot{C}^{ $\alpha$}(B_{1})
with \Vert\nabla u_{0}\Vert_{L^{n}(B_{1})}=1 of (1.5).

Now we give some remarks on our results. The following two remarks are concerned

with Theorems 1.1 and 1.2.
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Remark 1.4. (i) In our formulation of the problem, the behavior of the right hand side

as \Vert u\Vert_{C^{ $\alpha$}( $\Omega$)}\rightarrow\infty with the normalization \Vert\nabla u\Vert_{L^{n}( $\Omega$)}=1 is essential. In the inequality
(1.4) with $\lambda$_{1}=1/(2 $\pi \alpha$) (and n=2 ), the right hand side behaves like

\displaystyle \frac{1}{2 $\pi \alpha$}\log\Vert u\Vert_{\dot{C}^{ $\alpha$}(B_{1})}+\frac{1}{4 $\pi \alpha$}\log(\log\Vert u\Vert_{\dot{C}^{ $\alpha$}(B_{1})})+O(1)
as \Vert u\Vert_{C^{ $\alpha$}(B_{1})}\rightarrow\infty with the same normalization. Hence Theorem \mathrm{A} (ii) essentially
claims that Theorem 1.1 (II) holds in the case n=2 and  $\Omega$=B_{1} . Indeed, we can

derive Theorem \mathrm{A} (ii) from the special case of Theorem 1.1 (II). Similarly, Theorem \mathrm{A}

(i) essentially claims that Theorem 1.1 (I) and Theorem 1.2 (III) hold in the same case.

(ii) In Theorem \mathrm{A}
,
it is not mentioned whether the power 1/2 of the inner logarithmic

factor in the right hand side of (1.4) is optimal or not. On the other hand, we can assert

that the power 1/2 in (1.4) must be optimal by virtue of Theorem 1.2 (IV).

Remark 1.5. When we consider the inequality (1.5) without the double logarithmic
term, i.e., $\lambda$_{2}=0 ,

Theorem 1.1 (I) and Theorem 1.2 (III) claim that  $\Lambda$_{1}/ $\alpha$ is the sharp
constant for  $\lambda$_{1} ,

and (1.5) with  $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$ (and  $\lambda$_{2}=0 ) fails to hold by virtue of

Theorem 1.2 (IV). Hence, only in this case, it is essentially meaningful to consider the

inequality with the double logarithmic term. Then Theorem 1.1 (II) and Theorem 1.2

(IV) claim that  $\Lambda$_{2}/ $\alpha$ is the sharp constant for  $\lambda$_{2} in the case  $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$ ,
and (1.5)

holds with these sharp constants. Therefore, even in the crucial case  $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$ and

 $\lambda$_{2}=$\Lambda$_{2}/ $\alpha$ ,
it is essentially meaningless to consider an inequality with any weaker term

such as the triple logarithmic term; see also Remark 3.5 below.

The following remark is concerned with Theorem 1.3.

Remark 1.6. (i) The assumption of the positivity of the best constant  C for the inequal‐
ity (1.5) (with  $\Omega$=B_{1} ) in Theorem 1.3 seems to be technical.

(ii) In the case that n is not so large and  $\alpha$ is sufficiently close to 1, the best constant

 C for the inequality (1.5) with $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$,  $\lambda$_{2}=$\Lambda$_{2}/ $\alpha$ (and  $\Omega$=B_{1} ) is positive, and

hence there exists an extremal function of (1.5); see Remark 4.4 below.

We here mention that Ozawa [11] gave another proof of the Brézis‐Gallouet‐Wainger
inequality (1.1). First he established refinement of a Gagliardo‐Nirenberg inequality,
which states that

(1.6) \Vert u\Vert_{L^{q}(\mathbb{R}^{n})}\leq Cq^{1-1/p}\Vert u\Vert_{L^{p}(\mathbb{R}^{n})}^{p/q}\Vert(-\triangle)^{n/(2p)}u\Vert_{L^{p}(\mathbb{R}^{n})}^{1-p/q}
holds for all u\in W^{n/p,p}(R) with  p\leq q<\infty ,

where  1<p<\infty and the constant

 C is independent of q . We note that the growth order q^{1-1/p} of the coefficient in the

right hand side as  q\rightarrow\infty is optimal. Then, by applying (1.6), he proved the Brézis‐

Gallouet‐Wainger inequality (1. 1).
Furthermore, Kozono‐Ogawa‐Taniuchi [8] and Ogawa [10] recently studied similar

estimates to (1.1) in the Besov or the Triebel‐Lizorkin spaces, or BMO. They also

gave applications to the Navier‐Stokes equations and the Euler equations.
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Let us describe the outline of the proof of our results. First we note that the inequality
(1.5) holds for all  u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert\nabla u\Vert_{L^{n}( $\Omega$)}=1 if and only if there exists

a constant C such that

(\displaystyle \frac{||u\Vert_{L^{\infty}( $\Omega$)}}{\Vert\nabla u\Vert_{L^{n}( $\Omega$)}})^{n/(n-1)}-$\lambda$_{1}\log(1+\frac{||u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)}}{\Vert\nabla u\Vert_{L^{n}( $\Omega$)}})
(1.7)

-$\lambda$_{2}\displaystyle \log(1+\log(1+\frac{||u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)}}{\Vert\nabla u\Vert_{L^{n}( $\Omega$)}}))\leq C
holds for all u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$)\backslash \{0\} . The key point of the proof of Theorems 1.1

and 1.2 is that we can explicitly determine the minimizer of the minimizing problem
with a unilateral constraint

(1.8) \displaystyle \inf { \Vert\nabla u\Vert_{L^{n}(B_{1})}^{n};u\in W_{0}^{1,n}(B_{1}) , u\geq h_{T} a.e. on B_{1} }

for 0<T\leq 1 . Here the obstacle function h_{T} is given by

(1.9) h_{T}(x)=\displaystyle \tilde{h}_{T}(|x|)=1-(\frac{|x|}{T})^{ $\alpha$} for x\in \mathbb{R}^{n}

This approach is based on the argument by Ibrahim‐Majdoub‐Masmoudi [6] in the

case n=2 . Since W_{0}^{1,n}(B) is not a Hilbert space for n\geq 3 ,
we are not able to use

several tools for treating such a variational problem. Compared to the case in W_{0}^{1,2} (B1),
little seems to be known on its regularity of a minimizer in the space W_{0}^{1,n}(B) for

n\geq 3 ,
and we are not able to assume any regularity property of a minimizer. However,

because of the uniqueness of a minimizer, it is radially symmetric and continuous on

\overline{B}_{1}\backslash \{0\} . Furthermore, we can show that the minimizer u_{T}^{\#} is n‐harmonic on the region

\{u_{T}^{\#}>h_{T}\} . Then we can explicitly determine the shape of the minimizer with the aid

of elementary one‐dimensional calculi. Although we cannot assume any regularity of

the minimizer, the explicit representation of the minimizer implies the C^{1} ‐regularity on

\overline{B}_{1}\backslash \{0\} as a conclusion. Our method consists of calculating the norms of the minimizer

and a simple scale argument. On the other hand, Ibrahim‐Majdoub‐Masmoudi [6]
made use of the C^{1} ‐regularity of the minimizer and the theory of the rearrangement of

functions to obtain Theorem A.

