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In this article, we consider the modulation spaces MP4(R¢) for the range
of indexes 0 < p,q < oo and their basic properties, their multipliers and
their recent applications to partial differential equations. First in section 1,
we briefly review the basic facts on MP4(R%). Next in section 2, we treat
the topic concerning the multipliers on MP?4(R%). And then in section 3, we
describe recent applications to partial differential equations of MP4(R?).

We begin with the notations to be used here before beginning the main
topic. Let S(R?) be the Schwartz space of all complex-valued rapidly de-
creasing infinitely differentiable functions on R¢ with the topology defined
by the semi-norms

pu(p) = sup (L+[E)M D7 [9%(t)], M =1,2,---
teR4 |C¥|§M

for o € S(R?). And let S'(R?) be the topological dual of S(R?). The
Fourier transform is f(w) = [ f(t)e ?™“dt, and the inverse Fourier trans-
form is fY(t) = f(—t). We define for 0 < p < oo

I = ([ o)’

and ||f||pe = ess.sup,cgd |f()]. For a function f on RY, the translation
and the modulation operators are defined by

Txf(t) = f(t - x)a and M, f(t) = €2mw.tf(t) (*Taw € Rd)a
respectively. Note that we have

(Txf)A = M—zf and (wa)A: wa-

1. BASIC FACTS ON MP4(RY)

We review the definition of the modulation spaces and their basic prop-
erties, following [7].

1.1. Definition of modulation spaces ([7]). First for & > 0 we define
®*(R%) to be the set of all ¢ € S(RY) satisfying supp g C {€ | |¢] £
1}, and Y ,cza9(6 — ak) = 1, V€ € R (In the following, we choose a
sufficiently small o > 0 so that ®*(R?) is not empty.) With this, we define
the modulation spaces as follows:

Given a g € ®*(RY), and 0 < p,q < oo, we define the modulation space

MP4(RY) to be the space of all tempered distributions f € S'(R?) such that
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the quasi-norm
1

1]l = (/Rd (/Rd 1+ (Mag) @) de) " )"

is finite, with obvious modifications if p or ¢ = oco.

Our definition is close to the original definition of modulation spaces by
Feichtinger [5], which is restricted to the case 1 < p,q < oc.

The quasi-norm || f||aree of f is considered as follows if we use the notion
of the Fourier transform: At first we do the Fourier transform of f, and

~

then we cut off f(¢) by the window g(£ — w) any information other than the
neighborhood of w and do the inverse Fourier transform of f(¢) - (¢ — w).

~

And we take the LP-quasi-norm with respect to = of (f()g( - w))v(x) and
take the L?-quasi-norm with respect to w of || (fOg(- - w))v(:c)HLp.

Remark 1.1. In general, a real-valued function || - || on a vector space X
over C is called a quasi-norm if it satisfies the following conditions:
(i) ||l 20, [lz]| =0 iff = =0,
(ii) loz|| = |af [|z]], Vo € C, V2 € X,
(iii) lz +yll = &=l +[lyl), Yo,y € X,
where & is a constant independent of x and y. Especially, if X = LP(R%)
(0 < p < 1), then condition (iii) is given by
i

f +gllze = 27 (| fllze + llgllzre),

and if X = MP4(R?) (0 <p <1or0<q<1),then (iii) is given by
f1 + follura < k- wg (| fillaeea + || follarwa),

where,

L, 1 <p< o0,
Y 2 o<
, p <Ll

1.2. Basic properties of modulation spaces ([7]). Let 0 < p,q £ c©
and g € ®*(R%). Then

(1) The definition of MP9(R%) is independent of the window g € ®*(R%).
That is, different windows yield equivalent norms.

@ (3 ([ 15+ (usg)@)as))

is an equivalent quasi-norm on MP4(R%) with modifications if p or ¢ = occ.
(3) Let 0 < pg Sp; Sooand 0 < ¢y £ ¢1 £ 00. Then

Mpo,qo(Rd) C MPLa (Rd).

(4) (MP4(R™), || ||amra) is a quasi-Banach space.
(5) We have continuous embeddings

S(RY) c MPY(RY) c S'(RY).

1
q



(6) If 0 < p,q < oo, then S(R?) is dense in MP4(RY).
(7) If B > 0 is sufficiently small, then

(3 (3 I+ (asa) ) )

k€Zd lcZd

Q=

is an equivalent quasi-norm on MP4(R%).

Remark 1.2. Modulation space MP4(R?) is also independent of the choice
ofa (0 < a<?2).

