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Abstract

The Symmetric Travelling Salesman Problem (STSP) is the problem of finding a minimum

weight Hamiltonian cycle in a weighted complete graph on n vertices. This problem is well

known to be NP‐hard. One direction which seems promising for finding improved solutions

for this and other NP‐hard problems is the study of the structure of the extreme solutions

associated with the problem�s linear programming relaxation. This approach has led to new

approximation algorithms and results for several NP‐hard problems. Moreover it has not been

possible thus far to obtain these results via other more traditional methods, i.e. knowledge of

the structure of these extreme points was key.
In this paper we study the structure of the extreme solutions of the Subtour Elimination

Problem (SEP), which is a linear programming relaxation of the STSP. We give some new

results on both the underlying structure of these extreme solutions, as well as the structure

of the dening cobasis for such solutions. We demonstrate the usefulness of these results by
showing how this new theory facilitates the generation of all extreme solutions of the SEP for

some values of n that were previously unattainable. This allows for the first time, for these

values, the verication of the well‐known conjecture that the integrality gap is 4/3 for the

metric STSP. We believe that with further exploration these results may also facilitate the

development of improved approximation algorithms for the STSP.

§1. Introduction

Given the complete graph K_{n}=(V, E) on n vertices with non‐negative edge costs

c\in \mathrm{R}^{E}, c\neq 0 ,
the Symmetric Tr avelling Salesman Problem (henceforth STSP) is the

problem of finding a Hamiltonian cycle (or tour) in K_{n} of minimum cost. When the

costs satisfy the triangle inequality, i.e. when c_{uv}+c_{vw}\geq c_{uw} for all distinct triples
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u, v, w\in V ,
we call the problem the metric STSP. The STSP is known to be NP‐hard,

even in the metric case [16].
One approach taken for finding reasonably good solutions for the STSP is to look

for a  $\gamma$‐approximation algorithm for the problem, that is, try to find a heuristic which

finds a tour which is guaranteed to be of cost at most  $\gamma$ times the optimal STSP value

for some constant  $\gamma$\geq 1 . Currently the best  $\gamma$‐approximation algorithm known for the

metric STSP is Christofides algorithm [9] for which  $\gamma$=3/2 . Note that for general costs

there does not exist a  $\gamma$‐approximation algorithm unless  P=NP[16].
Another approach taken is to study a linear programming relaxation for the prob‐

lem. Such relaxations are usually much easier to solve than the original problems, and

provide good starting points for the application of the branch and cut method, as well

as good bounds on the value of optimal solutions. Good bounds on the value of the

optimal solution are useful in evaluating the effectiveness of a heuristic.

An interesting problem that is closely related to the problem of finding a  $\gamma$-

approximation algorithm is that of finding the integrality gap of a linear programming
relaxation for a problem, which is the value of the worst‐case ratio between the optimal
value for the problem and the optimal value for the relaxation. This integrality gap is

important for finding improved solutions for NP‐hard problems, as it gives a measure

of the quality of the bound provided for the original problem by the linear program‐

ming relaxation. Moreover, a polynomial‐time constructive proof of an integrality gap

of value  $\alpha$ provides an  $\alpha$‐approximation algorithm for the problem.
If we relax the integer requirement in the integer linear programming formulation

of the STSP we obtain the subtour elimination problem (SEP) relaxation for the STSP.

For the metric STSP, the integrality gap  $\alpha$ TSP between STSP and SEP is not known,

although it is known that 4/3\leq $\alpha$ TSP\leq 3/2 ([18]). In fact, a well‐known conjecture in

combinatorial optimization says that  $\alpha$ TSP=4/3 for the metric STSP. Even though
this conjecture has been around for over 20 years, very little progress has been made

towards proving or disproving it. Also, surprisingly, no one has been able to improve

upon the Christofides 3/2‐approximation algorithm in the last 30 years.

For problems such as the STSP where standard methods for obtaining approxi‐
mation algorithms and the integrality gap have failed, it seems it may be necessary

to develop new techniques to have any hope of success. One direction which seems

promising for finding improved solutions for this and other NP‐hard problems is the

study of the structure of the extreme solutions of the linear programming relaxation.

