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Abstract

In this paper we brief some recent results on the global well-posedness
of semirelativistic Hartree type equations. Then we improve the theories
for radial solutions developed in [6] and extend them to nonradial cases.

1 Problems and results
We consider the following Cauchy problem:

iu=+v1—Au+F(u) in R" xR, n>1, (1.1)
u(z,0) = p(z) in R™ ‘

Here F(u) is nonlinear functional of Hartree type such that F(u) = (V5 |u|?)u,
where V,(x) = A|z| 77,0 <y <n,A € R\ {0} and * denotes the convolution in
R™. This equation is a generalization of the model case v = 1 which is derived
rigorously via the mean field theory for the quantum many body system of boson
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particles (boson star) with Coulomb type or gravitational interaction. Hence
one may think v is the wave function of one particle. For the details see [8, 9]
and see also [12] for stationary problems.

If the solution w of (1.1) has sufficient decay at infinity and smoothness, it
satisfies two conservation laws:

|u(t)||z2 = |l@llz2 (L* conservation),

E(u(t)) = K(u) + V(u) = E(u(0)) = E(p) (energy conservation), (12)

where K (u) = 2(v/1— Awu,u), V(u) = $(F(u),u) and (,) is the complex inner
product in L2. As to be seen, the Sobolev space H 3 is the energy space. For the
proof of (1.2) a regularizing method is simply applicable as in [13] in the case
of 0 < v < 1. For local solutions constructed by a contraction argument based
on the Strichartz estimates stated below, the case of 1 < v < 2 is treated by
exactly the same method as in [17] without using approximate or regularizing
approach.

The problem for local and global well-posedness was treated first by Lenz-
mann [13] for the case that v = 1 and n = 3. By the scaling argument on the
massless equation i0yu = V—-Au+ F (u), the potential V7 is known to be L%
critical (actually, L2-critical for n > 2). Hence the L? and energy conservation
laws were used efficiently for the global well-posedness together with the Hardy
inequalities such that for 0 < v <1, >0

sup Vo ul®(@)] S [lull?,5 and [[l2]™ « [ulllmg, < lullaslull 3. (1.3)
sektn

In [13] Lenzmann also showed the global well-posedness for negative A by as-
suming the smallness of L?(R?) norm of initial data that ||¢| ;2 < ||Q]| 2, where
QecH? (R3) is a strictly positive solution of
VEEQ+ (£ +1QPQ = —Q

and satisfies that ||Q| /L2 > 4/7|A|. By the same argument, Lenzmann’s results
were extended to the case when 0 < v < 1 and n > 1 in [2, 4]. Since the
case v < 1 is L? subcritical, the global well-posedness can be easily shown by
the energy conservation. See [4]. For the quantum system of fermions (white
dwarf), we refer the readers to [11] in which the global well-posedness has been
established recently by the similar argument.

The finite time blowup in the energy space is expected for large data as is
the case for other dispersive equations, when A < 0. But this is not a simple
matter. It has been known only for v = 1, n > 3 and for the radial symmetric
case. It is necessary to estimate a variance type inequality of which the crucial
estimtaes are

Vi * [uf*(2)] < llellZa/l2] and [V(Vix [ul*)(2)] < [l@lZ2 /]2l

The variance estimate is possible because the solution u is radial and v = 1.
For the details see [10] and Remark 5 of [6]. If u is radial and 1 < v < 2, then



by Lemma 4.7 below there holds the estimate
Vo s fufP(2) S I - 17072l 2 /2.

But we do not know whether the right-hand side can be controlled uniformly
in time or not because it may blow up in finite time. It is still open to show
the finite time blowup of nonradial solutions for v = 1 or of the solution for the
nonlinearity with v > 1.

If we consider the case v > 1 (this case corresponds to the L2-supercritical
one), then we cannot use the Hardy inequality (1.3) any more because the
righthand side is energy-supercritical. To circumvent this difficulty, in [2, 4] the
authors used a Strichartz estimate for the evolution group U (t) = e~ VI=4 and
the refined Hardy inequalities such that for any 1 < v <n,0<e <n —- and
s>0

[

2 <
sup Vo ul @) 5 el o 0l oy )
2l = [l [y, S llull, —g ulle

Yy+e

The Strichartz estimate is the following (see [15, 16]):
||U(t)90||LqTng8*ao S el 2o,

t (1.5)
/ Ut —¢)Ft")dt
0

SIF Ly e
L Es

where (g;,7;),i = 0,1, satisfy that for some 6 € [0, 1]

2’:(71_14_9) G_%Z), 20, = (n+1+0) <%—1>,

i T (1.6)
2 S Qi T § 0, (qivri) 7& (2700)
We call the pair (g, r) satisfying (1.6) admissible pair. If § = 0, it is called wave
admissible and if § = 1, then Schrédinger admissible.
Using the Strichartz estimate (1.5) with the wave admissible pairs and Hardy

inequality (1.4), in [2, 4] the global well-posedness was shown for 1 < v < nz—fl

1
in Cy(H=)N Li (H? ™), where ¢ = (nf—q)ﬁ, r= ran,@ and a = W for some
8 < nz—_fl but sufficiently close to nQ—J,tLl Since the case v > 2,n > 3 is energy
supercritical, one cannot use the energy conservation argument. The endpoint
Schréodinger admissible pair is useful for the small data global well-posedness
and scattering of this energy-supercritical case. More precisely, if 2 < v < n,

n>3s>%—2%2andif o € H® and ||<P||Hs+35 sufficiently small, then (1.1)
has a unique solution u € Cy(H®) N L*(H',, " ) and there is o* € H* such
n—2

that
|u(t) — U#)et||gs — 0 as t — Foo.



