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Packing Arborescences
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Kristóf BÉRCZI and András FRANK *

Abstract

In [7], Edmonds proved a fundamental theorem on packing arborescences that has become

the base of several subsequent extensions. Recently, Japanese researchers found an unexpected
further generalization which gave rise to many interesting questions about this subject [29],
[20]. Another line of researches focused on covering intersecting families which generalizes
Edmonds� theorems in a different way. The two approaches was united in [1] by introducing
the notion of mixed intersecting bi‐set families.

The purpose of this paper is to overview recent developments and to present some new

results. We give a polyhedral description of arborescence packable subgraphs based on a connec‐

tion with bi‐set families, and by using this description we prove TDI‐ness of the corresponding
system of inequalities. We also consider the problem of independent trees and arborescences,
and give a simple algorithm that decomposes a maximal planar graph into three independent
trees.

§1. Introduction

In 1973, J. Edmonds [7] proved the following fundamental theorem.

Theorem 1.1 (Edmonds� disjoint arborescences: weak form). Let D= (V, A)
be a directed graph with a designated root‐node r_{0}. D has k disjoint spanning arbores‐

cences of root r_{0} if and only if D is rooted k‐edge‐connected, that is,

(1.1)  $\rho$(X)\geq k whenever X\subseteq V-r_{0}, X\neq\emptyset. \square 
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Here an arborescence of root r_{0} means a directed tree in which every node is

reachable from a specified root‐node r_{0} . We sometimes identify an arborescence (U, F)
with its edge‐set F and will say that the arborescence F spans U . This result inspired

great many extensions in the last three decades. Here we overview recent advances.

Sub‐ and supermodular set functions are known to be useful tools in graph opti‐
mization but in the last fifteen years it turned out that several results can be extended

to functions defined on pairs of sets or on bi‐sets. Given a ground‐set V
,

we call a pair

X=(X_{O}, X_{I}) of subsets a bi‐set if X_{I}\subseteq X_{O}\subseteq V where X_{O} is the outer member and

X_{I} is the inner member of X . By a bi‐set function we mean a function defined on the

set of bi‐sets of V . We will tacitly identify a bi‐set X=(X_{O}, X_{I}) for which X_{O}=X_{I}

with the set X_{I} and hence bi‐set functions may be considered as straight generalizations
of set functions. The set of all bi‐sets on ground‐set V is denoted by \mathcal{P}_{2}(V)=\mathcal{P}_{2} . The

intersection \cap and the union \cup of bi‐sets is defined in a straightforward manner: for

 X, Y\in \mathcal{P}_{2} let X\cap Y :=(X_{O}\cap Y_{O}, X_{I}\cap Y_{I}) ,
X\cup Y :=(X_{O}\cup Y_{O}, X_{I}\cup Y_{I}) . We write

X\subseteq Y if X_{O}\subseteq Y_{O}, X_{I}\subseteq Y_{I} and this relation is a partial order on \mathcal{P}_{2} . Accordingly,
when X\subseteq Y or Y\subseteq X ,

we call X and Y comparable. A family of pairwise compara‐

ble bi‐sets is called a chain. Two bi‐sets X and Y are independent if  X_{I}\cap Y_{I}=\emptyset or

 V=X_{O}\cup Y_{O} . A set of bi‐sets is independent if its members are pairwise independent.
We call a set of bi‐sets a ring‐family if it is closed under taking union and intersection.

Two bi‐sets are intersecting if  X_{I}\cap Y_{I}\neq\emptyset and properly intersecting if, in addition,

they are not comparable. Note that  X_{O}\cup Y_{O}=V is allowed for two intersecting bi‐sets.

In particular, two sets X and Y are properly intersecting if none of X\cap Y, X-Y, Y-X

is empty. A family of bi‐sets is called laminar if it has no two properly intersecting
members. A family \mathcal{F} of bi‐sets is intersecting if both the union and the intersection

of any two intersecting members of \mathcal{F} belong to \mathcal{F} . In particular, a family \mathcal{L} of subsets

is intersecting if X\cap Y, X\cup Y\in \mathcal{L} whenever X, Y\in \mathcal{L} and  X\cap Y\neq\emptyset . A laminar

family of bi‐sets is obviously intersecting. Two bi‐sets are crossing if  X_{I}\cap Y_{I}\neq\emptyset and

 X_{O}\cup Y_{O}\neq V and properly crossing if they are not comparable. A bi‐set (X_{O}, X_{I})
is trivial if  X_{I}=\emptyset or  X_{O}=V . We will assume throughout the paper that the bi‐set

functions in question are integer‐valued and that their value on trivial bi‐sets is always
zero. In particular, set functions are also integer‐valued and zero on the empty set and

on the ground‐set.
A directed edge enters or covers X if its head is in X_{I} and its tail is outside X_{O}.

The set of edges entering a bi‐set X is denoted by \triangle_{D}^{-}(X)=\triangle^{-}(X) . An edge covers

a family of bi‐sets if it covers each member of the family. For a bi‐set function p, \mathrm{a}

digraph D=(V, A) is said to cover p if $\rho$_{D}(X)\geq p(X) for every X\in \mathcal{P}_{2}(V) where

$\rho$_{D}(X) denotes the number of edges of D covering X . For a vector z : A\rightarrow \mathbb{R}
,

let

$\rho$_{z}(X) :=\displaystyle \sum [  z(a) : a\in A, a covers X]. A vector z : A\rightarrow \mathbb{R} covers p if $\rho$_{z}(X)\geq p(X)
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for every X\in \mathcal{P}_{2}(V) .

A bi‐set function p is said to satisfy the supermodular inequality on X, Y\in \mathcal{P}_{2}

if

(1.2) p(X)+p(Y)\leq p(X\cap Y)+p(X\cup Y) .

If the reverse inequality holds, we speak of the submodular inequality. p is said

to be fully supermodular or supermodular if it satisfies the supermodular inequal‐

ity for every pair of bi‐sets X, Y . If (1.2) holds for intersecting (crossing) pairs, we

speak of intersecting (crossing) supermodular functions. Analogous notions can

be introduced for submodular functions. Sometimes (1.2) is required only for pairs with

p(X)>0 and p(Y)>0 in which case we speak of positively supermodular functions.

Positively intersecting or crossing supermodular functions are defined analogously. \mathrm{A}

typical way to construct a positively supermodular function is replacing each negative
value of a fully supermodular function by zero.

Proposition 1.2. The in‐degree function $\rho$_{D} on \mathcal{P}_{2} is submodular. \square 

Throughout we use the following notation. For an undirected graph G=(V, E)
and a subset X\subseteq V we denote the number of edges having exactly one end in X by

d(X) . Given a directed graph D=(V, A) , $\rho$_{D}(X)=$\rho$_{A}(X)= $\rho$(X) and $\delta$_{D}(X)=
$\delta$_{A}(X)= $\delta$(X) denote the number of edges entering and leaving X

, respectively. For an

edge set E^{\ovalbox{\tt\small REJECT}}\subseteq E (resp. arc set A^{\ovalbox{\tt\small REJECT}}\subseteq A ), we use i_{E'}(X) and e_{E'}(X) (resp. i_{A'}(X) and

e_{A'}(X)) to denote the number of edges in E �

(resp. arcs in A�) induced by and adjacent
to X

, respectively. Often we do not distinguish between a one‐element set and its only
element. For example, the in‐degree  $\rho$(\{v\}) of a singleton \{v\} is abbreviated by  $\rho$(v) .

The new results are emphasized by using capital letters.

The rest of the paper is organized as follows. Section 2 gives an overview of covering
results derived from Edmonds� theorem. Concrete and abstract extensions are presented
in Section 3, while Section 4 contains the polyhedral and algorithmic aspects of packing

branchings. Finally, Section 5 deals with independent arborescences, and an algorithm
for decomposing a maximal planar graph into trees is given.

§2. Extensions and consequences

In this section we exhibit results obtained by applying Edmonds� disjoint arbores‐

cences theorem (Theorem 1.1).
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§2.1. Covering branchings and trees

Theorem 2.1 ([12]). The edge set of a digraph D=(V, A) can be covered by k

branchings if and only if

(2.1) the in‐degree of each node is at most k

and

(2.2) i(X)\leq k(|X|-1) for every \emptyset\subset X\subseteq V.

Proof. Since the in‐degree of each node in one branching is at most one, condition

(2.1) is necessary. Since a forest can have at most |X|-1 edges induced by X, k forests,
and hence k branchings, can have at most k(|X|-1) ,

that is, (2.2) is also necessary.

To prove the sufficiency we use the following elementary construction. Extend the

digraph by adding a new node r_{0} and by adding k- $\rho$(v) parallel edges from r_{0} to v for

each node v\in V . In the resulting digraph D�, we have

$\rho$^{\ovalbox{\tt\small REJECT}}(X)= $\rho$(X)+\displaystyle \sum[k- $\rho$(v) : v\in X]= $\rho$(X)- $\rho$(X)-i(X)+k|X|\geq k
for every non‐empty set X\subseteq V and also $\rho$^{\ovalbox{\tt\small REJECT}}(v)=k for every node v\in V . By Theorem

1.1, the edge set of D �

partitions into k edge‐disjoint spanning arborescences of root

r_{0} . By restricting these arborescences on the edge set of D we obtain the requested

partition of A into k branchings. \square 

It is not difficult to see that if a rooted k‐edge‐connected digraph is minimal in

point of leaving edges, then the in‐degree of each non‐root node is exactly k and so Ed‐

monds� Theorem 1.1 can be easily derived from Theorem 2.1. The following interesting

consequence was proved in [31].

Corollary 2.2 (Z.A. Kareyan). The edge set of a digraph D not containing loops
or parallel edges can be covered by K+1 branchings where K denotes the maximum

in‐degree of a node of D. \square 

The following result follows easily from network flows and was formulated in [16].

Theorem 2.3. Let f : V\rightarrow \mathbb{Z}_{+}\cup\{-\infty\} and g:V\rightarrow \mathbb{Z}_{+}\cup\{\infty\} be two functions
such that f\leq g. A graph G=(V, E) has an orientation for which f(v)\leq $\rho$(v)\leq g(v)
for every node v if and only if

(2.3) e_{G}(X)\geq f(X) for every subset X\subseteq V,

and

(2.4) i_{G}(X)\leq g(X) for every subset X\subseteq V. \square 
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This immediately implies the following earlier result.

Theorem 2.4 (Orientation lemma, S.L. Hakimi [21]). For an undirected graph

G=(V, E) and a function m : V\rightarrow \mathbb{Z} the following statements are equivalent.

(2.5) G has an orientation so that  $\rho$(v)=m(v) for every node v ;

(2.6) e_{G}(X)\geq m(X) for every subset X\subseteq V and m(V)=|E| ;

(2.7) i_{G}(Y)\leq m(Y) for every subset Y\subseteq V and m(V)=|E|. \square 

Another interesting consequence is the following.