This approach has led to new approximation algorithms and results for several NP‐hard

problems (see, for example, [15], [13], [12], [8], [11], [6] and [1]), moreover it has not been

possible so far to obtain these results via other more traditional methods, i.e. knowledge
of the structure of these extreme solutions was key in obtaining the results.
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In this paper we examine the structure of the extreme solutions of the SEP. It is

our hope that this will lead to improved approximation algorithms for the STSP and

also information regarding the integrality gap. In Section 2 we give some new overall

structural results on these extreme solutions, as well as some operations that allow us

to generate extreme solutions from those of smaller versions of the problem, and vice

versa. In Section 3 we examine the structure of the cobases for these extreme solutions,
and give some results. Finally, in Section 4 we demonstrate the usefulness of our results

by showing how they can be used to facilitate the the generation of all extreme solutions

for n=11 and n=12
, something that has not been previously possible. This allowed

the verification of the 4/3 conjecture for the integrality gap of SEP for these values of

n for the first time.

Note that in order to keep this paper brief we have omitted the proofs for many

results, although we have included some sketches of proofs to give the flavour of the

methods used. Complete proofs for all results can be found in [2], [3] and [4].
We conclude this section with a few definitions and explanations of the notation

used.

Given a graph G and vertex subset U of G ,
we use the notation G[U] to denote the

subgraph of G induced by U ,
and  $\gamma$(U) to denote the edges with both endpoints in U.

Given a graph G and disjoint vertex subsets X and Y of G ,
we let E(X : Y) denote all

the edges with one end in X and one end in Y.

For any edge set F\subseteq E and x\in \mathrm{R}^{E} ,
let x(F) denote the sum \displaystyle \sum_{e\in F}x_{e} . For any

vertex set W\subset V ,
let  $\delta$(W) denote \{uv \in E : u\in W, v\not\in W\} . Let S=\{S\subset V,  2\leq

|S|\leq n-2\} . Then we define an integer linear programming (ILP) formulation for the

STSP is as follows:

(1.1) minimize cx

(1.2) subject to: x( $\delta$(v))=2 for all v\in V,

(1.3) x( $\delta$(S))\geq 2 for all S\in S,

(1.4) x_{e}\geq 0 for all e\in E,

(1.5) x integer.

The constraints (1.2) are called the vertex equalities, the constraints (1.3) are called the

cut constraints, and the constraints (1.4) are called the non‐negativity constraints.

If we drop the integer requirement (1.5) from the above ILP, we obtain a linear

programming (LP) relaxation of the STSP called the Subtour Elimination Problem

(SEP). The extreme solutions of this relaxation are the extreme points of the associated

SEP polytope, which we denote by S^{n} for the problem on n vertices. The SEP polytope
is the set of all vectors x satisfying the constraints of the SEP, i.e.

S^{n}=\{x\in \mathrm{R}^{E}:x satisfies (1.2), (1.3), (1.4).
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Note that despite the fact that there is an exponential number of constraints (3), the

SEP can be solved in polynomial‐time (using the ellipsoid method) since there is an

exact polynomial‐time separation algorithm for each of its constraints [14]. However,
no practical polynomial‐time algorithm is currently known.

Given any feasible x\in S^{n} ,
the weighted support graph G_{x}=(V_{x}, E_{x}) of x is the

subgraph of K_{n} induced by the edge set E_{x}=\{e\in E : x_{e}>0\} ,
with edge weights

x_{e} for e\in \mathrm{R}^{E_{x}} . We say that a constraint is tight with respect to x if x satisfies the

constraint with equality, and we say a vertex subset S of V is a tight set if x( $\delta$(S))=2.

§2. Results on extreme point structure and generation

In this section we report some new results pertaining to the structure of the extreme

points of the SEP polytope S^{n} . These results fall into two types. First we have results

that look at the overall structure of a support graph G_{x} for points x in S^{n} . These

results are useful in identifying conditions that are necessary for a graph G to represent

a support graph for points in S^{n} . In Section 4 we will use these results to greatly reduce

the number of possible graphs in generating all the extreme points for S^{n} . Second we

present operations that allow us to generate extreme points for S^{n} from extreme points
of S^{k} where k<n . Again these results will prove very useful in Section 4 for greatly

reducing the work required in generating all the extreme points for S^{n}.