The organization of this paper is as follows. In Section 2, we investigate the mini‐

mizing problem (1.8). Then we can give the proof of Theorems 1.1 and 1.2, which will

be described in Section 3. In Section 4, for $\lambda$_{1} and $\lambda$_{2} such that (1.5) holds, we consider

the existence of an extremal function of (1.5) with the best constant C in the special
case  $\Omega$=B_{1}.

2. Minimizing problem

Throughout this paper, let the dimension n\geq 2 and 0< $\alpha$\leq 1 . First of all, we

introduce some function spaces. Let  $\Omega$ be a bounded domain in \mathbb{R}^{n} . In what follows,
we regard a function u on  $\Omega$ as the function on \mathbb{R}^{n} extended by u=0 on \mathbb{R}^{n}\backslash  $\Omega$ ,

and

5



we denote

\Vert u\Vert_{p}=\Vert u\Vert_{L^{p}(\mathbb{R}^{n})}, \Vert\nabla u\Vert_{p}=\Vert|\nabla u|\Vert_{p}
for 1\leq p\leq\infty,

\displaystyle \Vert u\Vert_{( $\alpha$)}=\Vert u\Vert_{\dot{C}^{ $\alpha$}(\mathbb{R}^{n})}=x,y\in \mathbb{R}^{n}\sup_{x\neq y}\frac{|u(x)-u(y)|}{|x-y|^{ $\alpha$}},
for simplicity. Note that we have

\Vert\nabla u\Vert_{p}=\Vert\nabla u\Vert_{L^{p}( $\Omega$)}, \Vert u\Vert_{( $\alpha$)}=\Vert u\Vert_{\dot{C}^{ $\alpha$}( $\Omega$)}
for all u\in W_{0}^{1,p}( $\Omega$) ,

and u\in\dot{C}^{ $\alpha$}( $\Omega$) with supp u \subset\overline{ $\Omega$} , respectively. We also note that

the norm of W_{0}^{1,p}( $\Omega$) is equivalent to \Vert\nabla u\Vert_{p} if  $\Omega$ is bounded and  1\leq p<\infty ,
because

of the Poincaré inequality. We denote by  B_{R} the open ball in \mathbb{R}^{n} centered at the origin
with the radius R>0 , i.e., B_{R}=\{x\in \mathbb{R}^{n};|x|<R\}.

In order to prove our results, we examine a problem of minimizing \Vert\nabla u\Vert_{n}^{n} with a

unilateral constraint. More generally, for  1<p<\infty ,
we formulate the following

minimizing problem:

(\mathrm{M}^{p}; $\Omega$, h) m[ $\Omega$, h]=\displaystyle \inf\{\Vert\nabla u\Vert_{p}^{p};u\in K[, h]\},
where the obstacle h is a measurable function on  $\Omega$ and

 K[ $\Omega$, h]= { u\in W_{0}^{1,p}( $\Omega$);u\geq h a.e. on  $\Omega$ }.

In this section, we prove three propositions. The first one ensures the existence

of a unique minimizer whenever the set  K[, h] is nonempty. Since the functional

K[, h]\ni u\mapsto\Vert\nabla u\Vert_{p}^{p}\in[0, \infty) is continuous, strictly convex, coercive, and K[, h]
is convex, (weakly) closed, we can obtain the following proposition with the aid of [4,
Chapter II, Proposition 1.2].

Proposition 2.1. Let 1<p<\infty,  $\Omega$ be a bounded domain in \mathbb{R}^{n}, h be a measurable

function defined on  $\Omega$
,

and assume that  K[, h] is nonempty. Then there exists a

minimizer u\#=u\#[ $\Omega$, h]\in K[, h] of (\mathrm{M}^{p}; $\Omega$, h) uniquely, that is, \Vert\nabla u\#\Vert_{p}^{p}=m[ $\Omega$, h].
The second one shows that the minimizer is p‐harmonic on the (open) set \{u\#>h\}

in the weak sense. We can prove the proposition below by a similar argument to [5]
and we omit the proof in this paper; see [9] for details. This property is well‐known for

the case p=2 ; see e.g. [5] and [7].

Proposition 2.2. Let 1<p<\infty,  $\Omega$ be a bounded domain in \mathbb{R}^{n} and h\in C(\overline{ $\Omega$}) .

Assume that K[ $\Omega$\wedge, h] is nonempty and the minimizer u\#=u\#[, h] of (\mathrm{M}^{p}; $\Omega$, h) is

continuous on  $\Omega$ for some open subset \hat{ $\Omega$} of  $\Omega$ . Then it holds

(2.1) \displaystyle \int_{0[ $\Omega$,\hat{ $\Omega$},h]}|\nabla u^{\#}(x)|^{p-2}\nabla u^{\#}(x)\cdot\nabla $\phi$(x)dx=0 foor all  $\phi$\in C_{\mathrm{c}}^{1}(O[, \hat{ $\Omega$}, h]) ,

where

O[ $\Omega$, \hat{ $\Omega$}, h]=\{x\in\hat{ $\Omega$};u^{\#}(x)>h(x)\}.
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The goal of this section is to prove the following proposition, which explicitly gives
the minimizer u_{T}^{\#} of the specific minimizing problem (\mathrm{M}^{n};B_{1}, h_{T}) with a parameter

0<T\leq 1 ,
where h_{T} is defined by (1.9). We also denote K_{T}=K[B_{1}, h_{T}] . Since

the function (0,1] \ni s\mapsto s( $\alpha$\log(1/s)+1)^{1/ $\alpha$}\in(0,1 ] is increasing, we can determine

0< $\tau$\leq T uniquely by

T= $\tau$( $\alpha$\displaystyle \log\frac{1}{ $\tau$}+1)^{1/ $\alpha$}
Proposition 2.3. For any 0<T\leq 1 ,

the (unique) minimizer u_{T}^{\#} of (\mathrm{M}^{n};B_{1}, h_{T}) is

given by

(2.2) u_{T}^{\#}(x)=\tilde{u}_{T}^{\#}(|x|)=\left\{\begin{array}{ll}
h_{T}(x) & for x\in\overline{B}_{ $\tau$},\\
 $\alpha$(\frac{ $\tau$}{T})^{ $\alpha$}\log\frac{1}{|x|} & for x\in B_{1}\backslash B_{ $\tau$}.
\end{array}\right.
In what follows, we prove Proposition 2.3. We need several lemmas; see [9] for the

proof of Lemma 2.5.

Lemma 2.4. Let h\in C(\overline{B}_{1}) be a radially symmetric function and assume that K[B_{1}, h]
is nonempty.

(i) The minimizer u\#=u\#[B_{1}, h] of (\mathrm{M}^{n};B_{1}, h) is radially symmetric and contin‐

uous on \overline{B}_{1}\backslash \{0\}.
(ii) The set O=O[B_{1}, B_{1}\backslash \{0\}, h] can be decomposed into a disjoint (at most

countable) union \{O_{j}\}_{j} of annuli, that is,

O=\displaystyle \bigcup_{j}O_{j}, O_{j}=\{r $\omega$;a_{j}\leq r\leq b_{j},  $\omega$\in S^{n-1}\}=(a_{j}, b_{j})\times S^{n-1},
where 0\leq a_{j}<b_{j}\leq 1 ,

and \{(a_{j}, b_{j})\}_{j} is disjoint.