Remark 1.3. We note that quasi-normed spaces are metric spaces. Ac-
tually, let (X, ]| - ||) be a quasi-normed space having a constant £ = 1 in
Remark 1.1 (iii). If we define 0 < p £ 1 by (2k)? = 2 and define || - [|* by

n n
ol = inf { 3" llaglle s Day =, n21f,
j=1 j=1

then d(z,y) := ||y — z||* satisfies the conditions of metric on X and satisfies

2. MULTIPLIERS ON MODULATION SPACES

2.1. Multipliers on MP9(R%) and symbol classes.

Definition 2.1. Let 0 < p,q < oo and o(¢) be a function on R?. Then we
say that o is a multiplier on MP4(R4), if the operator (D) defined by

oD)f = | ) ()de, feSRY
Rd
has a unique bounded extension to MP4(R%).

Definition 2.2. For g € ®*(R¢%) and 0 < p < 0o, we define S(p) to be the
space of all tempered distributions o € S'(R%) such that

1
21)  lollsg) == ll6]lamee = sup (/ (0 Tak) (@) ) * < 0.
kezd *JRA

2.2. Multiplier theorem. As for the multiplier on modulation spaces, we
have the following theorem (see [2], [9]):

Theorem 2.3.
(1) Let 1 Ep<oo,0< qg<o0ando € S(l). Then o(D) is a multiplier
operator on MP4(R%) and we have

lo(D)fllares < Cllollsllfllarea,  f € MPI(RY).

(1) Let 0 < p < 1,0 < g < o0 and o € S(p). Then o(D) is a multiplier
operator on MP4(R%) and we have

lo(D)fllara < Cllollsgllfllama,  f € MPI(RY).
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2.3. Concrete examples of multipliers.

Example 2.4 ([9]). Let 0 < p < oo and K be a positive integer. If K > %
then

B = {f e CRRY) | ) [10°fllL= < o0}

la|<K

belongs to S(p). Especially, in the case 0 < p £ 1 and 0 < ¢ < oo, elements
of BX (K > %) are multipliers on MP4(RY).
Example 2.5 ([9]). Let 0 < p £ 1 and d,,, be the Dirac measure at a point
x, € R% Then, for a sequence of complex numbers {c,}52 __ € IP(Z),

o0

o= ( Z cn(?mn)A

n=—0o0
belongs to S(p).

Remark 2.6. Oberlin [10] has proved that every bounded linear operator
T on LP(RY) (0 < p < 1) which commutes with translations is represented
by Tf = o(D)f with 0 = (}_ ¢n0s, )", where {c,} € IP(Z).

To our regret, the following example shows that Theorem 2.3 (i) is not
the best result for 1 < p < 00,1 £ ¢ < 0.

Example 2.7 ([1]). Let 1 <p <ocand 1 £ g < co. Then o(¢) = —i sgn(&)
is a multiplier on MP4(R). However, o(¢) is not a multiplier on M1!(R).
That is, the Hilbert transform is not bounded on M>!(R9).

Multipliers on MP4(RY) related to partial differential equations are as
follows:

Example 2.8 ([2] Theorem 1). Put o, (&) = /€. Then for 1 < p,q < oo
and 0 £ o £ 2, we have 0,(§) € S(1).

We can also say the following as an application of Example 2.8:
Example 2.9 ([2] Theorem 6). Put o}(¢) = e™é”. Then o} € S(1) and
d
llobllsy < C(1+17)5,
This shows the solution u(z,t) of the Schrodinger equation

2.2) i%(m,t) = Au(z,t), z€RLt20,
. U(LU,O) = UO(x)a T € Rd7

given by
R4

satisfies that if ug € MP4(R?) then u(-,t) € MP4(R?). Moreover,
d
uls O)llarra < C(1+8)2[[uo||arva-

Remark 2.10. From the above-mentioned, we can consider modulation
spaces MP4(R%) are function spaces which are more suitable than the Lebesgue
spaces LP(RY) for the studies of Schrodinger equations because it is known
that only for p = 2 the solution operator U (t) of (2.2) is bounded on LP(R?)
but is bounded on MP4(R?) for each 1 < p, ¢ < .
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3. RECENT APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

In addition, Bényi-Okoudjou [3] apply the multiplier theorem to study
the local-well posedness of the non-linear Schrodinger equation

du — \|y |2k
(NLS) iS¢ (w,t) + Au(z,t) = Mu|[*u, AeR,keN
u(z,0) = uo(z)

and they prove the following: Let ﬁ‘ll < p £ co. Then for any ug €

MPH(RY), there exists T* = T*(||uo||psen) such that (NLS) has a unique
solution
u € C([0,T%], MP1(RY)).
Moreover, if T* < oo, then lim sup [|u(-, t)||pp1 = 00.
t—T™*

Moreover, Cordero-Nicola [4] and Wang-Huang [12] also apply the theory
of modulation spaces to partial differential equations.
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