The following are several results already known to be necessary for support graphs

G_{x} for x\in S^{n}.

Theorem 2.1 (Boyd et. al. [7]). Let x be an extreme point of S^{n}, n\geq 3 . Then

|E(G_{x})|+\displaystyle \frac{1}{2}q\leq 2n-3 ,
where q represents the number of vertices in G_{x} which have degree

3 and for which none of the corresponding incident edges e\in E have value x_{e}=1. \square 

Theorem 2.2 (Boyd et. al. [7]). Let x be an extreme point of S^{n}, n\geq 3 . Then

there are at least three edges e of G_{x} for which x_{e}=1. \square 

Theorem 2.3 (Goemans [13]). Let x be an extreme point of S^{n} . Then for any

U\subset V, |E(G_{x}[U])|\leq 2|U|-3. \square 

Without much extra work, we can refine the results of Theorem 2.3.

Corollary 2.4. Let x be an extreme point of S^{n} . Then for any U\subset V, |E(G_{x}[U])|\leq
 2|U|-b(U)-3 where b(U) is the number of bipartite components of G_{x}[U]. \square 

There is also the following result, which is easily proved.

Proposition 2.5. If x\in S^{n} then G_{x} is 2‐vertex‐connected. \square 
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We have found that more general necessary conditions can be proven as well. Let

 $\kappa$(G) denote the number of connected components of a graph G . We say that a graph,

G=(V, E) is t ‐tough if for every T\subset V we have that

|T|\geq t* $\kappa$(G-T) .

The concept of t toughness was first introduced and explored by Chvátal [5]. In his

paper, Chvátal was interested in using toughness to find necessary and sufficient condi‐

tions for a graph to be Hamiltonian. He noted that every Hamiltonian graph must be

1‐tough.
Notice that every 1‐tough graph is also 2‐vertex‐connected, i.e. removing any vertex

in a 1‐tough graph leaves exactly one component. For our purposes, 1‐toughness also

plays a role as a necessary condition for support graphs of points in S^{n} . We can show

the following result holds.

Proposition 2.6. If x\in S^{n} then G_{x} is 1‐tough. \square 

We can impose similar, but stronger, conditions on a graph which are necessary

for it to be a support graph for a point in S^{n} . Given a graph, H
,

let b(H) denote the

number of blocks of H which contain no cut vertices and let b(H) denote the number

of blocks of H which contain exactly one cut vertex (we call these blocks endblocks).
We will say that a graph, G=(V, E) ,

is t‐block‐tough if for every T\subset V we have that

|T|\displaystyle \geq t(b_{0}(G-T)+\frac{1}{2}b_{1}(G-T))
Note that it can be shown that every t‐block‐tough graph is t‐tough. Hence the following
result is a generalization of Proposition 2.6:

Theorem 2.7. Let x\in S^{n} . Then G_{x} is l‐block‐tough.

Sketch of Proof. We basically show this by using a result from linear programming

duality that says that a primal linear program is infeasible if its corresponding dual

linear program is unbounded.

Let G=(V, E) be a graph and suppose there exists some T\subset V such that

|T|<b_{0}(G-T)+\displaystyle \frac{1}{2}b_{1}(G-T) .

It is easy to show that we may assume that no cut vertex of G-T is contained in

two different endblocks.

Now let Q_{1} ,
. . .

, Q_{k} be the endblocks of G-T which contain cut vertices v_{1} ,
. . .

, v_{k}

respectively. Let R_{1} ,
. . .

, R_{l} be the 2‐connected components of G-T . Define y\in \mathrm{R}^{V}
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such that y_{v} is -2 if v\in T, -1 if v=v_{i} for some 1\leq i\leq k ,
and 0 otherwise. Define

d\in \mathrm{R}^{\mathcal{S}} such that d_{S} is 2 if S=R_{i} for some 1\leq i\leq l ,
1 if S=Q_{i} or S=Q_{i}\backslash \{v_{i}\} for

some 1\leq i\leq k ,
and 0 otherwise.