(iii) For each j ,
there exist two constants c_{j}, \overline{c}_{j}\in \mathbb{R} such that

u#(x ) = ũ(x ) =c_{j}\displaystyle \log\frac{1}{|x|}+\overline{c}_{j}foorx\in O_{j}.
Proof. (i) The minimizer  u\# of (\mathrm{M}^{n};B_{1}, h) is radially symmetric because of the unique‐
ness. Then we can write u(x) = ũ(x) for x\in\overline{B}_{1} by using a one‐variable function ũ.

Since \~{u}\#\in W_{1\mathrm{o}\mathrm{c}}^{1,n}((0,1]) ,
the Sobolev embedding theorem in one dimension implies that

ũ# is continuous on (0,1], and hence  u\# is continuous on \overline{B}_{1}\backslash \{0\}.
(ii) By virtue of (i), there exists an open set Õ in (0,1) such that O=\~{O} \times S^{n-1}.

Hence there exist disjoint (at most countable) open intervals \{(a_{j}, b_{j})\}_{j} such that Õ =

\displaystyle \bigcup_{j}(a_{j}, b_{j}) . Then the assertion holds by putting O_{j}=(a_{j}, b_{j})\times S^{n-1}.
(iii) Since the function \mathbb{R}^{n}\ni x\mapsto\tilde{ $\phi$}(|x|)\in \mathbb{R} belongs to c_{\mathrm{c}}^{1}(O) for all \tilde{ $\phi$}\in C_{\mathrm{c}}^{1} (( a_{j} , bj)),

we have from (2.1) that

$\omega$_{n-1}\displaystyle \int_{a_{j}}^{b_{j}}|(\tilde{u}^{\#})'(r)r|^{n-2} (ũ)(r)r  $\phi$\sim�(r)dr =0 for all \tilde{ $\phi$}\in C_{\mathrm{c}}^{1} (( a_{j} , bj)).
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By applying [1, Lemme VIII.1], there exists a constant c_{j}\in \mathbb{R} such that

|(\tilde{u}^{\#})'(r)r|^{n-2} (ũ)(r)r =-|c_{j}|^{n-2}c_{j} and (ũ)(r)r =-c_{j} for a.e. a_{j}<r<b_{j},

because the function \mathbb{R}\ni s\mapsto|s|^{n-2}s\in \mathbb{R} is bijective. Therefore, there exists a

constant \overline{c}_{j}\in \mathbb{R} such that \~{u}(r)=c_{j}\log(1/r)+\overline{c}_{j} for a_{j}<r<b_{j} ,
and then u\#(x)=

c_{j}\log(1/|x|)+\overline{c}_{j} for x\in O_{j}. \square 

Lemma 2.5. Let 0<T\leq 1, c, \overline{c}\in \mathbb{R} and 0<a<b\leq 1 . If \~{u}(r)=c\log(1/r)+\overline{c} for
a\leq r\leq b and \tilde{h}_{T}(a)=\tilde{u}(a) , \tilde{h}_{T}(b)=\tilde{u}(b) ,

then \tilde{h}_{T}>\~{u} on (a, b) .

Lemma 2.6. For any 0<T\leq 1 and 0<a\leq 1 ,
we define

w_{T,a}(x)=\tilde{w}_{T,a}(|x|)=\left\{\begin{array}{ll}
h_{T}(x) & for x\in\overline{B}_{a},\\
\frac{1-(a/T)^{ $\alpha$}}{\log(1/a)}\log\frac{1}{|x|} & for x\in B_{1}\backslash B_{a}.
\end{array}\right.
(i) There hold w_{T,a}\in W_{0}^{1,n}(B) and

\displaystyle \Vert\nabla w_{T,a}\Vert_{n}^{n}=$\omega$_{n-1}$\alpha$^{n-1}(\frac{(a/T)^{n $\alpha$}}{n}+\frac{|1-(a/T)^{ $\alpha$}|^{n}}{( $\alpha$\log(1/a))^{n-1}}) for  $\tau$\leq a\leq 1.

(ii) It holds w_{T,a}\in K_{T} if and only if  $\tau$\leq a\leq 1.

Proof. (i) We can show the assertion by the direct calculation.

(ii) We define

$\psi$_{T}(a)=\displaystyle \frac{1-(a/T)^{ $\alpha$}}{\log(1/a)} for 0<a\leq T.

Then we can easily show that $\psi$_{T}(a)\rightarrow 0 as a\searrow 0, $\psi$_{T}(T)=0 and $\psi$_{T} increases on (0,  $\tau$)
and decreases on ( $\tau$, T) . Hence for any  0<a< $\tau$ ,

there exists  $\tau$<r_{a}<T uniquely such

that $\psi$_{T}(a)=$\psi$_{T}(r_{a}) . This implies that \tilde{w}_{T,a}(a)=\tilde{h}_{T}(a) , \tilde{w}_{T,a}(r_{a})=\tilde{w}_{T,r_{a}}(r_{a})=\tilde{h}_{T}(r)
and

\displaystyle \tilde{w}_{T,a}(r)=$\psi$_{T}(a)\log\frac{1}{r}<\tilde{h}_{T}(r) for a<r<r_{a}

by virtue of Lemma 2.5. This means w_{T,a}\not\in K_{T}.
On the other hand, we can easily show that \tilde{w}_{T,a}\geq\tilde{h}_{T} on (0,1) for  $\tau$\leq a\leq 1 ,

and

w_{T,a}\in K_{T} for  $\tau$\leq a\leq 1. \square 

Lemma 2.7. For any 0<T\leq 1 ,
there exists  $\tau$\leq a_{T}\leq 1 such that u_{T}^{\#}=w_{T,a_{T}} on B_{1}.

In particular, u_{1}^{\#}=h_{1} on B_{1}.

Proof. We denote O=O[B_{1}, B_{1}\backslash \{0\}, h_{T}] as in Proposition 2.2 (or Lemma 2.4) and

O=\tilde{O}\times S^{n-1}.

(Step 1) First we show that either Õ is empty or Õ = (a, 1) with some 0<a<1 . To

prove this, we have only to show that 0<a_{j}<b_{j}=1 for each j . If 0<a_{j}<b_{j}<1,
then \tilde{u}_{T}^{\#}(a_{j})=\tilde{h}_{T}(a) and \tilde{u}_{T}^{\#}(b_{j})=\tilde{h}_{T}(b_{j}) ,

and it follows from Lemma 2.4 (iii) and

Lemma 2.5 that

\displaystyle \tilde{u}_{T}^{\#}(r)=c_{j}\log\frac{1}{r}+\overline{c}_{j}<\tilde{h}_{T}(r) for a_{j}<r<b_{j},
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which contradicts the definition of Õ. If 0=a_{j}<b_{j}\leq 1 ,
then Lemma 2.4 (iii) implies

\Vert\nabla u_{T}^{\#}\Vert_{L^{n}(\mathrm{O}_{j})}=\infty ,
which is a contradiction. Consequently, the claim is proved.

(Step 2) The case  0<T<1 . Since \tilde{u}_{T}^{\#}(1)=0>\tilde{h}_{T}(1) ,
we see that Õ is nonempty

and \tilde{O}=(a_{T}, 1) with some 0<a_{T}<1 . From the continuity of \tilde{u}_{T}^{\#} on (0,1], Lemma 2.4

(iii) and Lemma 2.6 (ii), we have  $\tau$\leq a_{T}<1 and u_{T}^{\#}=w_{T,a_{T}} on B_{1}.