Theorem 2.5 (Nash‐Williams). The edge set of an undirected graph G=(V, E)
can be covered by k forests if and only if

(2.8) i_{G}(X)\leq k(|X|-1) for every \emptyset\neq X\subseteq V.

Proof. The necessity is clear since any forest can have at most |X|-1 edges
induced by X.

For the sufficiency, we claim that G=(V, E) has an orientation D in which the

in‐degree of each node is at most k . Indeed, (2.8) implies that i_{G}(X)\leq k|X| holds for

X\subseteq V and then Theorem 2.3, when applied to g\equiv k, f\equiv 0 ,
states the existence of

such an orientation. By applying Theorem 2.1 to D we are done. \square 

§2.2. Covering arborescences

When can a digraph D=(V, A) be covered by k spanning arborescences of root

r_{0} ? For any subset X of nodes, let \mathrm{r}^{\mathrm{t}}-(X) :=\{v\in X : there is an edge uv\in A for

which u\in V-X } and call this set the entrance of X . That is, the entrance consists

of the head nodes of edges entering X . The following result may be considered as a

counterpart of the disjoint arborescences theorem.

Theorem 2.6 (K. Vidyasankar [39]). Let r_{0} be a root node of a digraph D=

(V, A) so that no edge enters r_{0} . It is possible to cover the edge set of D by k spanning
arborescences of root r_{0} if and only if

(2.9)  $\rho$(v)\leq k for every v\in V-r_{0}

and

(2.10) k- $\rho$(X)\displaystyle \leq\sum[k- $\rho$(v) : v\in \mathrm{r}^{\mathrm{t}-}(X)] for every X\subseteq V-r_{0}

where \mathrm{T}^{-}(X) is the entrance of X. \square 
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In Section 3.1 we give a generalization of this theorem.

§2.3. Packing trees

The following was shown in [11].

Theorem 2.7 ([11]). Let G= (V, E) be an undirected graph and r_{0}\in V a

designated root node. There is a rooted k‐edge‐connected orientation of G if and only if
G is k‐partition‐connected, that is,

(2.11) e(\mathcal{F})\geq k(t-1)

holds for every partition \mathcal{F}:=\{V_{1}, V_{t}\} of V where e(\mathcal{F}) denotes the edges connecting
distinct parts (that is, e(\displaystyle \mathcal{F})=\sum_{i}d(V_{i})/2) . \square 

The theorem combined with Edmonds� disjoint arborescences theorem immediately

implies the following result.

Theorem 2.8 (W.T. Tutte [38]). An undirected graph G= (V, E) is k‐tree‐

connected if and only if it is k‐partition‐connected. In other words, G contains k edge‐

disjoint spanning trees if and only if

(2.12) e(\mathcal{F})\geq k(t-1) for every partition \mathcal{F} :=\{V_{1}, V_{t}\} of V.

Proof. Necessity. From a connected graph we obtain a connected graph by con‐

tracting each part of a given partition into single nodes. Therefore each spanning tree

must contain at least t-1 cross edges and hence k edge‐disjoint spanning trees contains

k(t-1) cross edges from which the necessity of (2.12) follows.

To see the sufficiency, observe first that, for an arbitrarily chosen root node  r_{0}\in

 V
,

Theorem 2.7 implies the existence of a rooted k‐edge‐connected orientation D of

G . Second, by applying Edmonds� Theorem 1.1, one obtains k edge‐disjoint spanning
arborescences of D which correspond to k edge‐disjoint spanning trees of G. \square 

The following orientation theorem will be used.

Theorem 2.9 ([11]). Let G=(V, E) be an undirected graph and h an integer‐
valued intersecting supermodular function (with possible negative values). There is an

orientation of G covering h if and only if

(2.13) e^{\ovalbox{\tt\small REJECT}}(\displaystyle \mathcal{P})\geq\sum[h(V_{i}) : i=1, t]
holds for every subpartition \mathcal{P}=\{V_{1}, V_{t}\} of V where e^{\ovalbox{\tt\small REJECT}}(\mathcal{P}) denotes the number of

edges of G entering at least one member of \mathcal{P}. \square 
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This �abstract� theorem can be specialized to obtain the following connectivity
orientation result [11].

Theorem 2.10. Let M=(V, A+E) be a mixed graph consisting of an undirected

graph G=(V, E) and a directed graph D=(V, A) ,
and let r_{0}\in V be a designated root

node. M has a rooted k‐edge‐connected orientation with respect to r_{0} if and only if

(2.14) e(\displaystyle \mathcal{P})\geq\sum_{i=1}^{p}[k-$\rho$_{D}(Vi)]
holds for every partition \mathcal{P} :=\{V_{0}, V_{1}, V_{p}\} of V where r_{0}\in V_{0} and e(\mathcal{P}) denotes the

number of edges of G connecting distinct parts of \mathcal{P}. \square 

By this result, Tutte�s theorem can be extended to mixed graphs. We call a mixed

tree T a mixed arborescence of root r_{0} if it is possible to orient its undirected edges so

that the resulting directed tree is an arborescence. This is clearly equivalent to requiring
for each directed edge of T to be oriented away from r_{0}.

Theorem 2.11 ([11]). In a mixed graph M=(V, A+E) with a root node r_{0}

there are k edge‐disjoint spanning mixed arborescences of root r_{0} if and only if

(2.15) e(\displaystyle \mathcal{P})\geq\sum_{i=1}^{p}[k-$\rho$_{D}(Vi)]
holds for every partition \mathcal{P} :=\{V_{0}, V_{1}, V_{p}\} of V where r_{0}\in V_{0} and e(\mathcal{P}) denotes the

number of edges of G connecting distinct parts of \mathcal{P}.

Outline of the proof. The necessity is left to the reader. The sufficiency follows

immediately by combining Theorems 1.1 and 2.10. \square 

§2.4. Root‐vectors

Call a vector z:V\rightarrow\{0, 1, k\} a root‐vector if there are k edge‐disjoint span‐

ning arborescences in D so that each node v is the root of z(v) arborescences. From

Edmonds� theorem one easily gets the following characterization of root‐vectors.

Theorem 2.12. Given a digraph D^{\ovalbox{\tt\small REJECT}}=(V^{\ovalbox{\tt\small REJECT}}, A^{\ovalbox{\tt\small REJECT}}) , a vector z is a root‐vector if
and only if z(V^{\ovalbox{\tt\small REJECT}})=k and z(X)\geq k-$\rho$^{\ovalbox{\tt\small REJECT}}(X) for every non‐empty subset X\subseteq V^{\ovalbox{\tt\small REJECT}}

Proof. The necessity of both conditions is evident. For the sufficiency, extend D �

with a node r_{0} and z(v) parallel edges from r_{0} to v for each v\in V . In the resulting
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digraph D the out‐degree of r_{0} is exactly k and $\rho$_{D}(X)=z(X)+$\rho$^{\ovalbox{\tt\small REJECT}}(X)\geq k holds for

every non‐empty X\subseteq V^{\ovalbox{\tt\small REJECT}} . By Edmonds� theorem, D contains k edge‐disjoint spanning
arborescences of root r_{0} . Since $\delta$_{D}(r_{0})=k ,

each of these arborescences must have

exactly one edge leaving r_{0} and therefore their restrictions to A � form k arborescences

of D � of root‐vector z. \square 

For an intersecting supermodular function p with finite p(S) ,
let

B^{\ovalbox{\tt\small REJECT}}(p) := { x\in \mathbb{R}^{S} : x(S)=p(S) , x(A)\geq p(A) for every A\subseteq S}.

This is called a base‐polyhedron. The following result appeared in an equivalent form

in [18].

Theorem 2.13 (A. Frank, É. Tardos). Let p be an intersecting supermodular

function for which p(S) finite and let f : S\rightarrow \mathbb{R}\cup\{-\infty\}, g : S\rightarrow \mathbb{R}\cup\{\infty\} be

two functions for which f\leq g.

(i) The polyhedron \{x\in B^{\ovalbox{\tt\small REJECT}}(p):f\leq x\} is non‐empty if and only if

(2.16) f(S)\leq p(S)

and

(2.17) f(X_{0})+\displaystyle \sum_{i=1}^{t}p(X_{i})\leq p(S)
for every partition \{X_{0}, X_{1}, X_{t}\} (t\geq 1) of S in which only X_{0} may be empty.

(ii) The polyhedron \{x\in B^{\ovalbox{\tt\small REJECT}}(p):x\leq g\} is non‐empty if and only if

(2.18) g(X)\geq p(X) for every X\subseteq S.

(iii) The base‐polyhedron \{x\in B^{\ovalbox{\tt\small REJECT}}(p):f\leq x\leq g\} is non‐empty if and only if neither

\{x\in B^{\ovalbox{\tt\small REJECT}}(p):f\leq x\} nor \{x\in B^{\ovalbox{\tt\small REJECT}}(p):x\leq g\} is empty.

If, in addition, each ofp, f and g is integer‐valued, then the corresponding polyhedra
are integral. \square 

Let D=(V, A) be a digraph. Define the set function p by p(X)=k- $\rho$(X) for

non‐empty subsets X . Then p is intersecting supermodular and Theorem 2.12 implies
that the root vectors of D are exactly the integral elements of the bases polyhedron
B �

(p) . By combining this with Theorem 2.13, one arrives at the following result.

Theorem 2.14 (M.C. Cai [2], A. Frank [13]). In a digraph D=(V, A) there ex‐

ist k edge‐disjoint spanning arborescences so that
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(i) each node v is the root of at most g(v) of them if and only if

(2.19) \displaystyle \sum_{i=1}^{t}$\rho$_{D}(X_{i})\geq k(t-1)
holds for every subpartition \{X_{1}, X_{t}\} of V

,
and

(2.20) g(X)\geq k-$\rho$_{D}(X)

for every \emptyset\subset X\subseteq V ;

(ii) each node v is the root of at least f(v) of them if and only if f(V)\leq k and

(2.21) \displaystyle \sum_{i=1}^{t}$\rho$_{D}(X_{i})\geq k(t-1)+f(X_{0})
holds for every partition \{X_{0}, X_{1}, X_{t}\} of V for which t\geq 1 and only X_{0} may

be empty;

(iii) each node v is the root of at least f(v) and at most g(v) of them if and only if the

lower bound problem and the upper bound problem have separately solutions. \square 

Two interesting special cases are as follows.