It is straightforward to check that y and d are values for the variables of the dual

linear program of the SEP which can be used to indicate that the dual linear program

is unbounded. Thus by the theory of linear programming duality, the SEP is infeasible

on the graph G. \square 

We next move on to several new results that allow us to generate extreme points
for S^{n} from extreme points of S^{k}, k<n . In fact, the next theorems show, in particular,
how any extreme point x of S^{n} for which there is a tight set S\subset V of size 3 can be

obtained directly from an extreme point of S^{n-1} or S^{n-2} . As will be shown in Section 4,
this result greatly reduces the work required in generating all the extreme points for

S^{n} ,
as many of these can be obtained directly from the extreme points of S^{n-1} or S^{n-2}

via this operation.
Let x\in S^{n} and let S be a tight set of x . We let x\downarrow S denote the set of edge values

induced on G_{x}/S (where S is identified to a single vertex v) as follows.

(x\downarrow S)_{e}=\left\{\begin{array}{l}
x(E(u: S)) \mathrm{i}\mathrm{f} e=uv\\
x_{e} \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
The next two theorems deal with an operation that shows how we can �split� or

�unsplit� an edge e in G_{x} for which x_{e}=1.

Theorem 2.8. Let x be an extreme point of the SEP‐polytope on S^{n}, n\geq 4,
and let u and v be vertices of G_{x} such that x_{uv}=1 . If there exists a vertex, w

, of G_{x}
such that x_{uw}>0 and x_{vw}>0 then x\downarrow\{u, v\} is an extreme point of S^{n-1}. \square 

Let x\in S^{n} and let G_{x} be the support graph of x . If zw is an edge of G_{x} and we

can partition the edges, apart from zw, which are incident to z in G_{x} into two parts,

E_{1} and E_{2} ,
such that 0\leq x(E_{1}) , x(E_{2})\leq 1 then we define X\uparrow z (zw, E_{1}, E_{2}) (as shown

in Figure 1) by deleting the vertex z and adding two new vertices u and v where

(X\uparrow z (zw, E_{1}, E_{2}))_{e}=\left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} e=uv\\
1-x(E) \mathrm{i}\mathrm{f} e=uw\\
1-x(E) \mathrm{i}\mathrm{f} e=vw\\
x_{qz} \mathrm{i}\mathrm{f} e=qu \mathrm{a}\mathrm{n}\mathrm{d} qz\in E_{1} .\\
x_{qz} \mathrm{i}\mathrm{f} e=qv \mathrm{a}\mathrm{n}\mathrm{d} qz\in E_{2}\\
x_{e} \mathrm{i}\mathrm{f} e \mathrm{i}\mathrm{s} \mathrm{a}\mathrm{n} \mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e} \mathrm{o}\mathrm{f} G_{x}-z\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
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Figure 1. The edge‐splitting operation

Theorem 2.9. Let x be an extreme point of S^{n} . If zw is an edge of G_{x} and we

can partition the edges, apart from zw, which are incident to z in G_{x} into two parts,

E_{1} and E_{2} ,
such that 0\leq x(E_{1}) , x(E_{2})\leq 1 then X\uparrow z (zw, E_{1}, E_{2}) is an extreme point

of S^{n+1}. \square 

Note that Theorem 2.9 is a generalization of a result by W. H. Cunningham reported
in [7] that deals with the special case of the theorem for which the edge zw has value

x_{zw}=1 and z has degree 3 in G_{x} . Also Theorems 2.8 and 2.9 together imply the

following result, as a special case:

Theorem 2.10 (Benoit et. al. [1]). Consider x\in \mathrm{R}^{E} such that for some vertex

v we have x_{uv}=x_{vw}=1 . Let \hat{x}=x\downarrow\{u, v\} . Then \hat{x} is an extreme point of S^{n-1} if
and only if x is an extreme point of S^{n}. \square 

We also have the following theorem which demonstrates the importance of the

edge‐splitting operation in its effect on the rank of the vertex equalities.