One of the most important properties of wave functions is that it has finite
propagation speed. Here, we say that a wave has the finite propagation speed if
its group velocity, the gradient of phase function in frequency space, is bounded.

Since |V/1 + [€]2] = |€|/+/1 + |£]? < 1, the propagation speed does not exceed

the value 1. From this we can show that

lim U™ () dy = ™12 (L.7)

t=oo Jy|<at

for any A > 1'. Hence we deduce that like the Klein-Gordon and wave equa-
tions, the nonexistence of scattering is expected for long range case (small 7).
In fact, if 0 <y < 1lforn >3 and 0 <~ < 5 for n = 1,2, then it can be shown
from (1.7) together with the dispersive estimate? ||U(t)p T |z~ < ¢~"/2 that the
functional H(t) = sgn(A\)Re(u(t),U(t)p™) = logt for sufficiently large ¢, which
contradicts the uniform boundedness of H.

Now we consider the case W < v < 2 for the global well-posedness. This
case is energy (sub)critical. Hence the global well-posedness is strongly expected
by analogy with the Schrédinger and Klein-Gordon equations. But contrary to
the Klein-Gordon equation, our equation (1.1) has a different type of inhomo-
geneous term when we rewrite the solution according to the Duhamel’s princi-
ple There is a regularity gain (1 — A)~! in the case of Klein-Gordon equation

fo (1 — A)~tsin((t — 8)v/1 —A) F(u)ds). The solution u of (1.1) can be
written as the following integral equation

u(t) = U(t)y —i/o Ut — ') Fu)()dt, (1.8)

U)) = () w) = g [ VI ag

Here ¢ denotes the Fourier transform of ¢ such that $(£ f]R" —iwE o (x) du.
In this sense, the semirelativistic equation is said to have a regularlty preservmg
nonlinearity like Dirac equation which makes a trouble in using the Strichartz
estimates (1.5) since a regularity loss is already in the estimates. Up to now,
we still do not know how to treat this regularity preserving property when we
consider general initial data. Recently, there have been some improvements
under the radial symmetry assumption. In this paper We are going to survey
the results for solutions of radial symmetry in case that =% <~y <2.

In the next four sections, we introduce two types of Strlchartz estimates and
generalized Hardy inequalities for functions with angular regularity, and how to
show the global well-posedness of the radial solution of the equation (1.1). In
Section 6 we extend the global result of radial solution for v = 2,n > 4 to the

1(1.7) is stronger than the one in [2]. But it can be easily verified by a slight modification
of the original proof of [2]
2For this we need smoothness and decay for .



nonradial ones with the help of generalized Hardy inequalities. We show the
. 3

global well-posedness in Cy(R; H2 H2) N L2(R; || L2H2) for v = 2 and n > 4.

See Section 2 for the definition of function spaces. The final section is devoted

to show some properties of Besov and Sobolev spaces on the polar coordinates.

2 Function spaces

To proceed let us introduce several function spaces to be used in this paper. Let
P denote the totality of polynomials and Sp = {¢ € S(R") : Var 9*F(0) = 0}.
For any f € S'/P = &), the homogeneous Sobolev space Hzf is defined by
H; ={f €8 :IVESfller < 0}, s € R,1 < p < 00, where [V| = v-A.
Hy=(1- A)73/2LP is the inhomogeneous Sobolev space. We denote Hf and
H3 by H*® and H®, respectively . We denote the space LY(—T,T; B) by L%L(B)
and its norm by || -[[zs p for some Banach space B, and also L?(R; B) by L(B)
with norm || - ||zep, 1 < ¢ < 00. Cy(B) = Cp(R; B) is the space of bounded and
continuous B-valued functions on R.

For the Strichartz estimates of radial functions the following hybrid Sobolev
space is useful:

Definition 1. For s, € Rand 1 < p < o0
Hy* = {f € Sp: ol e = 1D vl < o0},

s'—s

where D*%" = |V[*(1 — A)" =",

Next we introduce the Besov space with the mixed norms on the polar co-
ordinates.

Definition 2. For any 1 < p,q,p < oo and s € R, we define the seminorm
| -1l5: forany f e S'(R™):
pP;q:p

1fllss, = 12570 Flezzore),

where m(f) = x(£/27 )f({) for some radial Littlewood- Paley function y
such that x (&) =1 for |£] <1 and x(&) = 0 for |£| > 2. Here we used

Ihllzere = [Ih(ro)lcallorn—1ar), 1< p,q < 0.