(Step 3) The case T=1 . Suppose that Õ is nonempty, i.e. \~{O}=(a_{1},1) with some

0<a_{1}<1 . As we argued in Step 2, we have  $\tau$\leq a_{1}<1 and u_{1}^{\#}=w_{1,a_{1}} on B_{1} . Since

 $\tau$=1
,

this is a contradiction. Therefore, Õ is empty, and hence u_{1}^{\#}=h_{1}=w_{1,1}. \square 

We can determine a_{T} in Lemma 2.7 by using the following lemma. We shall omit the

proof in this paper; see [9].

Lemma 2.8. For  $\rho$>0 ,
we define

H( $\sigma$; $\rho$)=\displaystyle \frac{$\sigma$^{n}}{n}+\frac{(1- $\sigma$)^{n}}{( $\rho$-\log( $\sigma$( $\rho$+1)))^{n-1}} for \displaystyle \frac{1}{ $\rho$+1}\leq $\sigma$\leq 1.
Then for any  $\rho$>0, H( $\sigma$; $\rho$) attains its minimum only at  $\sigma$=1/( $\rho$+1) .

We are now in the position to prove Proposition 2.3.

Proof of Proposition 2.3. (Step 1) In view of Lemma 2.7, we may assume 0<T<1.

By the definition of u_{T}^{\#} ,
we can characterize a_{T} in Lemma 2.7 as

(2.3) \displaystyle \Vert\nabla w_{T,a_{T}}\Vert_{n}^{n}=\min_{ $\tau$\leq a\leq 1}\Vert\nabla w_{T,a}\Vert_{n}^{n}.
By virtue of Lemma 2.6 (i), we have that

\Vert\nabla w_{T,a}\Vert_{n}^{n}>\Vert\nabla w_{T,T}\Vert_{n}^{n} for T<a\leq 1,

and hence  $\tau$\leq a_{T}\leq T.
(Step 2) By virtue of Lemma 2.8, we have that

H(\displaystyle \frac{(a/ $\tau$)^{ $\alpha$}}{ $\alpha$\log(1/ $\tau$)+1}; $\alpha$\log\frac{1}{ $\tau$})\geq H(\frac{1}{ $\alpha$\log(1/ $\tau$)+1}; $\alpha$\log\frac{1}{ $\tau$}) for  $\tau$\leq a\leq T

and the equality holds only if  a= $\tau$ . Then we obtain

\displaystyle \Vert\nabla w_{T,a}\Vert_{n}^{n}=$\omega$_{n-1}$\alpha$^{n-1}(\frac{(a/T)^{n $\alpha$}}{n}+\frac{(1-(a/T)^{ $\alpha$})^{n}}{( $\alpha$\log(1/a))^{n-1}})
=$\omega$_{n-1}$\alpha$^{n-1}H(\displaystyle \frac{(a/ $\tau$)^{ $\alpha$}}{ $\alpha$\log(1/ $\tau$)+1}; $\alpha$\log\frac{1}{ $\tau$})
\displaystyle \geq$\omega$_{n-1}$\alpha$^{n-1}H(\frac{1}{ $\alpha$\log(1/ $\tau$)+1}; $\alpha$\log\frac{1}{ $\tau$})
=\Vert\nabla w_{T, $\tau$}\Vert_{n}^{n} for  $\tau$\leq a\leq T,

and  a_{T}= $\tau$ follows. Therefore, we conclude that  u_{T}^{\#}=w_{T, $\tau$} on B_{1}. \square 
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Remark 2.9. As is mentioned in the introduction, we cannot assume that the minimizer

u_{T}^{\#} is of class C^{1} in B_{1}\backslash \{0\} . However, in our argument, we determined a_{T} so that

(2.3) holds, which yields necessary that  a_{T}= $\tau$ . As a conclusion, the minimizer has the

 C^{1} ‐regularity except for the origin. In fact, we see that w_{T,a}\in C^{1}(B_{1}\backslash \{0\}) if and only
if a= $\tau$.

3. Sharp constants F0R $\lambda$_{1} AND $\lambda$_{2}

In this section, we prove Theorems 1.1 and 1.2. We use the notation

\ell(s)=\log(1+s) for s\geq 0,

for simplicity and then \ell\circ\ell(s)=\log(1+\log(1+s)) for s\geq 0 . In order to examine

whether (1.7) holds or not, we may assume $\lambda$_{1}\geq 0 and we define

F[u;$\lambda$_{1}, $\lambda$_{2}]=(\displaystyle \frac{||u\Vert_{\infty}}{\Vert\nabla u\Vert_{n}})^{n/(n-1)}-$\lambda$_{1}\ell(\frac{||u||_{( $\alpha$)}}{||\nabla u\Vert_{n}})-$\lambda$_{2}\ell\circ\ell(\frac{||u||_{( $\alpha$)}}{||\nabla u\Vert_{n}})
for u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$)\backslash \{0\}.

Note that

F[cu; $\lambda$_{1}, $\lambda$_{2}]=F[u;$\lambda$_{1}, $\lambda$_{2}] for all c\in \mathbb{R}\backslash \{0\}.

Under the notation

F^{*}[$\lambda$_{1}, $\lambda$_{2}; $\Omega$]=\displaystyle \sup\{F[u;$\lambda$_{1}, $\lambda$_{2}];u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$)\backslash for $\lambda$_{1}\geq 0, $\lambda$_{2}\in \mathbb{R},

Theorems 1.1 and 1.2 are equivalent to the following:

Proposition 3.1. Let  $\Omega$ be a bounded domain in \mathbb{R}^{n} . Then the following hold:

(i) For any  $\lambda$_{1}>$\Lambda$_{1}/ $\alpha$ and  $\lambda$_{2}\in \mathbb{R} , it holds  F^{*}[$\lambda$_{1}, $\lambda$_{2}; $\Omega$]<\infty ;
(ii) For any  $\lambda$_{2}\geq$\Lambda$_{2}/ $\alpha$ , it holds  F^{*}[$\Lambda$_{1}/ $\alpha,\ \lambda$_{2}; $\Omega$]<\infty ;

(iii) For any  0\leq$\lambda$_{1}<$\Lambda$_{1}/ $\alpha$ and  $\lambda$_{2}\in \mathbb{R} , it holds  F^{*}[$\lambda$_{1}, $\lambda$_{2}; $\Omega$]=\infty ;
(iv) For any  $\lambda$_{2}<$\Lambda$_{2}/ $\alpha$ ,

it holds  F^{*}[$\Lambda$_{1}/ $\alpha,\ \lambda$_{2}; $\Omega$]=\infty.

In what follows, we shall concentrate to prove Proposition 3.1. Let us first reduce

our problem on the general bounded domain  $\Omega$ to that on the unit open ball  B_{1} . We

set

\hat{K}=\{u\in W_{0}^{1,n}(B_{1})\cap\dot{C}^{ $\alpha$}(B_{1});\Vert u\Vert_{\infty}=u(0)=1\}
and

\displaystyle \hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]=\sup\{F[u;$\lambda$_{1}, $\lambda$_{2}];u\in\hat{K}\} for $\lambda$_{1}\geq 0, $\lambda$_{2}\in \mathbb{R}.

Let s+ denote the positive part of s\in \mathbb{R} , i.e., s+=\displaystyle \max\{s, 0\}.