Theorem 2.11. Let x be an extreme point of S^{n}, n\geq 4 ,
and let F be the set of

all 1‐edges of x . If x cannot be obtained via the edge‐splitting operation from an extreme

point of S^{n-1} then the vertex equalities of G_{x}-F have rank n or n-1. \square 

The next two theorems tell us that we can shrink any fractional odd cycle that is

tight in the support graph of an extreme point of S^{n} and get another extreme point,
and we can also reverse this operation under certain conditions.

Theorem 2.12. Let x be an extreme point of S^{n} and let S be a tight set of x

such that G[S] is an odd cycle. If x_{e}<1 for every e\in $\gamma$(S) in G_{x} then x\downarrow S is an

extreme point of S^{n-|S|+1}.

Sketch of proof Here we will illustrate the ideas of the proof by sketching it only for the

special case where |S|=3.
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We can show that each tight cut of x is either disjoint from S or contains S . We

can then show that no two vertices of S are adjacent to a common vertex outside of S,
since otherwise we have have a 4‐cycle in G_{x} such that every tight cut of x contains 0

or 2 (adjacent) edges of this 4‐cycle. Furthermore, all of the edges of this cycle obey

0<x_{e}<1 so by choosing some small  $\epsilon$>0 we can alternately add and subtract  $\epsilon$ to

every edge in the cycle and obtain a new solution to the system of equations which are

tight for  x . This contradicts the fact that x is an extreme point. Hence every edge of

G_{x}/S corresponds to a unique edge of G_{x} and thus contracting S in x results simply in

removing the edges of  $\gamma$(S) and relabelling the edges of  $\delta$(S) . Hence the tight sets of

x\downarrow S can be obtained from the tight sets of x simply by removing the 3 vertex equalities
for the vertices in S . Since G_{x}/S has 3 fewer edges than G_{x} ,

these tight constraints

form a set of equations for which x\downarrow S is the unique solution. By the above, x\downarrow S is

also feasible for S^{n-2} thus x\downarrow S is an extreme point of S^{n-2}. \square 

The next theorem is an analogous result that says that, under certain conditions,
we can expand a vertex of an extreme point into a fractional odd cycle and obtain

another extreme point.
Let x\in S^{n} and let v be a vertex of G_{x} . Suppose we can partition the edges of

G_{x} incident to v into k non‐empty parts, (El, . . .

, E_{k} ) where k\geq 3 is odd and for each

0\leq i\leq k-1 we have that

\displaystyle \sum_{j=0}^{\frac{1}{2}(k-3)}x(E_{i+2j+2})<1
(where all indices are taken modulo k ). Then we define X\uparrow v (E0, . . . , E_{k-1}) as follows.

Remove v from G_{x} and add k new vertices, v_{0} ,
. . .

, v_{k-1} . Let S=\{v_{0}, . . . , v_{k-1}\}

(x\uparrow_{v}(E_{0}, \ldots, E_{k-1}))_{e}=\left\{\begin{array}{l}
x_{e} \mathrm{i}\mathrm{f} e\in $\gamma$(\overline{S})\\
x_{uv} \mathrm{i}\mathrm{f} e=uv_{i}\in $\delta$(S)\\
\sum_{=0}^{\frac{1}{j2}(k-3)}x(E) \mathrm{i}\mathrm{f} e=v_{i}v_{i+1} \\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right.
An example for k=3 is depicted in Figure 2.

Theorem 2.13. Let let x be an extreme point of S^{n} ,
let k\geq 3 be an odd integer

and let v be a vertex of G_{x} . If the edges incident to v in G_{x} can be partitioned into k

non‐empty parts, (E0, . . . , E_{k-1}) ,
such that for each 0\leq i\leq k-1 we have that

\displaystyle \sum_{j=0}^{\frac{1}{2}(k-3)}x(E_{i+2j+2})<1
(where all indices are taken modulo k) then x\uparrow v (E0, . . . , E_{k-1}) is an extreme point of
S^{n+k-1}. \square 
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\mathrm{E}_{3}

Figure 2. Inserting a 3‐cycle

Note that Theorems 2.12 and 2.13 are a generalization of a result in [7], which deals

with the special case of these theorems for which the odd cycle in the support graph has

size 3, forms a tight set, and each vertex in the cycle has degree 3 and is not incident

with an edge e for which x_{e}=1.