We also define the seminormed space B; ap PY

By oy =1 @i % f € SHB™) ¢ | flls, <o),

jez

This definition makes sense as a space embedded in §’'(R™) if the series converges
whenever the semi-norm is finite, which is the case if s < n/p or s = n/p and
p = 1. We will deal with those cases only. Obviously, Bf,ypyp = B;p is the
standard (isotropic) homogeneous Besov space.



We can also define the Sobolev or Bessel-potential space on the polar coor-
dinates:

Definition 3. For any s, € R and 1 < p,q < oo, we define the seminormed
space HyHy', and the norm HH®_ for any f € S}, as follows:

p q,0
HyHg, = {f € SHR™) : 1f gy, < 00}, (2.1)
and
1Al e = W1 DS Fll s, (2.2)

where D, = /1 — A,.
If & = 0, we then denote H;Hgg by H;yq. H;yp = H; is the standard (isotropic)
homogeneous Sobolev space. It is also clear that Hg’q = LPLZ. Similarly, the

inhomogeneous version is defined as follows: for s,a € Rand 1 <p,q < 00
I llerg g, = 1I(1 = A)EDG Lo ps - (2.3)

We denote HfH%U and HOHUQ by H°HY and L%Hg‘, respectively.

Finally, we consider the weighted hybrid Sobolev space with angular regu-
larity:
Definition 4. H5 Hg = {f € S |fll e ys = I [7D™ Dgollza < oo},
where 0 < a <n, s,s € R.
Since A and |z| commute with A,, ”U”m e = ”U”Hgﬁjjg"

3 Improved Strichartz estimates

In this section we introduce two type of Strichartz estimates. The first one is an
improvement of L1.L? type Strichartz estimate for radially symmetric functions.
If ¢ and F are radially symmetric, then by the well-knowll\ decay property of the
Fourier transform of measure on the unit sphere that |do ()| < (1+ €)=
the estimate (1.5) can be extended as follows:

1o Sl me,

LEIOET

/ Ut — ) F(t') dt’

where s € R and 2—" <p<oo,a= % "+1. Let us observe that the embedding

H:NH 22’,3 ~% < L" holds for any = <7 < #’EQ) < 5. This plays
2
a key role i 1n the proof of global well—posedness The second 1nequahty follows

immediately from the generalized Minkowski inequality. See [3] for details.

(3.1)
Sl iysres

1
TS
THP



Interpolating (1.5) and (3.1), we get a Strichartz estimate with wider range
of pairs (q, ) For the global well-posedness of radial solutions, we need only
the pairs (q, =) with ¢ slightly larger than =% . Actually, given € > 0 we can

ﬁndqandasuchthat—<q< +€,2n<a<—+€and

0Ol -0 S0l

2n

¢ i (3.2)
/ Ut —t)F(t")dt
0

i SIF,

1
a 2
LTH 2n

n—1

With these pairs we can choose the value of « close to —n in such a way that
v < 2 — 2a, provided 7 is close to =L

The other Strichartz estimate is a L2 weighted version. Let % 5 <a <3 and
n > 2. Then for any ¢ € H®, s > 0, we have

o4, S llell s (3.3)

O IR

The constants in the estimates can be chosen independently of T'. For the proof
of (3.3), one can use the spherical harmonic expansion. From the duality and
interpolation argument it follows that for 1 < ¢ <2

—2a(1—1/q),2

|| / (= VR Ay o gy SNF g oo (34)

where s’ = (1 —a)(3—2/q), " =s' —(1-1/¢) and o = (a—1/2)(3—2/q). For
details see Section 2 of [6].

For the nonhomogeneous Strichartz estimate, one can use the low-diagonal
operator estimate in [1, 7, 18] as follows:

Lemma 3.1. Let A and B be Banach spaces Let K be an operator defined by
kernel k mapping B to A such that KG(t fo (t —t")G(t')dt' and satisfy
that |KG|reay < ClGllze s for some 1 < p,g < oo. Here C does not

depend on T If p < q, then the low-diagonal operator K defined by KG =
fo (t =G dt’ satisfies that ||[KG|[ps 4y < C|G| z (55, where C does not
depend on T

Let A = fIi:;lIHg for s',s",« as in (3.4), B = Ho;é(zl 1/q).2 and k(t) be
U(t). Then if 1 < ¢ < 2, we get the nonhomogeneous Strichartz estimate as
follows.

I [ VGO Wy oy Sz (39)
where s = (1—a)(3—-2/q),s" =5 —(1—-1/¢) and a = (a — 1/2)(3 — 2/q).
Remark 1. In view of the weighted nonhomogeneous Strichartz estimate (3.5),
we can get a better angular regularity gain, if a,q > 1. However, instead, we
lose the spatial regularity because s, s” < 0 and we need a spatial decay for F'
as |z| — oo.