Corollary 2.15. A digraph D=(V, A) includes k edge‐disjoint spanning ar‐

borescences (with no restriction on their roots) if and only if \displaystyle \sum_{i=1}^{t}$\rho$_{D}(X_{i})\geq k(t-1) for

every subpartition \{X_{1}, X_{t}\} of V. \square 

Corollary 2.16. A digraph D=(V, A) includes k edge‐disjoint spanning ar‐

borescences whose roots are distinct if and only if|X|\geq k-$\rho$_{D}(X) holds for every non‐

empty subset X\subseteq V set and \displaystyle \sum_{i=1}^{t}$\rho$_{D}(X_{i})\geq k(t-1) for every subpartition \{X_{1}, X_{t}\}
of V. \square 

§3. Evolution of disjoint arborescences

§3.1. Concrete extensions

Edmonds actually proved his theorem in a stronger form where the goal was packing
k edge‐disjoint branchings of given root‐sets. A branching is a directed forest in which
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the in‐degree of each node is at most one. The set of nodes of in‐degree 0 is called

the root‐set of the branching. Note that a branching with root‐set R is the union of

|R| node‐disjoint arborescences (where an arborescence may consist of a single node

and no edge but we always assume that an arborescence has at least one node). For a

digraph D=(V, A) and root‐set \emptyset\subset R\subseteq V a branching (V, B) is called a spanning
R‐branching of D if its root‐set is R . In particular, if R is a singleton consisting of an

element s
,

then a spanning branching is a spanning arborescence of root s.

Theorem 3.1 (Edmonds� disjoint branchings). In a digraph D= (V, A) ,
let

\mathcal{R}=\{R_{1}, R_{k}\} be a family of k non‐empty (not necessarily disjoint or distinct) sub‐

sets of V. There are k edge‐disjoint spanning branchings of D with root‐sets R_{1}, R_{k},

respectively, if and only if

(3.1)  $\rho$(X)\geq p(X) whenever \emptyset\subset X\subseteq V

where p(X) denotes the number of root‐sets R_{i} disjoint from X. \square 

Remark. In the special case of Theorem 3.1 when each root‐set R_{i} is a singleton

consisting of the same node r_{0} ,
we are back at Theorem 1.1. Conversely, when the R_{i} �s

are singletons (which may or may not be distinct), then Theorem 3.1 easily follows from

Theorem 1.1. However, for general R_{i} �s no reduction is known.

Theorem 3.2 (Edmonds� disjoint arborescences: strong form). Let D=(V, A)
be a digraph whose node set is partitioned into a root‐set R=\{r_{1}, r_{k}\} (of distinct

roots) and a terminal set T. Suppose that no edge of D enters any node of R. There

are k disjoint arborescences F_{1}, F_{k} in D so that F_{i} is rooted at r_{i} and spans T+r_{i}

for each i=1, k if and only if $\rho$_{D}(X)\geq|R-X| for every subset X\subseteq V for which

X\cap T\neq\emptyset. \square 

This follows easily by applying Theorem 3.1 to the subgraph D � of D induced by T

with the choice R_{i}= {v : there is an edge r_{i}v\in A} (i=1, k) . The same construction

shows the reverse implication, too.

The weak form of Edmonds� theorem could be used to derive Nash‐Williams theo‐

rem on covering graphs by forests. The strong form gives rise to the following sharpen‐

ing.

Theorem 3.3. Suppose that the edge set of a connected undirected graph G=

(V, E\cup F) is partitioned into subsets E and F where F is the union of k trees T_{i}=

(R_{i}, F_{i})(i=1, k) for which \emptyset\neq R_{i}\subseteq V (allowing F_{i}=\emptyset, |R_{i}|=1 ). It is possible to

extend the k trees from the elements of E into k spanning trees covering E\cup F if and

only if

(3.2) i_{E}(X)\displaystyle \leq\sum_{v\in X}p(v)-p(X) for every \emptyset\subset X\subseteq V
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where i_{E}(X) denotes the number of edges in E induced by X, p(X) denotes the number

of sets R_{i} disjoint from X.

Proof. Necessity. Let X be a non‐empty subset of V . If  R_{i}\cap X\neq\emptyset ,
then a forest

including  T_{i} may contain at most |X-R_{i}| elements of E induced by X . Therefore the

total number of these type of edges is at most

\displaystyle \sum_{R_{i}\cap X\neq\emptyset}|X-R_{i}|=\sum_{1}^{k}|X-R_{i}|-p(X)|X|=\sum_{v\in X}p(v)-p(X)|X|.
If  R_{i}\cap X=\emptyset ,

then a forest including  T_{i} may contain at most |X|-1 elements of E

induced by X . Therefore the total number of these type of edges is at most p(X)(|X|-1) .

By combining the two upper bounds, (3.2) follows.

Sufficiency. We may assume that G is maximal in the sense that the addition of

any possible new edge to E would destroy (3.2). Define a set function b by

b(X):=\displaystyle \sum_{v\in X}p(v)-p(X) .

Then b is intersecting submodular. Call a set X tight if i_{E}(X)=b(X) . The submod‐

ularity of b and (3.2) imply that the union (and intersection) of two intersecting tight
sets X and Y is tight since

 i_{E}(X)+i_{E}(Y)=b(X)+b(Y)\geq b(X\cap Y)+b(X\cup Y)\geq

\geq i_{E}(X\cap Y)+i_{E}(X\cup Y)\geq i_{E}(X)+i_{E}(Y)

from which one must have i_{E}(X\cup Y)=b(X\cup Y) . Therefore the maximal tight sets

are disjoint and hence the maximality of G implies that V itself is tight, that is, |E|=

\displaystyle \sum[p(v):v\in V].
Let \mathrm{m}(v) :=p(v) (v\in V) . We have |E|=m(V) and i_{E}(X)\leq m(X) for every

X\subseteq V by (3.2). By the Orientation lemma (Theorem 2.4), there is an orientation \vec{E} of

E for which $\rho$_{\vec{E}}(v)=m(v) for every v\in V . Condition (3.2) implies for this orientation

that  $\rho$(X)=\displaystyle \sum[ $\rho$(v):v\in X]-i_{E}(X)=\sum[p(v): v\in X]-i_{E}(X)\geq p(X) . By

Theorem 3.1, there are k edge‐disjoint spanning branchings \vec{B}_{1}, \vec{B}_{k} with root sets

R_{1}, R_{k} , respectively. By this construction, each underlying forest B_{i} along with the

initial tree T_{i} form a spanning tree of G . Since  $\rho$(v)=p(v) for each node v
, every edge

of G must belong to one of these trees. \square 

Notice that Nash‐Williams� theorem is indeed a special case: let T_{i}=(\{r\}, \emptyset) where

r is an arbitrary node. Then \displaystyle \sum[p(v) : v\in X]-p(X)=k(|X|-1)-0=k(|X|-1)
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whenever r\in X while \displaystyle \sum[p(v) : v\in X]-p(X)=k|X|-k=k(|X|-1) whenever

v\not\in X . In other words, (3.2) and (2.8) are equivalent in this case.

It should be noted that the matroid partition theorem provides a good characteriza‐

tion for the problem formulated in Theorem 3.3 even in the more general case when the

initial subgraphs are not necessarily trees but only forests. The point is that in our case

the necessary and sufficient condition is simpler than the one arising from the matroid

approach, similarly to the situation occurred already in the special case of Theorem 2.5

of Nash‐Williams.

The following proper extension of Theorem 3.2 was derived in [1] with the help of

a theorem of Frank and Tardos [19] on covering supermodular functions by digraphs.

Theorem 3.4 ([1]). Let D=(V, A) be a digraph whose node set is partitioned
into a root‐set R=\{r_{1}, r_{q}\} and a terminal set T. Suppose that no edge of D enters

any node of R. Let m:R\rightarrow \mathbb{Z}_{+} be a function and let k=m(R) . There are k disjoint
arborescences in D so that m(r) of them are rooted at r and spanning T+r for each

r\in R if and only if

(3.3) $\rho$_{D}(X)\geq m(R-X) for every subset X\subseteq V for which X\cap T\neq\emptyset. \square 

On the other hand the following closely related problem proves to be NP‐complete.
Theorem 2.14 characterized root‐vectors satisfying upper and lower bounds. One may

be interested in a possible generalization for the framework described in Theorem 3.4.

We show that this problem is NP‐complete. Indeed, let D=(V, A) be a digraph whose

node set is partitioned into a root‐set R=\{r_{1}, r_{q}\} and a terminal set T . Suppose
that no edge of D enters any node of R.

Theorem 3.5. The problem of deciding whether there are k disjoint arbores‐

cences so that they are rooted at distinct nodes in R and each of them spans T is

NP‐complete.

Proof. Let T be a set with even cardinality and let \mathcal{R}=\{R_{1}, R_{q}\} be subsets of

T so that |R_{i}|\geq 2 for i=1, q . It is well‐known that the problem of deciding whether

T can be covered with k members of \mathcal{R} is NP‐complete. Let D_{T} be a directed graph
on T with $\rho$_{D_{T}}(Z)=k-1 for each Z\subseteq T, |Z|=1 or |Z|=|T|-1 and $\rho$_{D_{T}}(Z)\geq k
otherwise. Such a graph can be constructed easily as follows. Take the same directed

Hamilton cycle on the nodes k-2 times, then add the arcs v_{i}v_{i+\frac{|T|}{2}} to the graph for each

i=0, |T|-1 where v_{0}, v_{|T|-1} denote the nodes according to their order around

the cycle (the indices are meant modulo |T| ). The arising digraph satisfies the in‐degree
conditions.

Extend the graph with R=\{r_{1}, r_{q}\} and with a new arc r_{i}v for each v\in R_{i} . Let

r_{i_{1}}, r_{i_{k}}\in R be a set of distinct root‐nodes. Edmonds� disjoint branchings theorem
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implies that there are edge‐disjoint r_{i} ‐arborescences F_{i} spanning r_{i}+T for i=i_{1}, i_{k}

if and only if $\rho$_{D_{T}}(Z)\geq p(Z) for each \emptyset\subset Z\subseteq T where p(Z) denotes the number of

R_{i} �s (with i\in\{i_{1}, i_{k}\} ) disjoint from Z . For a subset Z with |Z|\geq 2 the inequality
holds automatically because of the structure of D_{T} and |R_{i}|\geq 2 . Hence one only has

to care about sets containing a single node and so the existence of the arborescences is

equivalent to cover T with R_{i_{1}}, R_{i_{k}}.
The observation above means that T can be covered with k members of \mathcal{R} if and

only if the digraph includes k arborescences rooted at different nodes in R. \square 

Recently, Kamiyama, Katoh and Takizawa [29] were able to find a surprising new

proper extension of the strong Edmonds theorem which implies Theorem 3.4 as well.