The following corollary, which will be used extensively in the application in Sec‐

tion 4, follows directly from Theorems 2.8 and 2.12.

Corollary 2.14. Let x be an extreme point of S^{n} and let S\subset V be a tight set

forx such that |S|=3 . Then we can obtain x from an extreme point of S^{n-1} or S^{n-2}.

\square 

§3. Reults on the cobasis structure of the extreme points of S^{n}

Given a system Ax=b of equations, we will use the term rank for this system to

denote the linear rank of matrix A.

Any extreme point x\in S^{n} is uniquely determined by its tight constraints, i.e. it is

the unique solution to the system Ax=b composed of vertex equalities, and cut and

non‐negativity constraints that are tight with respect to x . Let the rank of Ax=b be

k . We say that a subsystem of k of these tight constraints form a cobasis for x if it has

the same rank as A . The extreme points of S^{n} are highly degenerate in that for any

extreme point there is a huge number of possible cobases. For example, for the extreme

point x which is a tour for S^{6} there are over 2000 possible cobases which determine x.

Many results from the previous section on extreme point structure arise from the

knowledge that, for any extreme point x\in S^{n} ,
there always exists a cobasis that satisfies

certain properties. In this section we extend what is currently known. These results

will prove essential in generating all the extreme points for S^{11} and S^{12} ,
as described

in Section 4, as they show it possible to consider a very small subset of the cobases for

an extreme point rather than all of them.
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\mathrm{N}

Figure 3. A Laminar Set
Figure 4. The LBT

A family of sets \mathcal{L} is called laminar if no two sets in the family properly intersect

each other, i.e. for any two sets S, T\in \mathcal{L} we have that S\subset T or T\subset S or S\cap T=\emptyset.

The following theorem is well‐known:

Theorem 3.1 (Cornuéjols et al. [10]). For any x\in S^{n} there exists a cobasis for
which the tight vertex subsets corresponding to the tight cut constraints form a laminar

set. \square 

We will show how the above theorem can be strengthened.
There is a way of compactly storing the laminar set of tight cuts in our cobasis by

means of a labelled tree which we will call the Laminar Basis Tree or LBT for short.

The LBT has one node (and one edge) for each tight cut in our laminar set plus one

extra root node. The node corresponding to a set S in our laminar set will be labelled

with the set of vertices of G_{x} which are in S but not in any proper subset of S in the

laminar set. The root node will be labelled with the set of all vertices of G_{x} that are in

no set in the laminar set. Two nodes will be adjacent if for the corresponding sets, one

is the minimal set which contains the other. The root node will be adjacent to all the

sets which are not contained in any other. As an example, Figure 3 shows a laminar set

and Figure 4 shows the corresponding unlabelled LBT.

Notice now, that if we take a maximal subset in our laminar set and replace it with

its complement, we get another laminar set which is also a cobasis (along with the tight

non‐negativity inequalities and the vertex equalities) for x . This occurs because our new

laminar set induces the exact same cuts as the old one. In fact, the constraints in the

cobasis are exactly the same. The LBT for this new laminar set will be identical to that

of the first laminar set, the only difference being which node is the root. By repeating
this process of replacing a maximal subset in the laminar set with its complement, we

can make any node the root in the corresponding LBT. However, these changes to the
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laminar set do not actually change the constraints in the cobasis. Hence, for a given

cobasis, we can construct an LBT which we will consider to be unrooted. We now

proceed with some properties of LBTs.