For the global well-posedness we need only the case that a = 1,5 = % and
g = 1. In that case we can obtain a simple L?-weighted Strichartz estimate such
that

-1
e~ 0@l s % ol
-1 tU _VE(#) d <I\F (3.6)
o [ ve-nEea| L <IFL
0 LI(L2HZ) r

Here by a simple argument the inhomogeneous Sobolv norm of H 2 was replaced
L |

by the homogeneous one of Hz Actually, without using Lemma 3.1 the second

inequality of (3.6) can be easily shown by the generalized Minkowski inequality

as of (3.1).

4 Weighted Sobolev inequalities on the polar co-
ordinates

The Hardy inequalities (1.3) and (1.4) can be improved for radial functions.
More generally, we can extend the radial improvements, Lemmas 2 and 3 of [6],
to the non-radial case in this section. By using different amount of regularity
in the radial and the angular directions, we can get more general Sobolev type
inequalities with weights.

Lemma 4.1. Let p,q,q1 € [1,00], 0 <~y <{(n—1)/p and

1 Y
p n—1

_|_

1
— >
q1

Q| =

Then we have
2l fllpeern S ||f||B:/qP1—W (4.1)
Moreover, if 0 <~y/(n—1) <1/p and v/(n—1) # 1/p —1/q, then we have
el Flszan= S 15 gg S Wl gp (12)

where LIV is the weak LY space on the unit sphere.

Proof. We start with (4.1). If v = 0, it is the special case of (I) in Proposition
7.2:

Sn/p 50
Bp,q,l C Boo,ql,l C L?oLgl'

Next we consider the other endpoint v = (n—1)/p. By integration in the radial
direction, we have for any r > 0 and o € S,

o

(o)l < /°° |0 f (s0)|ds < 7“1_"/0 0, f(s0)|s" " tds.



Integrating for o, we get
2" fllrers <N0rfllzry < 10 fllpizs S s, (4.3)

where we used the Minkowski inequality and (IT) of Proposition 7.2. Then by the
complex interpolation with the trivial embedding Bgo’q’l C LPLE, we obtain
(4.1) fory=(n—1)/p.

For the first inequality of (4.2), if v/(n —1) € (0,1/p — 1/q), then we can
apply the real interpolation to (4.1) with p, ¢ fixed but ~,¢; changing slightly.
Then by (IV) of Proposition 7.2 and also the interpolation property of the
Lorentz spaces, we get (4.2). If 1/p—1/q < v/(n—1) < 1/p, then we can apply
the real interpolation in the same way but with ¢; = oo fixed, and we get the
desired estimate. The second inequality of (4.2) follows from (7.25). |

Remark 2. From (4.2) and the Sobolev embedding on S"~! we have for any
1<p<oo,any 0 <~y < (n—1)/pand any o > ~,

R P A Fev— (14)

In fact, from the hypothesis @ > v we can take a number ¢ < (n — 1)/ such
that HY, — L. Since L&D/, 14 we have

2 hllog e S Ml bl ng, S I = A)* (@l e pin1/3.0-

g,0 ™

Then by direct application of (4.2), we can deduce (4.4).
It should be noted that the inequality (4.2) improves the recent result of [5]
for p = 2, in which the following inequality was proved

[ llzee S 1Al grnse—s prg

for 0 <y < (n—1)/2,a > n/2—1+~. The authors of [5] used the spherical
harmonic expansion and the boundedness of the spherical harmonic functions
w.r.t. the supremum norm, which cause the regularity loss for « up to n/2 — 1.

By duality we immediately get

Lemma 4.2. Let p,q,q1 € [1,00], 0 <~y < (n—1)/p,

1 1 1 5 ~ 1 1
—>—-——=+ ) —_— —. 4.5
¢ q p n-—1 n—17éq1 P (4:5)
Then we have
llal =7 % fllzgess S 1y S el lpgszn (26)

We can further add a weight on the left.



Lemma 4.3. Let p,q,q1 € [1,00],0<d <y < (n—1)/p/,

1 1 1 1 1
e e = L
@1 g p n-1 n-1"aq@a p
Then we have
el (2| ~™P~ % f)ll S |||af|‘”“5)f||L¢Lg,1- (4.7)

If p =0, then 6 = 7y is also allowed.