Theorem 3.6 (N. Kamiyama, N. Katoh, A. Takizawa). Let D=(V, A) be a di‐

graph and R=\{r_{1}, r_{k}\}\subseteq V a list of k (possibly not distinct) root‐nodes. Let S_{i}
denote the set of nodes reachable from r_{i} . There are edge‐disjoint r_{i} ‐arborescences F_{i}

spanning S_{i} for i=1, k if and only if

(3.4) $\rho$_{D}(Z)\geq p_{1}(Z) for every subset Z\subseteq V

where p_{1}(Z) denotes the number of sets S_{i} for which  S_{i}\cap Z\neq\emptyset and  r_{i}\not\in Z. \square 

The original proof is more complicated than that of Theorem 3.1 due to the fact

that the corresponding set function p_{1} in the theorem is no more supermodular. Based

on Theorem 3.6, S. Fujishige [20] recently found a further extension. For two disjoint
subsets X and Y of V of a digraph D=(V, A) ,

we say that Y is reachable from X if

there is a directed path in D whose first node is in X and last node is in Y . We call a

subset U of nodes convex if there is no node v in V-U so that U is reachable from v

and v is reachable from U.

Theorem 3.7 (S. Fujishige). Let D=(V, A) be a directed graph and let R=

\{r_{1}, r_{k}\}\subseteq V be a list of k (possibly not distinct) root‐nodes. Let U_{i}\subseteq V be convex

sets with r_{i}\in U_{i} . There are edge‐disjoint r_{i} ‐arborescences F_{i} spanning U_{i} for i=1, k

if and only if

(3.5) $\rho$_{D}(Z)\geq p_{1}(Z) for every subset Z\subseteq V

where p_{1}(Z) denotes the number of sets U_{i} �s for which  U_{i}\cap Z\neq\emptyset and  r_{i}\not\in Z. \square 

Remark. Convexity plays an essential role in the proof of the theorem. It can be

showed that even an apparently slight weakening of the reachability conditions results

in NP‐complete problems. Namely, let D=(V, A) be a digraph with u_{1}, u_{2}, v_{1}, v_{2}\in V

and let U_{1}=V, U_{2}=V-v_{1} . The problem of finding two edge‐disjoint arborescences

rooted at u_{1}, u_{2} and spanning U_{1}, U_{2} , respectively, is NP‐complete.
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To show this, let D � be a digraph with u_{1}, u_{2}, v_{1}, v_{2}\in V . It is well‐known that the

problem of finding disjoint u_{1}v_{1} and u_{2}v_{2} paths is NP‐complete. We may suppose that

the in‐degree of v_{1} and v_{2} is one. Let D denote the graph arising from D �

by adding
arcs v_{1}v and v_{2}v to A for each v\in V . Clearly, there are edge‐disjoint directed u_{1}v_{1} and

u_{2}v_{2} paths in D � if and only if there are two arborescences F_{1}, F_{2} in D such that F_{i} is

rooted at u_{i} and spans U_{i}.

Vidyasankar�s theorem can be considered as a covering counterpart of Edmonds�

packing theorem. One may be interested in a covering counterpart of Fujishige�s theo‐

rem. We show that Theorem 3.7 implies an extension of Vidyasankar�s result.

Theorem 3.8. Let D=(V, A) be a digraph and \{r_{1}, r_{k}\}=R\subseteq V be a set of

(not necessary distinct) root‐nodes. Let U_{i}\subseteq V be convex sets with r_{i}\in U_{i} . The edge
set A can be covered by r_{i} ‐arborescences F_{i} spanning U_{i} if and only if

(3.6)  $\rho$(v)\leq p_{1}(v) for each v\in V

and

(3.7) p_{1}(X)- $\rho$(X)\displaystyle \leq\sum[p_{1}(v)- $\rho$(v):v\in \mathrm{r}^{\mathrm{t}-}(X)]

for every \emptyset\subset X\subseteq V ,
where \mathrm{r}^{\mathrm{t}}-(X) denotes the entrance of X and p_{1}(X) denotes the

number of sets U_{i} �s for which  U_{i}\cap X\neq\emptyset and  r_{i}\not\in X.

Proof. Necessity. Suppose that there are k proper arborescences covering A . We

may suppose that F_{i} spans U_{i} for each i\in\{1, k\} . Since an arborescence F_{i} contains

no edge entering v if v=r_{i} or v\not\in U_{i} ,
and one edge entering v if v\neq r_{i} and v\in U_{i} ,

the

necessity of (3.6) follows immediately.

Necessity of (3.7) can be seen as follows. For each e\in A let z(e) denote the number

of arborescences covering e minus 1. Then z\geq 0 ,
moreover $\rho$_{z}(X)+ $\rho$(X)\geq p_{1}(X) for

each \emptyset\subset U\subseteq V and $\rho$_{z}(v)+ $\rho$(v)=p_{1}(v) for each v\in V . Since each edge entering X

has its head in \mathrm{T}^{-}(X) ,
we have $\rho$_{z}(X)\displaystyle \leq\sum[$\rho$_{z}(v):v\in \mathrm{r}^{\mathrm{t}-}(X)] and these imply

p_{1}(X)- $\rho$(X)\displaystyle \leq$\rho$_{z}(X)\leq\sum[$\rho$_{z}(v):v\in \mathrm{r}^{\mathrm{t}-}(X)]=\sum[p_{1}(v)- $\rho$(v):v\in \mathrm{r}^{\mathrm{t}-}(X)].
Now we turn to sufficiency. For every node v\in V , give a copy of v to D denoted

by v
� For a subset X of V let X � be the copy of X . Add p_{1}(v) parallel edges from v to

v^{\ovalbox{\tt\small REJECT}}, p_{1}(v)- $\rho$(v) parallel edges from v
�

to v
,

and finally p_{1}(v) parallel edges from u to v
�

for every edge uv\in A . Let D � denote the directed graph thus arising.
If there exist F_{1}^{\ovalbox{\tt\small REJECT}}, F_{k}^{\ovalbox{\tt\small REJECT}} disjoint arborescences in D � such that F_{i}^{\ovalbox{\tt\small REJECT}} is rooted at r_{i} and

F_{i}^{\ovalbox{\tt\small REJECT}} is spanning U_{i}\cup U_{i}^{\ovalbox{\tt\small REJECT}} (where U_{i}^{\ovalbox{\tt\small REJECT}} denotes the copy of U_{i} ), then these determine k proper
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arborescences of D covering A . It is easy to see that for every convex set X\subseteq V in D

the union X\cup X^{\ovalbox{\tt\small REJECT}}\subseteq V\cup V^{\ovalbox{\tt\small REJECT}} is also convex in D �

In other case, by Fujishige�s theorem, there is a subset W of V\cup V^{\ovalbox{\tt\small REJECT}} such that

p^{\ovalbox{\tt\small REJECT}}(W)>$\rho$^{\ovalbox{\tt\small REJECT}}(W) where p^{\ovalbox{\tt\small REJECT}}(W)=|\{i\in\{1, k\} : (U_{i}\cup U_{i}^{\ovalbox{\tt\small REJECT}})\cap W\neq\emptyset, r_{i}\not\in W\}|
and $\rho$^{\ovalbox{\tt\small REJECT}}=$\rho$_{D'} . We define the following subsets of W : X=\{v\in V : v\in W\},
Y=\{v\in V:v^{\ovalbox{\tt\small REJECT}}\not\in W\} ,

and Z=\{v^{\ovalbox{\tt\small REJECT}}\in W:v\not\in W\} . We have

p^{\ovalbox{\tt\small REJECT}}(W)\displaystyle \leq p_{1}(X)+\sum[p_{1}(v):v^{\ovalbox{\tt\small REJECT}}\in Z].
On the other hand

$\rho$_{D'}(W)\displaystyle \geq $\rho$(X)+\sum[p_{1}(v)- $\rho$(v):v\in Y]+\sum[p_{1}(v):v\in \mathrm{r}^{\mathrm{t}-}(X)-Y]+\sum[p_{1}(v):v^{\ovalbox{\tt\small REJECT}}\in Z].
The explanation of the second sum is that if v\in \mathrm{r}^{\mathrm{t}}-(X)-Y ,

then v`\in W also holds.

Moreover, there exists, since v is in the entrance, u\not\in W such that uv\in A ,
hence there

are p_{1}(v) arcs from u to v
�

From these inequalities we get

 p_{1}(X)> $\rho$(X)+\displaystyle \sum[p_{1}(v)- $\rho$(v):v\in Y]+\sum[p_{1}(v):v\in \mathrm{r}^{\mathrm{t}-}(X)-Y]\geq

\displaystyle \geq $\rho$(X)+\sum[p_{1}(v)- $\rho$(v):v\in \mathrm{r}^{\mathrm{t}-}(X)],
contradicting condition (3.7). \square 

§3.2. Abstract extensions

There is another line of extending Theorem 1.1 in which, rather than working

directly with arborescences, one considers disjoint edge‐coverings of certain families of

sets or bi‐sets. We say that a set F of directed edges covers a set or bi‐set X if at least

one element of F enters X . A family of sets or bi‐sets is covered by F if each member

of it is covered.

Theorem 3.9 ([12]). Let D=(V, A) be a digraph and \mathcal{F} an intersecting family

of subsets of V. It is possible to partition A into k coverings of \mathcal{F} if and only if the

in‐degree of every member of \mathcal{F} is at least k. \square 

Obviously, when \mathcal{F} consists of every non‐empty subset of V-r_{0} ,
we obtain the

weak form of Edmonds� theorem. A disadvantage of Theorem 3.9 is that it does not

imply the strong version of Edmonds� theorem. The following result of L. Szegó
\acute{}

[36],
however, overcame this difficulty.
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Theorem 3.10 (L. Szegó
\acute{}

). Let \mathcal{F}_{1}, \mathcal{F}_{k} be intersecting families of subsets of
nodes of a digraph D=(V, A) with the following mixed intersection property:

X\in \mathcal{F}_{i}, Y\in \mathcal{F}_{j}, X\cap Y\neq\emptyset\Rightarrow X\cap Y\in \mathcal{F}_{i}\cap \mathcal{F}_{j}.

Then A can be partitioned into k subsets A_{1}, A_{k} such that A_{i} covers \mathcal{F}_{i} for each

i=1, k if and only if $\rho$_{D}(X)\geq p_{1}(X) for all non‐empty X\subseteq V where p_{1}(X)
denotes the number of \mathcal{F}_{i} �s containing X. \square 

However, Theorem 3.10 does not imply Theorem 3.6. In [1], we derived an extension

of Szegó
\acute{}

�s theorem to bi‐set families.

The bi‐set families \mathcal{F}_{1}, \mathcal{F}_{k} said to satisfy the mixed intersection property if

X\in \mathcal{F}_{i}, Y\in \mathcal{F}_{j}, X_{I}\cap Y_{I}\neq\emptyset\Rightarrow X\cap Y\in \mathcal{F}_{i}\cap \mathcal{F}_{j}.

