
RIMS Kôkyûroku Bessatsu
B23 (2010), 171192

Iterative Rounding and Relaxation

By

Lap Chi LAU * and Mohit SINGH **

§1. Introduction

In this survey paper we present an iterative method to analyze linear program‐

ming formulations for combinatorial optimization problems. This method is introduced

by Jain to give a 2‐approximation algorithm for the survivable network design prob‐
lem. First we will present Jain�s method and the necessary background including the

uncrossing technique in Section 2. Then we extend the iterative method by a new relax‐

ation step to tackle degree‐bounded network design problems, and obtain approximation

algorithms with only additive constant errors on the degrees in Section 3. For the min‐

imum bounded degree spanning tree problem, this gives a very simple approximation

algorithm with error at most one on the degrees, proving a conjecture of Goemans in

Section 4. This method can also be applied to directed graphs, and some recent results

on the minimum bounded degree arborescence problem will be highlighted in Section 5.

Finally, we discuss how this method provides new proofs of exact linear programming
formulations for classical combinatorial optimization problems, and present some new

results for the degree bounded matroid problem and the degree bounded submodular

flow problem in Section 6.

Remark. Most of the material in this survey is extracted from a longer survey

written with R. Ravi [9].

§2. Survivable Network Design

In this section we introduce the survivable network design problem, and Jain�s

iterative rounding method which gives a 2‐approximation algorithm for the problem.
The key of this method is a counting technique to analyze the basic solutions of a linear

Received September 15, 2008. Revised July 10, 2009.

2000 Mathematics Subject Classication(s): 90\mathrm{C}27, 68\mathrm{W}25
* The Chinese University of Hong Kong, Hong Kong, China.

** Microsoft Research, New England, United States.

© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

172 LAP Chi Lau and Mohit Singh

program. This shows the use of the uncrossing technique in combinatorial optimization
to the design of approximation algorithms.

Given an undirected graph G=(V, E) and connectivity requirements r_{uv} for all

pairs of vertices, a Steiner network is a subgraph of G in which there are at least r_{uv}

edge‐disjoint paths between u and v for every pair u, v . In the survivable network

design problem, we are given an edge weighted graph G= (V, E) and connectivity

requirements r_{uv} for each pair u, v\in V ,
and the task is to find a Steiner network with

minimum total weight. This problem generalizes a number of problems in network

design; for example, the minimum Steiner tree problem, the minimum Steiner forest

problem, and the minimum k‐edge‐connected subgraph problem. This basic problem
has been studied by researchers in algorithmic design, computer networks, graph theory,
and operations research.

§2.1. Linear Programming Relaxation

One general strategy to design approximation algorithm is to first formulate the

problem as an integer linear program. Then we relax the integrality constraints and

compute an optimal fractional solution of the linear programming relaxation. Finally we

design a �rounding� procedure to turn the fractional solution into an integral solution

with cost within a small factor of the fractional solution.

We consider the cut formulation of the survivable network design problem. For each

subset S\subset V ,
let δ(S) be the set of edges with one endpoint in S and one endpoint

in V-S . To satisfy the connectivity requirements, for each pair u, v so that u\in S

and v\not\in S ,
a Steiner network must have at least r_{uv} edges in δ(S) . Therefore, if we

write f(S) :=\displaystyle \max_{u\in S,v\not\in S}\{r_{uv}\} ,
then any Steiner network must have at least f(S)

edges in δ(S) for all S\subset V . For a subset of edges F
,

we write x(F) as a shorthand for

\displaystyle \sum_{e\in F}x(e) . The following is a linear programming relaxation for the survivable network

design problem.

(LP1) minimize \displaystyle \sum_{e\in E}c_{e}x_{e}
subject to x(δ(S))\geq f(S) \forall S\subseteq V

0\leq x_{e}\leq 1 \forall e\in E

It can be verified that the function f defined by f(S)=\displaystyle \max_{u\in S,v\not\in S}\{r_{uv}\} for each

subset S\subseteq V is a skew supermodular function [6], that is, for any two subsets S, T\subseteq V,
at least one of the following inequality holds:

f(S)+f(T)\leq f(S\cup T)+f(S\cap T)

f(S)+f(T)\leq f(S-T)+f(T-S)

Iterative Rounding and Relaxation 173

This linear program has exponentially many constraints, but it can be solved in poly‐
nomial time by the ellipsoid method if there is a polynomial time separation oracle to

decide whether a given solution is a feasible solution to the linear program. In general
there is no known separation oracle for an arbitrary skew supermodular function, but for

the skew supermodular functions that come from the survivable network design prob‐

lem, one can use a maximum flow algorithm as a separation oracle [7]. Alternatively,
one can write an equivalent linear program with polynomial number of constraints and

variables for the linear program (LP1). In short, there is a polynomial time algorithm
that computes an optimal basic solution to the linear program (LP1).

§2.2. Key Observation

Consider the instance that we are given a Peterson graph in which each edge has

the same cost and the connectivity requirement is one for each pair of vertices. The

fractional solution x_{e}=\displaystyle \frac{1}{3} for all e is an optimal fractional solution to the linear program.

More generally, consider an instance where we are given a k‐regular k‐edge‐connected

graph (e.g. a hypercube) in which each edge has the same cost and the connectivity

requirement is one for each pair of vertices. The fractional solution x_{e}=\displaystyle \frac{1}{k} for all e is

an optimal solution. In such an fractional solution with all edges having the same value,
it is not clear how to use the fractional solution to construct a good integral solution.