Lemma 3.2. Let  $\Omega$ be a bounded domain in \mathbb{R}^{n} and $\lambda$_{1}\geq 0, $\lambda$_{2}\in \mathbb{R} . Then, \hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]<
\infty holds if and only if  F^{*}[$\lambda$_{1}, $\lambda$_{2}; $\Omega$]<\infty.
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Proof. (Step 1) For any u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$)\backslash \{0\} ,
which is regarded as a function on

\mathbb{R}^{n}
,

there exists  z_{u}\in $\Omega$ such that \Vert u\Vert_{\infty}=|u(z_{u})|>0 ,
and we define

v_{u}(x)=\displaystyle \frac{\mathrm{s}\mathrm{g}\mathrm{n}u(z_{u})}{||u\Vert_{\infty}}u(d_{ $\Omega$}x+z_{u}) for x\in \mathbb{R}^{n},

where d_{ $\Omega$}= diam  $\Omega$=\displaystyle \sup\{|x-y|;x, y\in $\Omega$\} . Then we have v_{u}\in\hat{K} and

\displaystyle \Vert\nabla v_{u}\Vert_{n}=\frac{\Vert\nabla u\Vert_{n}}{||u\Vert_{\infty}}, \Vert v_{u}\Vert_{( $\alpha$)}=d_{ $\Omega$}^{ $\alpha$}\frac{||u||_{( $\alpha$)}}{||u||_{\infty}}.
Since \displaystyle \max\{\ell(st), \ell(s+t)\}\leq\ell(s)+\ell(t) for s, t\geq 0 ,

we have

F[u|$\lambda$_{1}, $\lambda$_{2}]=(\displaystyle \frac{||v_{u}||_{\infty}}{\Vert\nabla v_{u}\Vert_{n}})^{n/(n-1)}-$\lambda$_{1}\ell(\frac{1}{d_{ $\Omega$}^{ $\alpha$}}\frac{||v_{u}||_{( $\alpha$)}}{||\nabla v_{u}\Vert_{n}})-$\lambda$_{2}\ell\circ\ell(\frac{1}{d_{ $\Omega$}^{ $\alpha$}}\frac{||v_{u}||_{( $\alpha$)}}{||\nabla v_{u}\Vert_{n}})
\displaystyle \leq (\frac{||v_{u}\Vert_{\infty}}{\Vert\nabla v_{u}\Vert_{n}})^{n/(n-1)}-$\lambda$_{1}\ell(\frac{||v_{u}||_{( $\alpha$)}}{||\nabla v_{u}\Vert_{n}})+$\lambda$_{1}\ell(d_{ $\Omega$}^{ $\alpha$})

-$\lambda$_{2}\displaystyle \ell\circ\ell(\frac{||v_{u}||_{( $\alpha$)}}{||\nabla v_{u}\Vert_{n}})+|$\lambda$_{2}|\ell\circ\ell(d_{ $\Omega$}^{ $\alpha$} sgn $\lambda$_{2})

=F[v_{u}|$\lambda$_{1}, $\lambda$_{2}]+$\lambda$_{1}\ell(d_{ $\Omega$}^{ $\alpha$})+|$\lambda$_{2}|\ell\circ\ell(d_{ $\Omega$}^{ $\alpha$} sgn $\lambda$_{2})

\leq\hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]+$\lambda$_{1}\ell(d_{ $\Omega$}^{ $\alpha$})+|$\lambda$_{2}|\ell\circ\ell (  d_{ $\Omega$}^{ $\alpha$} sgn $\lambda$_{2}
) for u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$)\backslash \{0\}.

Therefore, if \hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]<\infty ,
then  F^{*}[$\lambda$_{1}, $\lambda$_{2}; $\Omega$]<\infty.

(Step 2) Fix  z\in $\Omega$ and  R>0 such that B=\{x\in \mathbb{R}^{n};|x-z|<\wedge 1/R\}\subset $\Omega$.
Assume that \hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]=\infty . Then there exists a sequence \{v_{j}\}_{j=1}^{\infty}\subset K such that

 F[v_{j};$\lambda$_{1}, $\lambda$_{2}]\rightarrow\infty as  j\rightarrow\infty . If we define  u_{j}(x)=v_{j}(R(x-z)) for x\in \mathbb{R}^{n} ,
then

u_{j}\in W_{0}^{1,n}(B)\cap\dot{C}^{ $\alpha$}(B)\subset W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) and we have

\Vert u_{j}\Vert_{\infty}=\Vert v_{j}\Vert_{\infty}, \Vert\nabla u_{j}\Vert_{n}=\Vert\nabla v_{j}\Vert_{n}, \Vert u_{j}\Vert_{( $\alpha$)}=R^{ $\alpha$}\Vert v_{j}\Vert_{( $\alpha$)}.
A similar calculation to Step 1 yields

 F[v_{j};$\lambda$_{1}, $\lambda$_{2}]\leq F[u_{j};$\lambda$_{1}, $\lambda$_{2}]+$\lambda$_{1}\ell(R^{ $\alpha$})+|$\lambda$_{2}|\ell\circ\ell (  R^{ $\alpha$} sgn $\lambda$_{2} ),

and it follows  F[u_{j};$\lambda$_{1}, $\lambda$_{2}]\rightarrow\infty as  j\rightarrow\infty . Therefore,  F^{*}[$\lambda$_{1}, $\lambda$_{2}; $\Omega$]=\infty. \square 

For  $\kappa$>0 and $\mu$_{1}, $\mu$_{2}\geq 0 ,
we define

G_{ $\kappa$}(s;$\mu$_{1}, $\mu$_{2})=(\displaystyle \frac{(s+1)^{n}}{s+1/n})^{1/(n-1)}-$\mu$_{1}\ell(\frac{ $\kappa$ e^{s}}{(s+1/n)^{1/n}})-\frac{$\mu$_{2}}{n}\ell\circ\ell(\frac{ $\kappa$ e^{s}}{(s+1/n)^{1/n}})
for s\geq 0.

We also denote G_{ $\kappa$}(s)=G_{ $\kappa$}(s;1,1) for simplicity. The following lemma tells us that

the behavior of the function G_{ $\kappa$}(s;$\mu$_{1}, $\mu$_{2}) as  s\rightarrow\infty plays an essential role for proving
Proposition 3.1. We shall omit the proof in this paper; see [9]. We shall use it also in

Section 4.

Lemma 3.3. Let  $\kappa$>0.
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(i) If either $\mu$_{1}>1, $\mu$_{2}\in \mathbb{R} , or $\mu$_{1}=1, $\mu$_{2}>1 ,
then  G_{ $\kappa$}(s;$\mu$_{1}, $\mu$_{2})\rightarrow-\infty as

 s\rightarrow\infty . In particular, there exists  s_{ $\kappa$}[$\mu$_{1}, $\mu$_{2}]\geq 0 such that

(3.1) G_{ $\kappa$}(s_{ $\kappa$}[$\mu$_{1}, $\mu$_{2}];$\mu$_{1}, $\mu$_{2})=\displaystyle \sup_{s\geq 0}G_{ $\kappa$}(s;$\mu$_{1}, $\mu$_{2}) .

(ii) There exists \hat{s}_{ $\kappa$}>0 such that

G_{ $\kappa$}'(s)<0 fors>\hat{s}_{ $\kappa$}.

Furthermore, there exist \hat{G}_{ $\kappa$}\in \mathbb{R} and s_{ $\kappa$}[1 ,
1 ] \geq 0 such that G_{ $\kappa$}(s)\rightarrow\hat{G}_{ $\kappa$} as

 s\rightarrow\infty
,

and (3.1) holds with $\mu$_{1}=$\mu$_{2}=1.