Proof. The function in the norm on the left is bounded by

( [+ ) ol — 41/ o)l dy
lzISlyl - Jyl<el~]z—yl

S 27 s (|21 F]) + 2 PO 1],
hence it is bounded in the norm by the above lemma
Sl A2 D s pgs + el ™21 N papan S M2~ il 1 pga-

where v = 0 is excluded because then v — ¢ = 0 in the second term, but the
estimate is trivially correct if p = oco. Note that we get some room for ¢
when we use the above lemma with v — 9, so we need not worry about the case

(y=9)/(n—-1)=1/q —1/p. O
Remark 3. Using Holder and Sobolev embedding on the unit sphere, the right
hand side of (4.6) with f replaced by fg is bounded by

1712z 2l gl g pznmsvrismns S IS 2 Ml =l 3

Also the right hand side of (4.7) with fg is bounded by

A1, 3 2l~0= gl

J.
L2H? LZHF?

Remark 4. The Lemma 4.2 is necessary for the energy estimate of nonlinear
term via Remark 3. In fact, for radial function u

IOV falyul g S Vs [l )l e + (15 Jul)ull 4
SV fulPllp llull 3 + Vg g * [ul?llzznlull | 20,
=I+1I

The first part I is estimated by Lemma 4.2 with p = co as follows: if 0 < v <
n—1
— X
LS Wl ulPllzallull g S et~ 2 ulZallull ,
2— _
S ullzz Ml g Ml =l 7e

10



For II we have from Lemma 4.2 with p = 2n

IT S| Vypy *[ul? IILGIIUIIH2 S el =l e llull 3

S lall el 1 el a7

Here to use Lemma 4.2 with p = 2n we should restrict the range of v to 0 <
Y<v=(Mm-1)(2n—1)/2n. If n =3, 59 = 2. If n > 4, then 7o > 2. These
estimates are the key parts of the proof of Theorem 5.2 below.

5 Global existence of radial solutions

Now we introduce the improved results for radial solutions. The first one is the
following (see Theorem 1 of [3]).

Theorem 5.1. Let v satisfy 1 < v < 2= n > 2,5 > 1. If X > 0, then for
any radially symmetric function @ € H 5, (1.8) has a unique radially symmetric
solution v € C(R; H®) N L] H2’2 7 for q = 2t e and 0 = &= + & with

loc

sufficiently small €,¢' > 0. For all time the energy and L* norm of u(t) are
conserved. If A < 0, then there exists p > 0 such that the same conclusion as
above holds for ¢ with ||¢||r2 < p. Moreover, for s > %

lu®ll e S Iellae exp (ClH(1+E@)T7) (5.1)

where E(p) = E(p) if A >0 and E(p) = (K(9)) if A <O.

This theorem shows the global well-posedness for nQ_-;r-Ll < v < % and

n > 2. The proof relies heavily on the Strichartz estimate (3.2) and the Hardy
inequality (1.4). For example one needs

(t - t/)F(U)(t/) dt’ 11
Lo AhE

n—1

SIF@) ey e S I1Va o [ulPll oy o lullpg e + [V IUIZIIL;'HS Ll
=11)

Y=

L(I L= ’Y+50

1—2
STl el e e

1—
+ T4 g, Il

In-~—eq

<7l-3 —
ST (b e by ey ) il

where 0 < g9 <n —1.

Lq Ln— ~y+s

L(I ILn— -y+50

The second result is on the improvement for n > 4.

11



Theorem 5.2. (1) Let 1 <y <5/3 form=3and1 <~y <2 forn>4. Letp €
H? be radially symmetric and assume that |||z < p for some sufficiently small
p if A < 0. Then there exists a unique radial solution u € Co(H=) N L2 (|z|L?)
of (1.8) satisfying the energy and L? conservations (1.2).

(2) Let v = 2 and n > 4. Let ¢ € H' be radially symmetric. If ||| m
is sufficiently small, then there exists a unique radial solution u € Cy(H') N
L2(|z|L?) to (1.8). Moreover, there exist radial functions ¢+ and o~ such that

|u(t) — Ut)e®||gr — 0 as t— +oo.

If n = 3, then Theorem 5.2 improves the original results of Theorem 1 in [6]
via Lemma 4.2 and the argument in Remark 4 up to v < 5/3. If n > 4, then it
shows that the answer on question for the global well-posedness is positive at
least for the radially symmetric case with dimension n > 4. For (2), it is enough
to adopt Lemma 4.2 with f replaced by |u|?, Holder inequality and (3.6). The
bound p in Theorems 5.1 and 5.2 can be taken as

p < min (1, (87CT(L+ gl )"0 7) D)

For this, see [3, 4, 6].

6 Extension to nonradial cases

In this section we apply the estimates (3.6) and (4.6) to the nonradial cases.
We first show the following lemma.

Lemma 6.1. For any 0 < a <~y < (n—1)(2n —1)/(2n) we have

1V fuPyal g S el ula g lal

Proof. Let v = V,  |u|>. We want to estimate the mixed Sobolev norm
lvw|| 12 o for 0 < a < < (n—1)(2n — 1)/(2n) by the Leibniz rule. For

the x derivative, we can use the (radial) Littlewood-Paley decomposition, which
commutes with the angular derivative D,. We have

loullgsags ~ 120D @u)_ 2. (6.1)
Further applying the decomposition to v and u, we can bound the above by the
Z?ez norm of