Proposition 3.2. Let T be a LBT for a support graph with n vertices and let

n_{1} and n_{2} denote the numbers of nodes of T of degree 1 and 2 respectively. Then

1. T has at most n-2 nodes,

2. the total number of labels on the nodes of T is n,

3. every node of T of degree 1 must contain at least two labels,

4. every node of T of degree 2 must contain at least one label, and

5. 2n_{1}+n_{2}\leq n. \square 

Proposition 3.3. Let x be an extreme point of S^{n} with support graph G_{x} and

let S be the set of labels corresponding to some node, v
, of a LBT�, T

, for some cobasis

of x . Then each component of G[S] is either a tree or a 1‐tree with an odd cycle.
Futhermore G[S] has at most deg_{T}(v) components. \square 

Proposition 3.4. Let x be an extreme point of S^{n} for which the minimum

degree of G_{x} is at least 3. Then there is a cobasis, \mathcal{B} , forx such that the tight sets

corresponding to the tight cut constraints in \mathcal{B} form a laminar set and the leaf nodes of
the associated LBT correspond exactly to the 1‐edges of x. \square 

We give a small example to illustrate the power of Proposition 3.4 in restricting
the number of cobases we need to examine for an extreme point. Consider the extreme

point, x of S^{10} with vertices u_{0} ,
. . .

, u_{4} and v_{0} ,
. . .

, v_{4} such that u_{i}u_{i+1}=v_{i}v_{i+1}=1/2
for each 0\leq i\leq 4 and u_{i}v_{i}=1 for eacb 0\leq i\leq 4 . If we build up a cobasis for x from

the vertex equalities and all tight nonnegativity constraints, then there are at least 1792

different families of tight sets which will give us a cobasis for x . There are 280 such

families which are laminar, but only 1 meets the requirements of Proposition 3.4.

§4. An application: Finding all non‐isomorphic extreme points for S^{11}

and S^{12}

In [1], Benoit and Boyd were able to find the exact integrality gap  $\alpha$ TSP for the

STSP when the problems were restricted to have n vertices, n\leq 10 . The method they
used requires a list of all the non‐isomorphic extreme points for S^{n} for each value of n

considered. Although they were able to generate such a set for each value of n\leq 10,
their methods and tools were completely impractical for n=11.
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In this section we explain how the results in the previous sections can be used to

find a complete list of the non‐isomorphic extreme points for S^{n} ,
and demonstrate this

for n=11 and n=12 . The basic idea is to take each graph G that could potentially

represent a support graph G_{x} for an extreme point x of S^{n} ,
and then match it with

all possible cobases that could go with that graph. For each such pairing we check the

corresponding solution x to see if it is indeed an extreme point. Of course the number

of possible cobases for a graph makes this method impractical, as can the number of

potential support graphs themselves. However if we carefully apply our results from the

previous two sections we can make both of these numbers quite manageable for n=11

and n=12.

We begin by outlining how to obtain a set of potential support graphs. Note that

by Corollary 2.14 we can generate all extreme points x which have a tight set S of size 3

from the extreme points of S^{n-1} or S^{n-2} ,
so we will assume that the extreme points we

seek do not have such a tight set (which implies, in particular, that we do not have two

adjacent 1‐edges in any support graphs). To obtain a reasonable‐sized set of potential

support graphs for all other extreme points x of S^{n} ,
we used the following:

Step 1 Find all the non‐isomorphic 2‐vertex connected graphs on n vertices that have

at most 2n-3 edges and minimum degree of 3. This can be accomplished using
the software tool NAUTY [17].

Step 2 For each graph G' from Step 1, check if it has a subset \mathrm{S} where |E(G'[S])|>
2|S|-b(S)-3 . By Corollary 2.4 we can eliminate such a graph from our set.

Step 3 For each remaining graph G' ,
check if it is 1‐block tough. If not, we can

eliminate it by Theorem 2.7.

We have outlined in Table 1 the effectiveness of these two ways of eliminating

potential support graphs. Note that the process from Corollary 2.4 and for block‐

toughness were run independently, and thus there is some overlap in the numbers in the

table (i.e. some graphs were eliminated by both processes).

\mathrm{n} Graphs produced Graphs eliminated Graphs eliminated Remaining
by NAUTY by Corollary 2.4 by Block‐toughness

11

12

54721

956444

3649

29654

11136

211037

Graphs
42087

715753

Table 1. Elimination of Potential Support Graphs

Next we outline how to obtain a set of LBTs to be paired with each potential

support graph. In this step we do not associate a set of vertices with each node of the
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LBT, but rather one label that represents the number of vertices associated with that

node of the LBT.

Step 1� Find all the LBTs which obey the conditions of Proposition 3.2.