(iii) If either $\mu$_{1}<1, $\mu$_{2}\in \mathbb{R} , or $\mu$_{1}=1, $\mu$_{2}<1 ,
then  G_{ $\kappa$}(s;$\mu$_{1}, $\mu$_{2})\rightarrow\infty as  s\rightarrow\infty.

We now show Proposition 3.1 by using Lemma 3.3.

Proof of Proposition 3.1. (Step 1) First we show that

(3.2) \displaystyle \hat{K}=\bigcup_{0<T\leq 1}\hat{K}_{T},
where

\hat{K}_{T}=\{u\in K_{T}\cap\dot{C}^{ $\alpha$}(B_{1});\Vert u\Vert_{( $\alpha$)}=1/T^{ $\alpha$}, \Vert u\Vert_{\infty}=u(0)=1\}.
It is trivial that \hat{K}_{T}\subset\hat{K} for all 0<T\leq 1 . Conversely, for any u\in\hat{K} ,

we have

\displaystyle \Vert u\Vert_{( $\alpha$)}\geq\sup_{x\in\partial B_{1}}\frac{|u(x)-u(0)|}{|x|^{ $\alpha$}}=1,
and

u(x)=1-|u(x)-u(0)|\geq 1-\Vert u\Vert_{( $\alpha$)}|x|^{ $\alpha$} for x\in\overline{B}_{1}.

Then, u\in\hat{K}_{T} with 1/T^{ $\alpha$}=\Vert u\Vert_{( $\alpha$)}\geq 1 ,
and hence we obtain (3.2).

(Step 2) Next we show that

(3.3) F[u;$\lambda$_{1}, ($\lambda$_{2})_{+}]\leq F[u_{T}^{\#};$\lambda$_{1}, $\lambda$_{2}]_{+} for u\in\hat{K}_{T}.

Note that \Vert\nabla u\Vert_{n}\geq\Vert\nabla u_{T}^{\#}\Vert_{n} for all u\in K_{T} . We also remark that u_{T}^{\#}\in\hat{K}_{T} be‐

cause \Vert u_{T}^{\#}\Vert_{( $\alpha$)}=1/T^{ $\alpha$} and \Vert u_{T}^{\#}\Vert_{\infty}=u_{T}^{\#}(0)=1 . Since the functions (0, \infty)\ni s\mapsto
 s^{n/(n-1)}\ell(1/s)\in(0, \infty) and (0, \infty)\ni s\mapsto s^{n/(n-1)}\ell\circ\ell(1/s)\in(0, \infty) are both increas‐

ing, we have

\Vert\nabla u\Vert_{n}^{n/(n-1)}F[u;$\lambda$_{1}, ($\lambda$_{2})_{+}]

=1-$\lambda$_{1}\displaystyle \Vert\nabla u\Vert_{n}^{n/(n-1)}\ell(\frac{1}{T^{ $\alpha$}}\frac{1}{\Vert\nabla u\Vert_{n}})-($\lambda$_{2})_{+}\Vert\nabla u\Vert_{n}^{n/(n-1)}\ell\circ\ell(\frac{1}{T^{ $\alpha$}}\frac{1}{\Vert\nabla u\Vert_{n}})
\displaystyle \leq 1-$\lambda$_{1}\Vert\nabla u_{T}^{\#}\Vert_{n}^{n/(n-1)}\ell(\frac{1}{T^{ $\alpha$}}\frac{1}{\Vert\nabla u_{T}^{\#}\Vert_{n}})-$\lambda$_{2}\Vert\nabla u_{T}^{\#}\Vert_{n}^{n/(n-1)}\ell\circ\ell(\frac{1}{T^{ $\alpha$}}\frac{1}{\Vert\nabla u_{T}^{\#}\Vert_{n}})
=\Vert\nabla u_{T}^{\#}\Vert_{n}^{n/(n-1)}F[u_{T}^{\#};$\lambda$_{1}, $\lambda$_{2}]
\leq\Vert\nabla u\Vert_{n}^{n/(n-1)}F[u_{T}^{\#}; $\lambda$_{1}, $\lambda$_{2}]_{+} for u\in\hat{K}_{T},

which implies (3.3).
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(Step 3) We can calculate the norms of u_{T}^{\#} as

\displaystyle \Vert u_{T}^{\#}\Vert_{\infty}=1, \Vert u_{T}^{\#}\Vert_{( $\alpha$)}=\frac{1}{T^{ $\alpha$}}=\frac{1}{$\tau$^{ $\alpha$}( $\alpha$\log(1/ $\tau$)+1)},
\displaystyle \Vert\nabla u_{T}^{\#}\Vert_{n}^{n}=(\frac{ $\alpha$}{$\Lambda$_{1}})^{n-1}\frac{ $\alpha$\log(1/ $\tau$)+1/n}{( $\alpha$\log(1/ $\tau$)+1)^{n}},

and hence

(3.4) F[u_{T}^{\#};$\lambda$_{1}, $\lambda$_{2}]=\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}( $\alpha$\log\frac{1}{ $\tau$};\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2}) for 0<T\leq 1

(and then for 0< $\tau$\leq 1 ). Then we have

(3.5) \displaystyle \hat{F}^{*}[$\lambda$_{1}, ($\lambda$_{2})_{+}]\leq\frac{$\Lambda$_{1}}{ $\alpha$}\sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})_{+}
Indeed, combining (3.2)(3.4) yields

\displaystyle \sup_{u\in\hat{K}}F[u;$\lambda$_{1}, ($\lambda$_{2})_{+}]\leq\sup_{0<T\leq 1}\sup_{u\in\hat{K}_{T}}F[u;$\lambda$_{1}, ($\lambda$_{2})_{+}]
\displaystyle \leq\sup_{0<T\leq 1}F[u_{T}^{\#};$\lambda$_{1}, $\lambda$_{2}]_{+}

=\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$}\sup_{0< $\tau$\leq 1}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}( $\alpha$\log\frac{1}{ $\tau$};\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})_{+}
=\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$}\sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})_{+}

By virtue of Lemma 3.2, the assertions (i) in the case $\lambda$_{2}\geq 0 and (ii) follow from Lemma

3.3 (i) and (ii), respectively.
(Step 4) Consider the case  $\lambda$_{1}>$\Lambda$_{1}/ $\alpha$ and  $\lambda$_{2}<0 . Since \ell\circ\ell(s)/\ell(s)\rightarrow 0 as s\rightarrow\infty,

for any  $\epsilon$>0 ,
there exists a constant C_{ $\epsilon$}>0 such that

\ell\circ\ell(s)\leq $\epsilon$\ell(s)+C_{ $\epsilon$} for s\geq 0.

By choosing  $\delta$>0 such that  $\lambda$_{1}- $\delta$>$\Lambda$_{1}/ $\alpha$ ,
we have from Step 3 that \hat{F}^{*}[$\lambda$_{1}- $\delta$, 0]<\infty.

Then

\displaystyle \sup_{u\in\hat{K}}F[u;$\lambda$_{1}, $\lambda$_{2}]=\sup_{u\in\hat{K}}(F[u;$\lambda$_{1}- $\delta$, 0]-$\lambda$_{2}(\frac{ $\delta$}{$\lambda$_{2}}\ell(\frac{||u||_{( $\alpha$)}}{||\nabla u\Vert_{n}})+\ell 0\ell(\frac{||u||_{( $\alpha$)}}{||\nabla u\Vert_{n}})))
\leq\hat{F}^{*}[$\lambda$_{1}- $\delta$, 0]-$\lambda$_{2}C_{- $\delta$/$\lambda$_{2}}
<\infty,

and the assertion (i) (in the case $\lambda$_{2}<0 ) follows.