1
Z [||2j/2D3(v<j—1Uj+z)||Lg + ||2j/2D3‘(Uj+ZU<j—1)||Lg]
I=—1 (6.2)
+ D S 11272D5 (vpw)| 2

k2j—=1 125-1, [k—1]<2

12



where we denoted

Uj = P * U, u<j:u—2<pk*u,. (6.3)
k>3

Then for the angular derivative DS we apply the standard multiplication esti-
mate, (which we can transfer from R™~! by using local coordinates on S 1)

v ] u «
foulls < 4100 el (6.4)
el Nalag, . .
where we choose g1, g2 such that
1 1 1 :
q2227q_2_%§q_1<ﬁ7 1fa>07 (65)
q =00,q2 =2n, if a=0.
Then (6.2) is bounded by
> (1050l e 2721 D5l 12 + 22| Dgr] a0 a2 | Dl o |
1—j|<
s , (6.6)
+ > 29 IDgw| e 27 DY 12

k2j—=1 12j-1, |k—1|<2

where we have discarded the low frequency restriction ;_; by using Lemma
7.1. Then the £3_, norm is bounded by

D30l gy D%l o (6.7)

,1

v{fqz,l - Bgo’th C LL%Z and the Young

inequality ¢! * £2 C ¢2 for the sum over k ~ [ > j.
For the v norm in (6.7), we apply Lemma 4.2 after using (7.24). Then it is
bounded by

where we used the embedding B;

1DS0P gy yann S ol D3l 2 (6.8)

for any ¢ € [1, 00| satisfying

1<1_|_1 1
q Qs 2n n-—1

for a >0, (6.9)

where we were able to replace the Lorentz space L%! with the Lebesgue space
by excluding the critical case (the equality). Note also that the second condition
in (4.5) is already satisfied because from (6.5) we have

1 1 «

@ 2n n—1"n-1

for a <0, 0< % for a =0. (6.10)
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For (6.8) we use again the product estimate in the Sobolev space on S~ 1:

lwvlleg S lullagllvll g (6.11)

q0,0 ™

which holds for any ¢g € [1, 00| satisfying

1 1 a—v a— 2y
— — 1 . 6.12
qo>max{2—|—n_1, +n—1] (6.12)

Under the conditions (6.5) and (6.9), we can choose any ¢ satisfying

1 . a—7v 3 1 v
- 14— - — - 1
q<mln[—|—n_1,2 o™ n—l]’ (6.13)
hence in particular we can make gg < ¢. Then we can bound (6.8) by
=20l - (6.14)
|

Remark 5. If we further assume that v < 2, then we get from the complex
interpolations

2— _
ol =2y < | gzl el (6.15)
Bl 2|l " Ml e o
@ T o

By the same argument we can get the following.

Lemma 6.2. For any 0 < a<~vy < (n—1)(2n—1)/(2n), we have
1V, ol — (Voo .y
S M7 (w = o)l 2z (a1l 2y + Nl ™0l 2 el 4 .

72002 g s = ol
(o8

Remark 6. By a slight change of Littlewood-Paley decomposition {¢’};>0 such
that gp} =y;forj>1land oy =1-3" j>1 5> We can replace the homogeneous

o1 . . 1
H=z norm with the inhomogeneous one Hz.

In view of the above lemmas and the Strichartz estimate (3.6), it seems
possible to get a global existence for each a < v < % forn=3or a <~ <2 for
n > 4. However, since we do not know the boundedness of ||u(t)||H%Ha with

respect to t, for the present we cannot use the time iteration argument as used
in the proof of the previous results. The following is the local existence result
for these ~.

14



Proposition 6.3. Let % << % forn =3 and % <~ <2 forn>4. For any
3
@€ HiHZ, there exists a T* = T*(p) € (0,00] such that there exists a unique
3
solution u € C([=T,T); HTH2) N L2(—T, T} |«|L2H?) to (1.8) for all T < T*.
Moreover, if T* < co, then

.-
| el e = o (6.16)
0 T
Proof. Let X1, be a complete metric space with the metric d(u,v) = ||u —
3
v||x, and of functions such that ||v||x, < p, where Xp = C([-T,T}; HLHU2 N

L2 (|x|L2H2)). Then we claim that the map N defined by N(u) = U(t)y

i fo (t —t')F(u) dt' is a contraction on X, provided T is sufﬁaently small.
From the Str1chartz estimate (3.6), Lemma 6.1 with v = 2 and v as stated

and Remark 6, we have for any v € X1,

[V (u) ] x (6.17)
Sl y 3 + T Hlulle, SNl g + 772 |
Hence choosing p satisfying p/2 > C ||g0|| o3 and T so small that the mapping
N maps X7, to itself. We also have from Lemma 6.2 that
d(N(u), N(v)) < CT "% p?d(u, v).
Thus by the choice of p and T such that CcT- % < 5, N becomes a contraction
mapping.
Now we suppose that the maximal existence time T of the local solution
constructed as above is finite. Then we have lim |u(t)]| , = —
t—T* H2 HZNL(—t,t;|x|L2H2)

+00. To show the blowup criterion we observe from (3.6), Lemma 6.1 and (6.15)
that for any 0 < T < T*