For a bi‐set X
,

let p_{2}(X) denote the number of indices i for which \mathcal{F}_{i} contains X . For

X\in \mathcal{F}_{i}, Y\in \mathcal{F}_{j} ,
the inclusion X\subseteq Y implies X=X\cap Y\in \mathcal{F}_{j} and hence p_{2} is

monotone non‐increasing in the sense that X\subseteq Y, p_{2}(X)>0 and p_{2}(Y)>0 imply

p_{2}(X)\geq p_{2}(Y) .

Theorem 3.11 ([1]). Let D=(V, A) be a digraph and \mathcal{F}_{1}, \mathcal{F}_{k} intersecting

families of bi‐sets on ground set V satisfying the mixed intersection property. The edges

of D can be partitioned into k subsets A_{1}, A_{k} in such a way that A_{i} covers \mathcal{F}_{i} for
each i=1, k if and only if

(3.8) $\rho$_{D}(X)\geq p_{2}(X) for every bi‐set X. \square 

The proof of this went along the same line as Lovász� original proof for Edmonds�

theorem and was based on the following property.

Lemma 3.12. If p_{2}(X)>0, p_{2}(Y)>0 and  X_{I}\cap Y_{I}\neq\emptyset , then  p_{2}(X)+p_{2}(Y)\leq
 p_{2}(X\cap Y)+p_{2}(X\cup Y) . Moreover, if there is an \mathcal{F}_{i} for which X\cap Y\in \mathcal{F}_{i} and X, Y\not\in \mathcal{F}_{i},
then strict inequality holds. \square 

Here we are going to show that Theorem 3.11 implies Fujihige�s theorem, as well.

Proof of Theorem 3. 7. If the node set of an arborescence F of root r_{i} intersects

a subset  Z\subseteq V—ri, then  F contains an element entering Z . Therefore if the k edge‐

disjoint arborescences exist, then Z admits as many entering edges as the number of

sets U_{i} for which  Z\cap U_{i}\neq\emptyset and  r_{i}\not\in Z ,
that is, (4.2) is indeed necessary.

Sufficiency. For brevity, we call a strongly connected component of D an atom.

It is known that the atoms form a partition of the node set of D and that there is a

so‐called topological ordering of the atoms so that there is no edge from a later atom to
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an earlier one. By a subatom we mean a subset of an atom. Clearly, a subset X\subseteq V

is a subatom if and only if any two elements of X are reachable in D from each other.

The following observation is obvious from the definitions.

Proposition 3.13. If a subatom X intersects a convex set U
,

then X\subseteq U.

Define k bi‐set families \mathcal{F}_{i} for i=1, k as follows. Let \mathcal{F}_{i} :=\{(X_{O}, X_{I}) :  X_{O}\subseteq

V—ri,  X_{I}=X_{O}\cap U_{i}\neq\emptyset, X_{I} is a subatom}. For each bi‐set X
,

let p_{2}(X) denote the

number of \mathcal{F}_{i} �s containing X . It follows immediately that \mathcal{F}_{i} is an intersecting bi‐set

family.

Proposition 3.14. The bi‐set families \mathcal{F}_{i} satisfy the mixed intersecting prop‐

erty.

Proof. Let X=(X_{O}, X_{I}) and Y=(Y_{O}, Y_{I}) be members of \mathcal{F}_{i} and \mathcal{F}_{j} , respec‐

tively, and suppose that X and Y are intersecting, that is,  X_{I}\cap Y_{I}\neq\emptyset . By Proposition

3.13, we have that  X_{I}=X_{O}\cap U_{i}\subseteq U_{i}\cap U_{j} and Y_{I}=Y_{O}\cap U_{j}\subseteq U_{i}\cap U_{j} . This

implies for the sets Z_{O} :=X_{O}\cap Y_{O} and Z_{I} :=X_{I}\cap Y_{I} that Z_{O}\cap U_{i}=X_{O}\cap U_{i}\cap Y_{O}=

X_{O}\cap U_{i}\cap Y_{O}\cap U_{j}=Z_{I} and also Z_{O}\cap U_{j}=X_{O}\cap Y_{O}\cap U_{j}=X_{O}\cap U_{i}\cap Y_{O}\cap U_{j}=Z_{I} from

which Z_{I}\subseteq U_{i}\cap U_{j} and (Z_{O}-Z_{I})\cap(U_{i}\cup U_{j})=\emptyset . Hence  X\cap Y=(Z_{O}, Z_{I})\in \mathcal{F}_{i}\cap \mathcal{F}_{j},
as required. \square 

Proposition 3.15.  $\rho$(X)\geq p_{2}(X) for each bi‐set X.

Proof. Let q :=p_{2}(X) and suppose that X belongs to \mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{q} . Let V^{\ovalbox{\tt\small REJECT}} :=

V- (U_{1}\cup \cup U_{q}) and Z :=X_{I}\cup {  v\in V^{\ovalbox{\tt\small REJECT}} : X_{I} is reachable from v }.
Let e=uv be an edge of D entering the set Z . Then u cannot be in V^{\ovalbox{\tt\small REJECT}}-Z for

otherwise X_{I} would be reachable from u and then u should belong to Z . Therefore u

is in (U_{1}\cup \cup U_{q})-Z . Let U_{i} be one of the sets U_{1}, U_{q} containing u . We claim

that the head v of e must be in X_{I} . For otherwise we are in a contradiction with the

hypothesis that U_{i} is convex since v is reachable from U_{i} (along the edge uv) and U_{i} is

also reachable from v since X_{I}\subseteq U_{i} is reachable from v.

It follows that the edge e entering the set Z also enters the bi‐set X=(X_{O}, X_{I}) .

Therefore  $\rho$(X)\geq $\rho$(Z) . By (4.2), we have  $\rho$(Z)\geq p_{1}(Z) . It follows from the definition

of Z that p_{1}(Z)\geq q=p_{2}(X) ,
and hence  $\rho$(X)\geq p_{2}(X) \square 

Therefore Theorem 3.11 applies and hence the edges of D can be partitioned into

subsets A_{1}, A_{k} so that A_{i} covers \mathcal{F}_{i} for i=1, k.

Proposition 3.16. Each A_{i} includes an r_{i} ‐arborescence F_{i} which spans U_{i}.



18 KRISTóF BÉRCZI AND ANDRÁS FRANK

Proof. If the requested arborescence does not exist for some i
,

then there is a

non‐empty subset Z of U_{i}-r_{i} so that A_{i} contains no edge from U_{i}-Z to Z . Consider

a topological ordering of the atoms and let Q be the earliest one intersecting Z . Since

no edge leaving a later atom can enter Q ,
no edge with tail in Z enters Q.

Let X_{O} :=(V-U_{i})\cup(Z\cap Q) and X_{I} :=X_{O}\cap U_{i} . Then X_{I}=Z\cap Q is a subatom

and X=(X_{O}, X_{I}) belongs to \mathcal{F}_{i} . Therefore there is an edge e=uv in A_{i} which enters

X. It follows that v\in X_{I}\subseteq Z and that u\in U_{i}-X_{I} . Since u is not in Z and not in

V‐Ui, it must be in Ui‐Z, that is, e is an edge from U_{i}-Z to X_{I}\subseteq Z , contradicting
the assumption that no such edge exists. \square 

\square 

It is worth mentioning that Theorem 3.11 has an equivalent form that uses T‐

intersecting families instead of bi‐sets [1]. For a subset T of V
,

we call the set families

\mathcal{F}_{1}, \mathcal{F}_{k}T ‐intersecting if

X, Y\in \mathcal{F}_{i}, X\cap Y\cap T\neq\emptyset\Rightarrow X\cap Y, X\cup Y\in \mathcal{F}_{i}.

We say that \mathcal{F}_{1}, \mathcal{F}_{k} satisfy the mixed T‐intersection property if

X\in \mathcal{F}_{i}, Y\in \mathcal{F}_{j}, X\cap Y\cap T\neq\emptyset\Rightarrow X\cap Y\in \mathcal{F}_{i}\cap \mathcal{F}_{j}.

Then the equivalent form is as follows.

Theorem 3.17 ([1]). Let D=(V, A) be a digraph and T a subset of V that

contains the head of every edge of D. Let \mathcal{F}_{1}, \mathcal{F}_{k} be T ‐intersecting families also

satisfying the mixed T‐intersection property. Then A can be partitioned into subsets

A_{1}, A_{k} so that A_{i} covers \mathcal{F}_{i} if and only if  $\rho$(X)\geq p(X) for each non‐empty subset

X of V where p(X) denotes the number of \mathcal{F}_{i} �s containing X. \square 

§4. Polyhedral and algorithmic aspects

§4.1. Cheapest packing of arborescences

In [6], Edmonds pointed out that a digraph D=(V, B) is the union of k edge‐

disjoint spanning arborescences of root r_{0} if and only if

(4.1)  $\rho$(r_{0})=0 and  $\rho$(v)=k for every v\in V-r_{0}

and the underlying undirected graph of D is the union of k edge‐disjoint spanning trees.
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J. Edmonds and D.R. Fulkerson [9] proved that the sum (or union) of some matroids

forms a matroid, in particular, the subsets of edges of a graph which are the union of k

edge‐disjoint spanning trees form the set of bases of a matroid denoted by M_{1} . Let M_{2}

denote the partition matroid whose set of bases is defined by (4.1). Therefore finding
a cheapest subgraph of a digraph which is the union of k edge‐disjoint arborescences

is equivalent to computing a cheapest common basis of matroids M_{1} and M_{2} . This

can be done with the help of any weighted matroid intersection algorithm. A matroid

intersection algorithm can only be applied if the independence oracles (or equivalent)
for the two matroids are indeed available. This is obviously the case for the partition
matroid M_{2} . As far as M_{1} is concerned, Edmonds� [5] polynomial‐time algorithm for

computing the rank of the sum of matroids provides the requested oracle.

Fujishige observed that a similar approach works for his extension above. Let

D=(V, A) be a directed graph and let R=\{r_{1}, r_{k}\}\subseteq V be a list of k (possibly
not distinct) root‐nodes. Let U_{i}\subseteq V be convex sets with r_{i}\in U_{i} . Recall that p_{1}(X)
denotes the number of sets U_{i} �s for which  U_{i}\cap Z\neq\emptyset and  r_{i}\not\in Z.

Let G=(V, E) denote the underlying undirected graph of D and suppose that

each U_{i} induces a connected subgraph. Let N_{i} be a matroid on A in which a subset is

a bases if the corresponding undirected set of edges forms a tree of G spanning U_{i} . Let

M_{1} be the sum of matroids N_{1}, N_{k} . Let M_{2} be a partition matroid on A in which a

subset A �
is a bases $\rho$_{A'}(v)=p_{1}(v) for every node v\in V.

Theorem 4.1 (S. Fujishige). A subgraph D^{\ovalbox{\tt\small REJECT}}=(V, A^{\ovalbox{\tt\small REJECT}}) of D is a minimal sub‐

graph (with respect to edge‐deletion) including disjoint r_{i} ‐arborescences F_{i} spanning U_{i}

for i=1, k if and only of A �
is a common bases of matroids M_{1} and M_{2}.