(Step 5) To prove (iii) and (iv), in view of Lemma 3.2, it suffices to show that

\displaystyle \lim\sup_{T\searrow 0}F[u_{T}^{\#};$\lambda$_{1}, $\lambda$_{2}]=\infty ,
because  u_{T}^{\#}\in\hat{K} for all 0<T\leq 1 . This follows immedi‐

ately from Lemma 3.3 (iii) and (3.4). \square 

Thus we have proved Theorems 1.1 and 1.2.
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Remark 3.4. As is mentioned in the introduction, the power n/(n-1) in the left hand

side of (1.5) is optimal in the sense that q=n/(n-1) is the largest power for which

(3.6) \Vert u\Vert_{\infty}^{q}\leq$\lambda$_{1}\log(1+\Vert u\Vert_{( $\alpha$)})+C

can hold for all u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert\nabla u\Vert_{n}=1 . Indeed, if q>n/(n-1),
.

then

for any $\lambda$_{1}>0 and any constant C , (3.6) does not hold for some u\in W_{0}^{1,n}( $\Omega$)\cap C^{ $\alpha$}( $\Omega$)
with \Vert\nabla u\Vert_{n}=1 . On the contrary, if 1\leq q<n/(n-1) ,

then for any $\lambda$_{1}>0 ,
there

exists a constant C such that (3.6) holds for all u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert\nabla u\Vert_{n}=1.
To verify these facts, we have only to consider the behavior of the function

G_{ $\kappa$}^{q}(s;$\mu$_{1}, $\mu$_{2})=(\displaystyle \frac{(s+1)^{n}}{s+1/n})^{q/n}-$\mu$_{1}\ell(\frac{ $\kappa$ e^{s}}{(s+1/n)^{1/n}}) for s\geq 0

as  s\rightarrow\infty instead of  G_{ $\kappa$}(s;$\mu$_{1}, $\mu$_{2}) .

Remark 3.5. As is mentioned in Remark 1.5, it is essentially meaningless to consider an

inequality with any weaker term. More precisely, we can prove the following facts. We

shall omit the proof because one can prove them by a slight modification of the proof
of Lemma 3.3.

(i) We choose a continuous function  $\gamma$:[0, \infty ) \rightarrow[0, \infty ) such that

 $\gamma$(s)\rightarrow\infty, \displaystyle \frac{ $\gamma$(s)}{\ell\circ\ell(s)}\rightarrow 0 as s\rightarrow\infty,

and consider the inequality

\Vert u\Vert_{\infty}^{n/(n-1)}\leq$\lambda$_{1}\ell(\Vert u\Vert_{( $\alpha$)})+$\lambda$_{2}\ell\circ\ell(\Vert u\Vert_{( $\alpha$)})+ $\lambda \gamma$(\Vert u\Vert_{( $\alpha$)})+C
for u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert\nabla u\Vert_{n}=1 . Then this inequality holds if and only if one

of the following holds:

(I)  $\lambda$_{1}>$\Lambda$_{1}/ $\alpha$ (and  $\lambda$_{2},  $\lambda$\in \mathbb{R} );
(II‐1) $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$,  $\lambda$_{2}>$\Lambda$_{2}/ $\alpha$ (and  $\lambda$\in \mathbb{R} );
(II‐2) $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$,  $\lambda$_{2}=$\Lambda$_{2}/ $\alpha$ and  $\lambda$\geq 0.

(ii) Let N\geq 3 and consider the N‐ple logarithmic inequality

\mathrm{n}/(\mathrm{n} 1)

for u\in W_{0}^{1,n}( $\Omega$)\cap\dot{C}^{ $\alpha$}( $\Omega$) with \Vert\nabla u\Vert_{n}=1 . Then this inequality holds if and only if one

of the following holds:

(I)  $\lambda$_{1}>$\Lambda$_{1}/ $\alpha$ (and  $\lambda$_{2}, \ldots, $\lambda$_{N}\in \mathbb{R} );
(II‐1) $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$,  $\lambda$_{2}>$\Lambda$_{2}/ $\alpha$ (and  $\lambda$_{3}, \ldots, $\lambda$_{N}\in \mathbb{R} );
(II‐2) $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$, $\lambda$_{2}=$\Lambda$_{2}/ $\alpha$, $\lambda$_{3}=\cdots=$\lambda$_{m-1}=0, $\lambda$_{m}>0 for some 3\leq m\leq N (and

$\lambda$_{m+1} ,
. . .

, $\lambda$_{N}\in \mathbb{R}) ;

(II‐2) $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$,  $\lambda$_{2}=$\Lambda$_{2}/ $\alpha$ and  $\lambda$_{3}=. . . =$\lambda$_{N}=0.
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4. Existence 0F an extremal function

In this section, for fixed $\lambda$_{1}, $\lambda$_{2}\geq 0 such that the inequality (1.5) holds, we consider

the existence of an extremal function of (1.5) with the best constant C . Though it is

difficult to ensure the existence of an extremal function for cases with general domains,
we can find an extremal function in the special case  $\Omega$=B_{1} with constants $\lambda$_{1} and

$\lambda$_{2} in a suitable region. Our method is due to the argument described in the previous
section.

Proposition 4.1. Fix $\lambda$_{1}, $\lambda$_{2}\geq 0 satisfy ing the assumption (I) or (II) in Theorem 1.1.

(i) If

(4.1) \displaystyle \sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})\geq 0,
then there exists 0<T_{0}\leq 1 such that

(4.2) F^{*}[$\lambda$_{1}, $\lambda$_{2};B_{1}]=F[\displaystyle \frac{u_{T_{0}}^{\#}}{\Vert\nabla u_{T_{0}}^{\#}\Vert_{n}};$\lambda$_{1}, $\lambda$_{2}]=\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$}\max_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2}) .

In particular, u_{T_{0}}^{\#}/\Vert\nabla u_{T_{0}}^{\#}\Vert_{n} is an extremal function of (1.5) with  $\Omega$=B_{1}.

(ii) The best constant Cfor the inequality (1.5) (with  $\Omega$=B_{1} ) is positive if and

only if

(4.3) \displaystyle \sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})>0.
Because of Lemma 3.3 (i) and \displaystyle \inf_{s\geq 0}\ell( $\kappa$ e^{s}/(s+1/n)^{1/n})>0 , choosing a sufficiently

large $\lambda$_{1} forces (4.3) to fail for any fixed $\lambda$_{2}\geq 0 . In particular, we obtain the following
corollary.

Corollary 4.2. Let n\geq 2, 0< $\alpha$\leq 1 and  $\Omega$=B_{1} . If  $\lambda$_{1}\geq$\Lambda$_{1}/ $\alpha$ is sufficiently
large, then the best constant Cfor the inequality (1.5) with  $\lambda$_{2}=0 (and  $\Omega$=B_{1}) is

nonpositive. In particular,

\Vert u\Vert_{\infty}^{n/(n-1)}\leq$\lambda$_{1}\log(1+\Vert u\Vert_{( $\alpha$)})
holds for all u\in W_{0}^{1,n}(B_{1})\cap\dot{C}^{ $\alpha$}(B) with \Vert\nabla u\Vert_{L^{n}(B_{1})}=1.