Step 2� Since we are assuming that our support graphs have minimum degree 3, we

know that each will have at least \displaystyle \lceil\frac{3n}{2}\rceil edges. Thus for our cobasis to have full rank,
we must have at least \displaystyle \lceil\frac{3n}{2}\rceil-n tight cut constraints. So we remove any LBTs from

Step 1� that have fewer than \displaystyle \lceil\frac{3n}{2}\rceil-n+1 nodes.

Step 3� By Proposition 3.4 and Theorem 2.2 we can assume the LBTs have at least

3 leaf nodes, and all leaf nodes have label 2 (i.e. we can assume that the leaf nodes

in the LBT correspond exactly to the 1‐edges in the extreme point). Hence we can

eliminate any remaining LBTs that do not satisfy these conditions.

Step 4� By using Corollary 2.14 we can assume we have no tight sets of size three in

our extreme points. Hence we can also eliminate all remaining LBTs that have a

node with degree 2 with label1 which has an adjacent leaf node with label 2.

In total, at the end of Step 4�, there were only 24 eligible LBTs for n=11 and 92

for n=12.

The final stage of the method involves pairing each potential support graph with

each labelled LBT. Below we give a brief sketch of the steps for this which must be

followed for each potential support graph G' in our list.

Step 1� We begin by assigning some of the edges of G' to have value 1 in the corre‐

sponding extreme point. For each extreme point x we are generating, we know by
our assumptions thus far that x_{e} will have value 1 for at least 3 edges, and that the

edges with value 1 will form a matching in the support graph of x . So we find all

matchings for G' of size between 3 and \displaystyle \mathrm{L}\frac{n}{2}\rfloor.

Step 2� For each matching in Step 1 find the rank k of the system \mathcal{K} of constraints

consisting of the non‐negativity constraints, vertex constraints, and constraints x_{e}=

1 for the edges in the matching. Take G' with this matching and pair it with each

labelled LBT with the correct number of nodes and implied 1‐edges from the leaf

nodes such that this pairing could potentially result in a cobasis when we take

the system \mathcal{K} and add the cut constraints corresponding to the LBT. For each

assignment of actual vertices for the node labels of the LBT, see if the resulting

system of constraints does indeed result in an extreme point of S^{n} by checking its

rank, and whether the corresponding solution is feasible for the SEP.

At the end of the pairing process, we directly generate all the extreme points with

tight sets of size 3 from the extreme points of S^{n-1} and S^{n-2} and add these to our list
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of extreme points. As a final step, we remove all the isomorphic extreme points from

the list, again using the software package NAUTY to do this.

Table 2 summarizes the results for n=11 and n=12 . All of the numbers listed

are the numbers of non‐isomorphic extreme points, and include the tour. Also note

that some identical extreme points were generated by some of the processes. Notice

that over 85% of the extreme points in each case were generated by the edge‐splitting

operation (this is true for all 7\leq n\leq 12 ).

Points produced Points produced Points produced Total number

by pairing by Theorem 2.13 by Theorem 2.9 of points
11

12

673

9265

15

378

4386

60390

4972

68320

Table 2. Generating all extreme points

By successfully computing all the non‐isomorphic extreme points of S^{n} ,
we were

able to, for the first time, find the exact integrality gap  $\alpha$ TSP for n=11 and n=12

using the method described in [1]. This value was 19/16 for n=11 and 6/5 for n=12,
which verifies that the conjecture by Benoit and Boyd [1] about the exact value of the

integrality gap for each value of n holds true for n=11 and n=12.

We conclude with some remarks on the time involved for solving these problems.
Not surprisingly, the bottleneck in the time for finding the extreme points using our

method was in completing Steps 1� and 2� above. For n=11 these steps required just
under 20 hours when running on a SUNW UltraSPARC‐II. For n=12 we partitioned
the data into 8 pieces and ran them each on a different processor. These pieces took

between 16 and 24 days each. Finally, in comparing to the time required by Benoit

and Boyd [1], on the same machine their method required almost 4 days to find all the

extreme points for n=10 ,
whereas our method required less than 7 minutes.
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