Proof. For completeness, the proof of the theorem is also presented. If D �
is

a minimal subgraph including the requested k arborescences, then A^{\ovalbox{\tt\small REJECT}} partitions into

those arborescences implying that A �
is indeed a common basis of M_{1} and M_{2}.

Conversely, suppose that A �
is a common basis. Without loss of generality, we may

assume that the roots r_{i} are distinct. Let R=\{r_{1}, r_{k}\} . Observe that

i_{A'}(Z)\displaystyle \leq\sum_{r_{i}\in Z}(|Z\cap U_{i}|-1)+\sum_{r_{i}\not\in Z,Z\cap U_{i}\neq\emptyset}(|Z\cap U_{i}|-1)=\sum_{Z\cap U_{i}\neq\emptyset}(|Z\cap U_{i}|)-|Z\cap R|-p_{1}(Z)
and also

\displaystyle \sum_{v\in Z}p_{1}(v)=\sum_{Z\cap U_{i}\neq\emptyset}(|Z\cap U_{i}|)-|Z\cap R|
from which

$\rho$_{A'}(Z)=\displaystyle \sum[$\rho$_{A'}(v):v\in Z]-i_{A'}(Z)=\sum[p_{1}(v):v\in Z]-i_{A'}(Z)\geq
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\displaystyle \geq\sum[p_{1}(v):v\in Z]-\sum_{Z\cap U_{i}\neq\emptyset}(|Z\cap U_{i}|)+|Z\cap R|+p_{1}(Z)=p_{1}(Z) .

By Theorem 3.7, A^{\ovalbox{\tt\small REJECT}} includes k disjoint r_{i} ‐arborescences spanning respectively U_{i}

(i=1, k) . Due to the assumption that $\rho$_{A'}(v)=p_{1}(v) for every node, these ar‐

borescences partition A^{\ovalbox{\tt\small REJECT}}
,

that is, A �
is a minimal subset of A including the k disjoint

arborescences. \square 

Due to this result, a minimum total cost of the disjoint r_{i} ‐arborescences spanning

U_{i} can be computed with the help of a weighted matroid intersection algorithm.

§4.2. The capacitated case

Fujishige�s theorem can also be reformulated in terms of root‐sets and branchings.

Theorem 4.2. Let D=(V, A) be a directed graph and let \mathcal{R}=\{R_{1}, R_{k}\} be

a list of k (possibly not distinct) root‐sets. Let U_{i}\subseteq V be convex sets with R_{i}\subseteq U_{i}.

There are edge‐disjoint R_{i} ‐branchings B_{i} spanning U_{i} for i=1, k if and only if

(4.2) $\rho$_{D}(Z)\geq p_{1}(Z) for every subset Z\subseteq V

where p_{1}(Z) denotes the number of sets U_{i} �s for which  U_{i}\cap Z\neq\emptyset and  R_{i}\cap Z=\emptyset. \square 

In [35] (pp. 920−921), Schrijver presented a strongly polynomial time algorithm to

find maximum number of r‐arborescences under capacity restrictions. By following his

approach, one can find disjoint branchings satisfying the conditions of Theorem 4.2 in

strongly polynomial time even in the more general case when a demand function is given
on the set of root‐sets.

Theorem 4.3. Let D=(V, A) be a digraph, g : A\rightarrow \mathbb{Z}_{+} a capacity function,

\mathcal{R}=\{R_{1}, R_{k}\} a list of root‐sets, \mathcal{U}=\{U_{1}, U_{k}\} a set of convex sets with R_{i}\subseteq U_{i},
and m:\mathcal{R}\rightarrow \mathbb{Z}_{+} a demand function. There is a strongly polynomial time algorithm
that finds (if there exist) m(\mathcal{R}) disjoint branchings so that m(R_{i}) of them are spanning

U_{i} with root‐set R_{i} and each edge e\in A is contained in at most g(e) branchings.

Proof. For every Z\subseteq V ,
let p_{1}(Z)=\displaystyle \sum[m(R_{i}) : R_{i}\in \mathcal{R}, R_{i}\cap Z=\emptyset, U_{i}\cap Z\neq\emptyset].

By replacing every arc a by g(a) parallel arcs, it follows from Theorem 4.2 that the

required branchings exist if and only if

(4.3) $\rho$_{g}(Z)\geq p_{1}(Z) for every Z\subseteq V.

The root‐sets are gradually increased during the algorithm, and also the set of

root‐sets may become larger. We always assign one of the convex sets to the newly
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appearing root‐sets. We may assume that g and m are strictly positive everywhere and

(4.3) is satisfied.

We are done if R_{i}=U_{i} for each i so assume that, say, R_{1}\subset U_{1} . Let e=uv be an

arc with u\in R_{1}, v\in U_{1}-R_{1} and define the following parameter.

(4.4)  $\mu$=\displaystyle \min {  g(e) , m(R_{1}) , \displaystyle \min\{$\rho$_{g}(W)-p_{1}(W):e enters W, R_{1}\cap W\neq\emptyset\} }.
The value of  $\mu$ can be determined in strongly polynomial time by computing a maximum

flow in an auxiliary graph.

By Theorem 4.2, there is an arc  e for which  $\mu$ is strictly positive. Add  e to  $\mu$ copies
of the  m(R_{1}) branchings to be rooted at R_{1}, m(R_{1}) :=m(R_{1})- $\mu$ . Moreover, add a

copy of  R :=R_{1}+v to \mathcal{R} (even if it was already the member of the root‐sets), define

m(R) :=m(R)+ $\mu$ and assign the same convex set to  R as to R_{1} . Finally, revise g(e)
by  g(e)- $\mu$ . Due to the definition of  $\mu$ ,

the revised problem also meets (4.3) and we can

apply the basic step recursively.
Now we turn to the running time. First we consider phases when the minimum

in (4.4) is taken on  g(e) or m(R_{1}) . If the minimum is taken on g(e) for some arc e,

then the number of arcs with positive capacity decreases which may happen at most |A|
times. Note that the set of root‐sets may increase only in these phases. Otherwise, the

minimum is taken on m(R_{1}) meaning that R_{1} gets out from the set of root‐sets. The

size of each root‐set increases at most |V| times and the set of root‐sets may increase,

according to the above, at most |A| times, hence the total number of phases is bounded

by |A||V|.
It only remains to take into account those phases when the minimum is taken

on \displaystyle \min { $\rho$_{g}(W)-p_{1}(W) : e enters W,  R_{1}\cap W\neq\emptyset }. The approach of [35] does

not work directly here as it strongly relies on the supermodularity of the set function

 p(Z)=\displaystyle \sum[m(R_{i}) : R_{i}\in \mathcal{R}, R_{i}\cap Z=\emptyset] . As we already mentioned in Section 3, p_{1} is

no more supermodular (for that very reason the original proof of Theorem 4.2 was far

more complicated than the one Lovász gave to Edmonds� theorem). Define the bi‐set

function p_{2}(X)=\displaystyle \sum[m(R_{i}) : R_{i}\in \mathcal{R}, X_{O}\cap R_{i}=\emptyset, X_{I}=X_{O}\cap U_{i}\neq\emptyset] if X_{I} is a

subatom, and 0 otherwise.

Recall that, by the proof of Theorem 3.7, (4.3) is equivalent to requiring that

$\rho$_{g}(X)\geq p_{2}(X) for each bi‐set X\in \mathcal{P}_{2} ,
hence the latter inequality also holds through‐

out the algorithm. The advantage of using bi‐sets is that p_{2} is positively intersect‐

ing supermodular on \mathcal{P}_{2} (this can be seen similarly to Lemma 3.12). The collection

C=\{X\in \mathcal{P}_{2} : $\rho$_{g}(X)=p_{2}(X)>0\} of tight bi‐sets increases in the considered phases

($\rho$_{g}(X)>0 may be assumed, otherwise the minimum in (4.4) is also taken on g(e) and

such phases are already counted).
Let C_{O}(e)= {X_{O} : X\in C, e enters X } for each e\in A . However, |C_{O}(e)|=

| {X\in C : e enters X } | holds for each e . To see this, let X be a bi‐set that becomes
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tight during the revision step and assume that e=uv enters X . For an arbitrary set

Z_{O} containing v
,

there is at most one set Z_{I} such that v\in Z_{I} and p_{2}((Z_{O}, Z_{I}))> O.

Namely, Z_{I} must be a subatom and it must arise as the intersection of Z_{O} and the atom

containing v . Hence for each Z_{O}\in C_{O}(e) the corresponding inner set Z_{I} is uniquely
determined. This implies that X_{O}\not\in C_{O}(e) before the revision step as otherwise X\in C,
a contradiction.

The above immediately implies that if C increases then also C_{O}(e) increases for

some e\in A . If an edge e enters both X, Y\in C ,
then $\rho$_{g}(X\cap Y)>0 and $\rho$_{g}(X\cup Y)>0.

The submodularity of $\rho$_{g} and positively intersecting supermodularity of p_{2} implies that

C_{O}(e) is a lattice family. As a lattice family \mathcal{L} is uniquely determined by the preorder
defined as

 s\preceq t\Leftrightarrow each set in \mathcal{L} containing t also contains s,

if \mathcal{L} increases then \preceq decreases, which can happen at most |V|^{2} times. Hence C_{O}
increases at most |V|^{2} times for each e\in A ,

and the total number of phases is O(|A||V|^{2}) .

\square 

§4.3. Polyhedral description

Let D= (V, A) be a digraph, R=\{r_{1}, r_{k}\} a set of root‐nodes and \mathcal{U}=

\{U_{1}, U_{k}\} a set of convex sets with r_{i}\in U_{i} for each i . We say that the digraph
is arborescence‐packable (with respect to \mathcal{U} ) if there are k disjoint arborescences

F_{1}, F_{k} so that F_{i} is an r_{i} ‐arborescences spanning U_{i} . Our next goal is to describe

the convex hull of the incidence vectors of arborescence‐packable subgraphs of D.

We may suppose that the root nodes r_{1}, r_{k} are distinct, each having exactly one

leaving edge and no entering ones. Let R=\{r_{1}, r_{k}\} and T=V-R
,

so U_{i}\cap R=\{r_{i}\}
for each r_{i}\in R . For every non‐empty subset Z of T

,
let p_{1}(Z) denote the number of

roots r_{i} for which  Z\cap U_{i}\neq\emptyset . In particular, for every  v\in T, p_{1}(v) is the number of

roots r_{i} for which v\in U_{i}.