”u“Lw(—T,T;H%HG%)mL2(—T,T;\x\LgHg)
T
2
Sl + [ N0yl 5 0 (618)
’ /
—v/2,,112
Sl s+ [ el el s,

By Gronwall’s inequality we get

T
[l sy SIell, 5 exp [C/O IIIIIJI_””UlligHgdt]

L°°(—T,T;H2H2

and by inserting this into (6.18) we also get
([

1 3
L (=T, T;HZ HZ )NL2(~T.T3|=|L2HZ)

T
-v/2,,1|12
Slely 300 [c | et 2l dt] '

15



This implies the blowup criterion (6.16).

|
Remark 7. Consider the following equation with angular derivatives:
iug — D3 V1= Au=F(u) = AN(Vy x [u*)u, u(0) =, (6.19)

where D, . = /1 —¢A, and ¢ > 0. One can easily show that the solution
satisfies the conservation laws:

Ju(®)lzz = el
Epe(u(t)) = (D3 VT~ Bu,u) + 1{F(u),u) = B (g).

Since ||u(t )|| 5 < C.E,.(p)? for e >0 and A > 0, we can proceed to the

2
global ex1stence Wlth time iteration. In case that A < 0 we need a smallness
of ||¢|[z2. Now let u. be the global solution to (6.19) for each ¢. Then by
the compactness argument we can easily show that u. converges to a global
weak solution of the original equation along some sequence ¢ — +0. It will
be interesting to see if the convergence holds strongly for the whole sequence
€ — +0. Global weak solutions can be constructed also by mollifying V.

For the case v = 2 and n > 4 we can show the global existence, provided a
smallness of initial data is assumed.

Theorem 6.4. Let v = 2 and n > 4. If ¢ € H? ng and ||¢|| P
H2H,

°°° Wl

sufficiently small, then there exists a unique solution u € C’b(R H3HZ )n
L*(R; |z|L2H?) to (1.8). Moreover, there exist two functions T and ¢~ such
that

lu(t) = U@®)e™ |, b3 0 st oo

Proof. Let Y, be a complete metric space with the metric d(u,v) = ||lu—v||y and
3

of functions such that [|v||y < p, where Y = C’b(]R H Hz) N L2(R; |x|L2H3)
Then we claim that the map N defined by N(u) = —1 fo (t—t"YF(u)dt
is a contraction on Y, provided p is sufficiently Small

From the Strichartz estimate (3.6) and Lemma 6.1 with v =2 and o = 2,
we have for any v € Y),

INWIy Slell g5+ luly Slell 45 +0°

HH2 2

Hence choosing p so small that C’||g0|| < £ and Cp® < £, the mapping N
maps Y, to itself. We also have from Lemma 6.2 that

d(N(u),N(v)) < Cp?d(u,v).

Thus by the choice of p such that Cp? S , N becomes a contraction.
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As for the scattering, let us define functions ¢4 by
+oo
L =p— z/ U(—s)F(u)(s)ds.
0

!
Then clearly ¢4 € Hz H; and one can show that

—1,.12
[ult) = U Ozl 3 3 S Mol e o 1,

— 0 as t— o0,

where I;” = (t,00) and I;” = (—o0o,t). This proves the Theorem 6.4. O

7 Appendix

In this section we investigate the basic properties of mixed normed Besov and
Sobolev spaces, such as the Sobolev embedding, the interpolation property,
lifting property by derivative, etc. The proofs are the same as the the case of
Besov or Sobolev space. The only extra ingredients are the commutativity of
the radial convolution and the mixed norms on the polar coordinates:

Lemma 7.1. If ¢(x) is radially symmetric, then
19 * fllzers < [ fllzerpa 9] ez, (7.1)
for all p1,pa2,p,q,q1 € [1,00] satisfying
1 1 1 1 1

1
—+——1==, —4+——1<-. (7.2)
P11 D2 p q P2 q

This does not hold in general if ¢ is not symmetric.

Proof. The case p, = 0o is trivial:
% flleeere < Ifllpaeyl[¥llpe. (7.3)

Hence by the complex interpolation it suffices to prove the estimate for the case
po = 1. We use the pointwise estimate: for any » > 0 and § € S"~!, we have

| 1w fltea)de < (]« )00), (r4)

where I is the radially symmetric function defined by
F(ro) :/ |f(ro)|do, (7.5)
Sn—1

and the measure do on S™~ ! is normalized.
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(7.4) is proved as follows. First we can replace ¢ and f with |¢| and |f|
respectively. Since v is radially symmetric, the left hand side is invariant with
respect to rotation of f:

/ (6] * | fl(ro)do = / (9] | /(Az) ) (ro)do, (7.6)
Sn—l Sn—l

for any A € SO(n). Integrating it over all A with the normalized Haar measure,

and applying Fubini, we get

[ Wi [ | 1fanjaa| oo = [ (u]s F)ra)ao
gn-1 SO(n) gn-1

= ([¢| * F)(r0),

where we used the radial symmetry of || x F as well.
Taking the LP norm of (7.4), and applying the Minkowski inequality, we get