We need the following lemma to prove Proposition 4.1.

Lemma 4.3. If $\lambda$_{1}, $\lambda$_{2}\geq 0 ,
then F^{*}[$\lambda$_{1}, $\lambda$_{2};B_{1}]\leq\hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]_{+}.

Proof. Since u^{*}/\Vert u^{*}\Vert_{\infty}\in\hat{K} for all u\in W_{0}^{1,n}(B_{1})\cap\dot{C}^{ $\alpha$}(B_{1})\backslash \{0\} ,
it suffices to show that

(4.4) F[u;$\lambda$_{1}, $\lambda$_{2}]\displaystyle \leq F[\frac{u^{*}}{\Vert u^{*}\Vert_{\infty}} ; $\lambda$_{1}, $\lambda$_{2}]_{+} for u\in W_{0}^{1,n}(B_{1})\cap\dot{C}^{ $\alpha$}(B_{1})\backslash \{0\}.

Here, u^{*} is the symmetric decreasing rearrangement of u . It is known that

\Vert u^{*}\Vert_{\infty}=\Vert u\Vert_{\infty}, \Vert\nabla u^{*}\Vert_{n}\leq\Vert\nabla u\Vert_{n}, \Vert u^{*}\Vert_{( $\alpha$)}\leq\Vert u\Vert_{( $\alpha$)}.
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Since the functions (0, \infty)\ni s\mapsto s^{n/(n-1)}\ell(1/s)\in(0, \infty) and (0, \infty)\ni s\mapsto s^{n/(n-1)}\ell 0
\ell(1/s)\in(0, \infty) are both increasing, we have

\Vert\nabla u\Vert_{n}^{n/(n-1)}F[u;$\lambda$_{1}, $\lambda$_{2}]

=\displaystyle \Vert u\Vert_{\infty}^{n/(n-1)}-$\lambda$_{1}\Vert\nabla u\Vert_{n}^{n/(n-1)}\ell(\frac{||u||_{( $\alpha$)}}{||\nabla u\Vert_{n}})-$\lambda$_{2}\Vert\nabla u\Vert_{n}^{n/(n-1)}\ell\circ\ell(\frac{||u||_{( $\alpha$)}}{||\nabla u\Vert_{n}})
\displaystyle \leq\Vert u^{*}\Vert_{\infty}^{n/(n-1)}-$\lambda$_{1}\Vert\nabla u^{*}\Vert_{n}^{n/(n-1)}\ell(\frac{||u^{*}\Vert_{( $\alpha$)}}{||\nabla u^{*}\Vert_{n}})-$\lambda$_{2}\Vert\nabla u^{*}\Vert_{n}^{n/(n-1)}\ell\circ\ell(\frac{||u^{*}\Vert_{( $\alpha$)}}{||\nabla u^{*}\Vert_{n}})

=\displaystyle \Vert\nabla u^{*}\Vert_{n}^{n/(n-1)}F[\frac{u^{*}}{\Vert u^{*}\Vert_{\infty}};$\lambda$_{1}, $\lambda$_{2}]
\displaystyle \leq\Vert\nabla u\Vert_{n}^{n/(n-1)}F[\frac{u^{*}}{\Vert u^{*}\Vert_{\infty}} ; $\lambda$_{1}, $\lambda$_{2}]_{+} for u\in W_{0}^{1,n}(B_{1})\cap\dot{C}^{ $\alpha$}(B_{1})\backslash \{0\},

which implies (4.4). \square 

Proof of Proposition 4.1. (i) By virtue of Lemma 3.3 (i)(ii), the function s \mapsto

 G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s; $\alpha \lambda$_{1}/$\Lambda$_{1},  $\alpha \lambda$_{2}/$\Lambda$_{2}) is bounded from above and there exists s_{0}\geq 0 such

that

G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s_{0};\displaystyle \frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})=\sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})
and we can define 0<$\tau$_{0}\leq T_{0}\leq 1 by

s_{0}= $\alpha$\displaystyle \log\frac{1}{$\tau$_{0}}, T_{0}=$\tau$_{0}( $\alpha$\log\frac{1}{$\tau$_{0}}+1)^{1/ $\alpha$}
By applying (4.1), it holds

(4.5) F[\displaystyle \frac{u_{T_{0}}^{\#}}{\Vert\nabla u_{T_{0}}^{\#}\Vert_{n}};$\lambda$_{1}, $\lambda$_{2}]=F[\frac{u_{T_{0}}^{\#}}{\Vert u_{T_{0}}^{\#}\Vert_{\infty}};$\lambda$_{1}, $\lambda$_{2}]=\hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]\geq 0.
Indeed, in view of (3.5), we have

\displaystyle \hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]\leq\frac{$\Lambda$_{1}}{ $\alpha$}\sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})_{+}
=\displaystyle \frac{$\Lambda$_{1}}{ $\alpha$}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s_{0};\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})
=F[\displaystyle \frac{u_{T_{0}}^{\#}}{\Vert u_{T_{0}}^{\#}\Vert_{\infty}};$\lambda$_{1}, $\lambda$_{2}],

which implies (4.5) because u_{T_{0}}^{\#}/\Vert u_{T_{0}}^{\#}\Vert_{\infty}\in\hat{K} . By virtue of Lemma 4.3, we obtain (4.2).
(ii) Note that the best constant C for the inequality (1.5) with  $\Omega$=B_{1} coincides with

F^{*}[$\lambda$_{1}, $\lambda$_{2};B_{1}] . If F^{*}[$\lambda$_{1}, $\lambda$_{2};B_{1}]>0 ,
then we have from Lemma 4.3 and (3.5) that

0<F^{*}[$\lambda$_{1}, $\lambda$_{2};B_{1}]\displaystyle \leq\hat{F}^{*}[$\lambda$_{1}, $\lambda$_{2}]\leq\frac{$\Lambda$_{1}}{ $\alpha$}\sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s;\frac{ $\alpha$}{$\Lambda$_{1}}$\lambda$_{1}, \frac{ $\alpha$}{$\Lambda$_{2}}$\lambda$_{2})_{+},
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and (4.3) follows. Conversely, if (4.3) holds, then F^{*}[$\lambda$_{1}, $\lambda$_{2};B_{1}]>0 follows immediately
from (i). \square 

Remark 4.4. (i) If we define

A_{0}= { 0< $\alpha$\leq 1;(4.1) holds with  $\lambda$_{1}=$\Lambda$_{1}/ $\alpha$ and  $\lambda$_{2}=$\Lambda$_{2}/ $\alpha$ }

=\displaystyle \{0< $\alpha$\leq 1;\sup_{s\geq 0}G_{($\Lambda$_{1}/ $\alpha$)^{1-1/n}}(s)\geq 0\},
then it holds either  A_{0}=\emptyset or  A_{0}=[$\alpha$_{0} ,

1 ] for some 0<$\alpha$_{0}\leq 1 . See [9] for details.

(ii) If n\leq 131 ,
then G_{$\Lambda$_{1}^{1-1/n}}(s_{1})>0 for some s_{1}>0 ,

which implies that A_{0}=[$\alpha$_{0} ,
1 ]

for some 0<$\alpha$_{0}<1 . Indeed, we can observe it by choosing s_{1}=6.
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