Theorem 4.4. Let D=(V, A) be a digraph in which R is a set of k root‐nodes

so that the out‐degree and the in‐degree of each root‐node is one and zero, respectively.
Let T=V-R and for each root‐node r_{i} let U_{i} be a convex set for which U_{i}\cap R= {ri}.
Then D is arborescence‐packable if and only if  $\rho$(Z)\geq p_{1}(Z) for every subset Z\subseteq T. \square 

Define k bi‐set families \mathcal{F}_{i} for i=1, k as follows. Let

\mathcal{F}_{i} :=\{(X_{O}, X_{I}) : X_{O}\subseteq T, X_{I}=X_{O}\cap U_{i}\neq\emptyset, X_{I} is a subatom \}.

For each bi‐set X
,

let p_{2}(X) denote the number of \mathcal{F}_{i} �s containing X . It follows imme‐

diately that \mathcal{F}_{i} is an intersecting bi‐set family.
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Remark. Suppose that the out‐degree of the root‐nodes in R may be larger than

one. Let \mathcal{U}=\{U_{1}, U_{k}\} be a set of convex sets so that U_{i}\cap R=\{r_{i}\} for each r_{i}\in R.

Furthermore, let m : R\rightarrow \mathbb{Z}_{+} be a demand function on the root‐nodes so that m(R)=t.
By Fujishige�s theorem, there are t disjoint arborescences so that r_{i} is the root of m_{i}

arborescences spanning U_{i} if and only if

 $\rho$(Z)\geq p_{1}(Z)

for every subset Z\subseteq V where

p_{1}(Z)=\displaystyle \sum_{r_{i}\not\in Z,Z\cap U_{i}\neq\emptyset}m(r_{i})
.

In this case the bi‐set families should be defined as follows. Let

\mathcal{F}_{i}^{j} :=\{(X_{O}, X_{I}) : X_{O}\cap T\neq\emptyset, X_{I}=X_{O}\cap U_{i}, \emptyset\neq X_{I}\subseteq T is a subatom \}

where i=1, k and j=1, m(r_{i}) . It is easy to see that \mathcal{F}_{i}^{j} is an intersecting bi‐set

family. However, this form follows from Theorem 4.4 by an easy construction. Since

the statements are simpler when root‐nodes has out‐degree one, we will use this special
form when formulating our result.

Before formulating our result, we prove two useful lemmas exhibiting an interrela‐

tion between sets and bi‐sets.

Lemma 4.5. For every bi‐set X=(X_{O}, X_{I}) there is a subset Z\subseteq T for which

p_{1}(Z)\geq p_{2}(X) and \triangle^{-}(Z)\subseteq\triangle^{-}(X) .

Proof. Let q :=p_{2}(X) . If q=0 ,
then Z :=\emptyset will do. Suppose that  q\geq 1 and

X belongs to \mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{q} . Let V^{\ovalbox{\tt\small REJECT}}:=V- (U_{1}\cup \cup U_{q}) . We claim that the set

Z :=X_{I}\cup {  v\in V^{\ovalbox{\tt\small REJECT}} : X_{I} is reachable from v } satisfies the properties required by the

lemma.

One obviously has p_{1}(Z)\geq q=p_{2}(X) since Z intersects each of U_{1}, U_{q} . Consider

now an edge e=uv of D entering Z . The tail u of e cannot be in V^{\ovalbox{\tt\small REJECT}}-Z for otherwise

X_{I} would be reachable from u and then u should belong to Z . Therefore u must be in

(U_{1}\cup \cup U_{q})-Z . Let U_{i} be one of the sets U_{1}, U_{q} containing u . Then the head v of

e must be in X_{I} ,
for otherwise v is reachable from U_{i} (along the edge uv) and X_{I} is also

reachable from v by the definition of Z but this contradicts the convexity of U_{i} since

X_{I}\subseteq U_{i} . Hence the edge e entering the set Z also enters the bi‐set X=(X_{O}, X_{I}) . \square 

Lemma 4.6. For every subset Z\subseteq T ,
there are bi‐sets X_{1}, X_{t} so that

\displaystyle \sum[p_{2}(X_{j}) : j=1, t]=p_{1}(Z) and \{\triangle^{-}(X_{j}) : j=1, t\} is a partition of \triangle^{-}(Z) .
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Proof. Let C_{Z} :=\{C_{1}, C_{t}\} denote the set of atoms of D intersecting Z and

assume that its members are arranged in a topological ordering, that is, no edge of D

leaving a C_{j} enters a C_{i} for which i<j . For each j=1, t
,

let X_{j}=(X_{O}^{j}, X_{I}^{j}) where

X_{O}^{j} :=Z\cap (C_{1}\cup \cup C_{j}) and X_{I}^{j} :=Z\cap C_{j} . We claim that these bi‐sets X_{j} satisfy the

properties required by the lemma.

If an edge e=uv enters a bi‐set X_{j} ,
then its head v is in Z\cap C_{j} while its tail

u must be outside Z by the property of the topological ordering, that is, e enters Z,
too. This and the obvious fact that \{X_{I}^{j} : j=1, t\} forms a partition of Z imply

\{\triangle^{-}(X_{j}) : j=1, t\} forms a partition of \triangle^{-}(Z) .

Let \mathcal{U}_{Z} := { U\in \mathcal{U} : U intersects Z}. Note that |\mathcal{U}_{Z}| has been denoted by p_{1}(Z) and

recall that an atom is either disjoint from or included by a convex set. For j=1, t,
let \mathcal{U}_{Z}^{j} := { U\in \mathcal{U}_{Z} : j is the smallest subscript for which C_{j}\in C_{Z} and C_{j}\subseteq U}. Some

of the \mathcal{U}_{Z}^{j\prime}\mathrm{s} may be empty but the non‐empty ones form a partition of \mathcal{U}_{Z} . For each

j=1, t
,

one has p_{2}(X_{j})=|\mathcal{U}_{Z}^{j}| and hence

p_{1}(Z)=|\displaystyle \mathcal{U}_{Z}|=\sum_{j=1}^{t}|\mathcal{U}_{Z}^{j}|=\sum_{j=1}^{t}p_{2} (Xj ),

as required. \square 

Consider the following two polyhedra.

(4.5) R_{1} := { x\in \mathbb{R}^{A} : 0\leq x, $\rho$_{x}(Z)\geq p_{1}(Z) for every non‐empty Z\subseteq T}.

(4.6) R_{2} :=\{x\in \mathbb{R}^{A}:0\leq x, $\rho$_{x}(X)\geq p_{2}(X) for every non‐trivial bi‐set

X=(X_{O}, X_{I}) with X_{O}\subseteq T}.

Lemma 4.7. R_{1}=R_{2}.

Proof. Suppose first that x\in R_{1} . Let X be an arbitrary bi‐set for which p(X)>0.
By Lemma 4.5 there is a subset Z\subseteq T for which p_{1}(Z)\geq p_{2}(X) and \triangle^{-}(Z)\subseteq\triangle^{-}(X) .

This and the non‐negativity of x imply that $\rho$_{x}(X)\geq$\rho$_{x}(Z)\geq p_{1}(Z)\geq p_{2}(X) from

which x\in R_{2} follows.

Second, suppose that x\in R_{2} . Let Z be an arbitrary set for which p_{1}(Z)> O. By
Lemma 4.6 there are bi‐sets X_{1}, X_{t} so that \displaystyle \sum[p_{2}(X_{j}) : j=1, t]=p_{1}(Z) and

\{\triangle^{-}(X_{j}) : j=1, t\} is a partition of \triangle^{-}(Z) . This and the non‐negativity of x imply
that $\rho$_{x}(Z)\displaystyle \geq\sum[$\rho$_{x}(X_{j}) : j=1, t]\geq[p_{2}(X_{j}) : j=1, t]=p_{1}(Z) from which

x\in R_{1} follows. \square 

The following result was proved in [15].
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Theorem 4.8 (A. Frank, T. Jordán). Let D=(V, A) be a digraph and p a pos‐

itively intersecting supermodular bi‐set function on V. Let g:A\rightarrow \mathbb{Z}+\cup\{\infty\} be a

capacity function on A so that $\rho$_{g}(X)\geq p(X) for every bi‐set. The following linear

system for x\in \mathbb{R}+is totally dual integral (TDI):

{0\leq x\leq g, $\rho$_{x}(X)\geq p(X) for every bi‐set X }. \square 

From this we derive the following.

Theorem 4.9. The linear system written for x\in \mathbb{R}^{A}

(4.7) {0\leq x\leq g, $\rho$_{x}(Z)\geq p_{1}(Z) for every non‐empty Z\subseteq T}

is totally dual integral (TDI). In particular, the convex hull of arborescence‐packable

subgraphs of D is equal to the following polyhedron

(4.8) { x\in \mathbb{R}^{A}:0\leq x\leq 1, $\rho$_{x}(Z)\geq p_{1}(Z) for every non‐empty Z\subseteq T}.

Proof. By theorem 4.8, the system

(4.9) {0\leq x\leq g, $\rho$_{x}(X)\geq p_{2}(X) for every bi‐set X }

is TDI. By Lemma 4.7, this and 4.7 define the same polyhedron.
We say that an inequality  qx\geq $\beta$ is an integer consequence of a inequality system

 Qx\geq p if there is an integer vector y so that yQ=q and  yp= $\beta$ . By elementary

properties of TDI systems, it suffices to show that each inequality from 4.9 is an integer
combination of inequalities of 4.7. By Lemma 4.5, for a bi‐set  X=(X_{O}, X_{I}) ,

there is a

subset Z\subseteq T for which p_{1}(Z)\geq p_{2}(X) and \triangle^{-}(Z)\subseteq\triangle^{-}(X) . Therefore the inequality

$\rho$_{x}(X)\geq p_{2}(X) is indeed a integer consequence of 4.7.

A general result of Edmonds and Giles [10] implies that the polyhedron defined by
4.8 is integral and hence its vertices are 0—1 vectors. By Theorem 4.4, these vertices

correspond to the arborescence‐packable subgraphs of D. \square 

§5. Independent arborescences

The following result is due to A. Huck [22].

Theorem 5.1 (A. Huck). Let D=(V, A) be a simple acyclic digraph in which

S=\{s_{1}, s_{k}\} denotes the set of source nodes (that is, those of in‐degree zero) while

U :=V-S is the rest. Suppose that the in‐degree of each node u\in U is at least k.

Then there are s_{i} ‐arborescences F_{i} spanning U+s_{i} for i=1, k so that the k unique

s_{i}u ‐paths in the arborescences F_{i} are openly disjoint for every node u\in U.
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Proof. The arborescences in the theorem are called independent.

Lemma 5.2. Suppose that D^{\ovalbox{\tt\small REJECT}}= (U+s, A`) is a simple acyclic digraph in which

s is a source node and the in‐degree of each other node is at least one. Then there is an

ordering of the elements of U in such a way that the set of all edges going forward can

be completed with some edges leaving s so as to obtain a spanning s ‐arborescence.