(7.7)

[0 flleeey < Wl Fllee <@l |Flze = 19l F oy, (7.8)
which is the desired inequality for po = 1 and ¢ = 1. Then by duality we get
[ flg)| = [F10T * ) < W flleprse 19T * gl

. (7.9)
<l 1ML llgll o ps s

where ¢f(z) := ¥(—x), which implies the desired inequality for po = 1 and
g = 0o. Then we get for all ¢ € [1, 00] by the complex interpolation. O

Then we get the following in the same way as for the isotropic Besov spaces:
Proposition 7.2. (I) Sobolev embedding: If s1 < s, p1 > p2, and
81 — S2 1 1 1 1

=— - —< — - —, (7.10)
n pr P2 91 Q2
then we have
Wl S I fllpee, - (7.11)
(I1) Lifting:
IV Flls, ~ Al (7.12)

(III) Complex interpolation: Let 0 € [0,1], and

8:(1—9)81+082, 1:1_9+i,
p P P2
1 1-6 ¢ 1 1-6 6

e @ @ p  p op
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Then we have

581 So _ DS
[Bp17QI7P1’Bp2yQQ7P2]9 = Bpq.p
where [-, ]9 denotes the complex interpolation functor.

(IV) Real interpolation: Let 6 € (0,1), s = (1 — 0)s1 + 0s2 and s1 # s2. Then
we have

581 So _ DS
(Bp,q,pl’Bp,q,pz)aP - Bp,q,p’

where (-,-)a,, denotes the real interpolation functor.

Proof. (I) and (II) are achieved by writing those operation in terms of con-
volution with radial Schwartz functions with the scaling property. Let @; :=
wj—1+@;+¢jr1. Then the Fourier support property implies that ¢; = &, * ;.
Hence by the above lemma

g * fllzzr g < 18jllLeo llws * fllpze paz (7.13)

where pg € [1,00] is chosen such that 1/p; = 1/po+1/p2—1, i.e. n/p{ = s2—s1.
The scaling property implies that

185l = 297770 Gol| oo ~ 262720, (7.14)

Thus we obtain (I).
For (II) we have

0 * VI = [V@; (0 x H) < IV@5] s+ f1 S 100851 % |pj  fI,  (7.15)

where in the last step we used the radial symmetry of ;. Then by the above
lemma we get

||<Pj * vf||L$L§, S ||8r(ﬁj”L1 ||<Pj * f||L£Lg ~ 2j||90j * f||L£Lg- (7.16)

For the reverse inequality, fix a cut-off function I' € C*°(R) satisfying I'(r) = 0
for |r| < 1/(5n) and I'(r) = 1 for |r| > 1/(4n). For § € S~ and j € Z, we
define GY(x) by

I -¢)
Jgna T(w - &)dw

Since [g, , T'(w - £)dw = 1 on supp[x(£/2) — x(4€)] and [0 - £| > 1/(5n) on
suppI'(6 - £), the right hand side is in C§°(R™). Moreover, we have

FGI(27¢) = (i0-&)~" [X(£/2) — x(4€)], (7.17)

%:/ 0-VGY * p;do. (7.18)
Sn—l
Hence

loj* f| = / 9.G?*cpj*Vfd9’§/ |G?|d9*|g0j*Vf|. (7.19)
STL—l STL—I
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Since G; = | gn—1 |G§|d9 is radially symmetric, by the above lemma and by the
scaling property we get

||90j * f||L£Lg < ||Gj||L1 ||90j * vf||L$L§, S 2_j||<Pj * vf||L1;L§,~ (7.20)

Thus we obtain (II).
For the interpolation (ILI) and (IV), we only need a universal retraction from
275900 LP LY, which is the same as in the isotropic case. For any F € (S))” we

define RF(x), and for any f € S} we define S; f(x), respectively by

JEZL
Then we have
RSfZZ@'*%*fZZ%*fo, (7.22)
JEL JEL

which is convergent in S} provided that 2=V mgaj x f is bounded in &’ for some
N € N. Moreover we have by the above lemma

1S fll2-eserrrre = 1 Fllps s

3. (7.23)
[RE|z, < kzg 1Dk * @5 % Fjkllo—sierrzry S NFlla-sseorzrs-

(III) and (IV) follow immediately from the above bounds together with the
corresponding identities for 27752 L2LY spaces (cf. [20]). O

Remark 8. The Sobolev inequality (I) implies in particular that the Littlewood-

Paley decomposition f =3, ¢;* f is convergent in §" if s <n/p or s =n/p
and p = 1. In addition, we have

@ > ~ st
V1 F sy~ e (7.24)

and so in particular
B;S),q,l C Hziq C B,

p,q,00°

(7.25)
The equivalence (7.24) is proved by using Lemma 7.1,

11V1%0; % fllpzrs < WVI* Bl lles = fllere S 27%Mw; * fllpzrs,
lo; * fllzre < WVIT@5llLe 11VI%05 * fllzzre S 277%lw; * VI fllreps -
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