Proof. The lemma is clear when U is a singleton so we may assume that |U|\geq 2.
Then there is a sink node z . By induction, there is a requested ordering of the elements

of U-z with respect to the digraph D^{\ovalbox{\tt\small REJECT}}-z . If s is the only node of D � from which

there is an edge entering z
,

then by putting z at the beginning of the existing ordering
we are done.

Suppose now that there is a node in U from which there is an edge of D �

entering
z and let u_{i} denote the earliest one of these nodes in the given ordering of U-z . Insert

z between u_{i} and u_{i+1} . The resulting ordering of U satisfies the requirements of the

lemma since the only new edge going forward created by the insertion of z is u_{i}z. \square 

As the theorem is obvious for k=1
,

we may assume that k\geq 2 . Apply the

lemma to the subgraph D^{\ovalbox{\tt\small REJECT}}=(U+s_{k}, A^{\ovalbox{\tt\small REJECT}}) of D induced by U+s_{k} . Let u_{1}, u_{p} be the

ordering of the elements of U ensured by the lemma and let F_{k} denote the arborescence

corresponding to it. Let D� be a subgraph of D obtained by deleting node s_{k} and

the edges of F_{k} . By induction, D� admits the requested independent arborescences

F_{1}, F_{k-1} for i=1, k-1 . Since all the edges of these arborescences go backward

in the ordering u_{1}, u_{p} while all the edges of F_{k} go forward, it follows that the unique

s_{k}u‐path in F_{k} and the unique s_{i}u‐path of F_{i} (i=1, k-1) have the only node u in

common for every u\in U. \square 

Theorem 5.3 (A. Huck). Let D= (V, A) be a simple acyclic digraph with a

designated root node r_{0} . There are k independent spanning arborescences of root r_{0} if
and only D is rooted k‐node‐connected.

Proof. The necessity is evident from the definition of independence. For the suf‐

ficiency, put a new node v_{e} on each arc e=r_{0}v , split r_{0} into k nodes r_{1}, r_{k} and

replace each arc r_{0}v_{e} leaving r_{0} by arcs r_{1}v_{e}, r_{k}v_{e} . Clearly, the digraph thus obtained

contains independent r_{1}, r_{k} ‐arborescences if and only if there are k independent ar‐

borescences of root r_{0} in D . Moreover, D is rooted k‐node‐connected if and only if there

exist openly disjoint r_{1}v, r_{k}v paths for each node v\neq r_{1}, r_{k} in the resulting graph.

Apply Theorem 5.1 to the new digraph. \square 

In [25] Huck showed that the assumption that D is acyclic cannot be left out for

any k\geq 3 . For k=2
, however, R.W. Whitty [40] proved that it can.
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Theorem 5.4 (R.W. Whitty). Let D=(V, A) be a digraph with a root‐node

r_{0}\in V. There are two independent spanning arborescences of root r_{0} if and only if D

is rooted 2‐node connected.

We may assume that  $\rho$(r_{0})= O. We prove another statement which can be seen

easily to be equivalent with Theorem 5.4 by the above construction.

Theorem 5.5. Let D=(V+r_{1}+r_{2}, A) be a digraph with  $\rho$(r_{i})=0 for i=1
,
2.

Suppose that there exist openly disjoint r_{1}v and r_{2}v paths for each v\in V . The there exist

two independent arborescences F_{1}, F_{2} spanning V and rooted at r_{1} and r_{2} , respectively.

Proof. Similarly to Huck�s proof, we define a special ordering of the nodes.

Lemma 5.6. There is an ordering r_{1}=v_{0}, v_{1}, v_{n+1}=r_{2} of the nodes so that,

for each node v_{i}\in V-r_{1}-r_{2} ,
there is an edge v_{h}v_{i} with h<i and an edge v_{i}v_{j} with

i<j.

Proof. We prove the lemma by using induction on |V|=n . The case when n=1

is obvious. Assume that the statement is true for n-1 and take a graph with |V|=n
satisfying the conditions. Consider an r_{1} ‐arborescence F spanning V and let u be a

neighbor of s_{2} from which there is no directed path in F to another neighbor of s_{2} . We

will show that if we shrink s_{2} and u
,

then there still exist openly disjoint s_{1}v and s_{2}^{\ovalbox{\tt\small REJECT}}v
paths for each v\in V-u ,

where s_{2}^{\ovalbox{\tt\small REJECT}} denotes the shrunk node.

Otherwise, there is a subset X of V-u and a node y\in(V-u)+s_{1}+s_{2}^{\ovalbox{\tt\small REJECT}} such

that all the s_{1}-X and s_{2}^{\ovalbox{\tt\small REJECT}}-X paths go through y . Then y must be s_{2}^{\ovalbox{\tt\small REJECT}} . However, this

implies that s_{2} has a neighbor in X in the original graph, contradicting to the choice of

u since there is a directed path in F from u to each member of X. \square 

The lemma implies that there is an ordering of the nodes in which both the set of

edges going forward and the set of edges going backward determine two proper arbores‐

cences F_{1} and F_{2} of D spanning V
,

and these two arborescences are independent since

in D any r_{1}v‐path and r_{2}v‐path share only the terminal node v. \square 

In an undirected graph we call two trees r‐independent for some r\in V if the

unique rv paths in the trees are openly disjoint for every node v\in V . It has been

verified in [3], [27] and [28] that the following theorem holds for k=2
, 3.

Theorem 5.7. Let G be a k ‐connected undirected graph for some k\geq 1 and let

r_{0}\in V(G) . Then there exist kr_{0} ‐independent spanning trees in G. \square 

The case when k=4 was verified in [4] but for k\geq 5 the problem is still open.

However, in [26] and [24] Huck verified the theorem for planar graphs for each k\geq 1,
i.e. we have the following.
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Theorem 5.8. Let G be a rooted k ‐connected undirected planar multigraph and

let r_{0}\in V(G) . Then there exist kr_{0} ‐independent spanning trees in G. \square 

Planar multigraphs proved to be tractable even in the directed case. Moreover, in

[23] Huck proved a strengthening of these theorems where the connectivity‐condition
are weakened to root‐connectivity. By summarizing the results of Whitty and Huck we

have the following theorem.

Theorem 5.9.

(i) Let D be a rooted k ‐connected directed multigraph for some root r_{0}\in V(G) and

k\in\{1 ,
2 \} \cup\{6 , 7, 8, such that D is planar if k\geq 6 . Then D contains k

independent spanning arborescences of root r_{0}.

(ii) Let G be a rooted k ‐connected undirected multigraph for some root r_{0}\in V(G) and

k\geq 1 such that G is planar if k\geq 4 . Then G contains kr_{0} ‐independent spanning
trees. \square 

Although the directed case remains open for k=3 , 4, 5, maximal planar graphs
mean an interesting special case. We call a planar graph G=(V, E) (with a fixed

embedding in the plane) maximal if each of its faces is bounded by a triangle. Let

r_{1}, r_{2}, r_{3} denote the three nodes of the infinite face. These are called roots while the

other nodes are the inner nodes. The sets of roots and of inner nodes are denoted by
R and U

, respectively. Since any subset of j\geq 3 nodes induces at most 3j-6 edges,
the Orientation lemma (Theorem 2.4) easily implies the following.

Theorem 5.10. Let G=(V, E) be a maximal planar graph. Let G^{\ovalbox{\tt\small REJECT}}=(V, E^{\ovalbox{\tt\small REJECT}})
be the graph arising from G by deleting the three edges of its infinite face. Then G � has

an orientation so that  $\rho$(r_{i})=0 and  $\rho$(v)=3 for every other node.

Consider now the three edges e_{1}=u_{1}v, e_{2}=u_{2}v, e_{3}=u_{3}v entering an inner node

v . We say that an edge e=vz leaving v is the cyclic successor of e_{i} (and that e_{i} is

the cyclic predecessor of e) if e and e_{i} are separated by e_{i-1} and e_{i+1} in the cyclic
order of the edges at v defined by the plane embedding where the indices are meant

modulo 3.

Proposition 5.11. There is no directed circuits in which each edge is the cyclic
successor of its preceding edge.

Proof. Suppose indirectly that C is such a di‐circuit. Let H be the subgraph of

D induced by C and its interior. We will get a contradiction by double‐counting the

arcs in H . Let c=|C| and let t and l denote the number of nodes and arcs induced
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in H . We know that H is triangular except the outer face which is bounded by C.

With an extra node and c additional edges we can triangulate the outer face, hence

l=3(t+1)-6-c=3t-c-3 . Clearly, $\rho$_{H}(v)=3 for every node in H-C, $\rho$_{H}(v)=2
for each v\in C except at most one v\in C ,

for which $\rho$_{H}(v)\geq 1 . But that would mean

l\geq 3t-c-1 , a contradiction. \square 

By starting at any edge e and going back along cyclic predecessors, one arrives at

a node r_{i} ,
called the root‐node of e.

Proposition 5.12. Any two arcs with common head have different root‐nodes.

Proof. Suppose indirectly that there are two arcs e and f with common head w

and root‐node r_{i} . Let u be the first node which is reached both from e and f when

going back along cyclic predecessors. Then we have two openly disjoint paths from u

to w whose union is denoted by C. H denotes the subgraph of D induced by C and

its interior. Let c=|C| and let t and l denote the number of nodes and arcs induced

in H . We know that H is triangular except the outer face which is bounded by C.

With an extra node and c additional edges we can triangulate the outer face, hence

l=3(t+1)-6-c=3t-c-3 . Clearly, $\rho$_{H}(v)=3 for each node in H-C, $\rho$_{H}(v)=2
for each v\in C except u and w for which $\rho$_{H}(w)\geq 2 and $\rho$_{H}(u)\geq O. This implies

 l\geq 3t-c-2 ,
a contradiction again. \square 

It follows that F_{i}= {e\in E : r_{i} is the root node of e } is an arborescence of root r_{i}

spanning each inner node. Moreover, F_{1}, F_{2} , F3 form a partition of the edge‐set.

Theorem 5.13. The arborescences F_{1}, F_{2} , F3 defined above are independent.

Proof. Suppose that there is a node v\neq r_{1}, r_{2}, r_{3} for which two of the unique

paths r_{i}v are not openly disjoint. Let u denote the first common node appearing on

these paths while going back from v along them. Then we have two openly disjoint

paths from u to v again whose union is denoted by C . By double‐counting the arcs

in the subgraph H induced by C and its interior, we get the same contradiction as in

Proposition 5.12. \square 

The trees corresponding to the arborescences F_{i} in the underlying undirected graph
have some specific properties. It was G.R. Kampen [30] who proved the existence of these

undirected trees by a different method. Later W. Schnyder [33] used a similar approach
to prove the independence of these trees and to construct a straight‐line embedding of

the graph into a small grid.
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