Jain�s observation is that these fractional solutions are not basic solutions of the linear

program. In a basic solution of the Peterson graph instance, there are some edges with

value \displaystyle \frac{1}{2} and some edges with value \displaystyle \frac{1}{4} (see [7] or [14]). This observation leads him to

study basic solutions of (LP1) and prove the following key theorem.

Theorem 2.1 (Jain [7]). For an integer‐valued skew‐supermodular function f,

any basic feasible solution to the linear programming relaxation (LP1), there exists an

edge e\in E with x_{e}\displaystyle \geq\frac{1}{2}.

§2.3. Iterative Algorithm

Using Theorem 2.1, Jain introduced an iterative rounding method to construct an

integral solution for the survivable network design problem. The algorithm, as shown in

Figure 1, recomputes a basic optimal solution after each edge is added to the solution.

Note that the function f' is a skew‐supermodular function at every iteration, since

f is a skew‐supermodular function and |δ_{F}| is a submodular function. Therefore, by
Theorem 2.1, there exists an edge e with x_{e}\displaystyle \geq\frac{1}{2} at every iteration. This implies the

following theorem that the iterative rounding algorithm is a 2‐approximation algorithm
for the survivable network design problem.

Theorem 2.2. Algorithm 1 is a 2‐approximation algorithm for the survivable

network design problem.

174 LAP Chi Lau and Mohit Singh

Iterative Rounding Algorithm for Survivable Network Design

1. Initialization F\leftarrow\emptyset, f'\leftarrow f ;

2. While f'\neq\emptyset do

(a) Find a basic feasible solution x with cut requirement f' and remove every edge
e with x_{e}=0.

(b) If there exists an edge e with x_{e}\displaystyle \geq\frac{1}{2} ,
then add e to F and remove x_{e}.

(c) For every S\subseteq V : update f'(S)\leftarrow f(S)-|δ_{F}(S)|.

3. Return H=(V, F) .

Figure 1. Iterative Rounding Algorithm for Survivable Network Design

Proof. The proof is by induction on the number of iterations executed by the

algorithm. For the base case, that it requires only one iteration, the theorem follows

since it rounds up an edge e with x_{e}\displaystyle \geq\frac{1}{2} . For the induction step, let e' be the edge with

x_{e'}\displaystyle \geq\frac{1}{2} in the current iteration, which is guaranteed to exist by Theorem 2.1. Let f' be

the residual requirement function after the first iteration and let H' be the set of edges

picked in subsequent iterations for satisfying f' . Observe that the current solution x

restricted to E-e' is a feasible solution for satisfying f' ,
and thus by the induction

hypothesis, the cost of H' is at most 2 \displaystyle \sum_{e\in E-e}, c_{e}x_{e} . Consider H:=H'+e' ,
which

clearly satisfies cut requirement f . The cost of H is:

cost (H)=cost(H')+c_{e'}\displaystyle \leq 2\sum_{e\in E-e'}c_{e}x_{e}+c_{e'}\leq 2\sum_{e\in E}c_{e}x_{e},
where the last inequality follows because x_{e'}\displaystyle \geq\frac{1}{2} . This implies that the cost of H is

at most twice the cost of an optimal fractional solution, which is a lower bound on the

optimal cost, and thus the theorem follows. \square

§2.4. Basic Solutions

To prove Theorem 2.1, we need a characterization of the basic solutions of the linear

programming relaxation (LP1). A basic solution is defined to be the unique solution

of m linearly independent tight constraints (constraints which achieve equality), where

m denotes the number of variables in the linear program. For a subset S\subseteq V ,
the

corresponding constraint x(δ(S))\geq f(S) defines a vector in \mathbb{R}^{|E|} : the vector has an

1 corresponding to each edge e\in δ(S) ,
and a 0 otherwise. We call this vector the

characteristic vector of δ(S) ,
and denote it by χ_{ δ(S)} . Two sets X, Y are intersecting if

Iterative Rounding and Relaxation 175

X\cap Y, X-Y and Y-X are nonempty. A family of sets is laminar if no two sets are

intersecting. For any two intersecting subsets X and Y
,

since

x(δ(X))+x(δ(Y))\geq x(δ(X\cap Y))+x(δ(X\cup Y)) and

x(δ(X))+x(δ(Y))\geq x(δ(X-Y))+x(δ(Y-X)) ,

and f is a skew supermodular function, it follows from standard uncrossing arguments

(see e.g. [2, 7]) that a basic solution to the above linear program is characterized by a

laminar family of tight constraints. The following lemma is proved in [7].

Lemma 2.3 ([7]). Let the requirement function f of the linear programming re‐

laxation (LP1) be skew supermodular, and let x be a basic solution to (LP1) such that

0<x_{e}<1 for all edges e\in E . Then there exists a laminar family \mathcal{L} such that:

1. x(δ(S))=f(S) for S\in \mathcal{L}.

2. The characteristic vectors χ_{ δ(S)} for S\in \mathcal{L} are linearly independent.

3. |E|=|\mathcal{L}|.

§2.5. A Counting Argument

Instead of proving Theorem 2.1, we prove a weaker version that every basic solution

has an edge with value at least \displaystyle \frac{1}{3} (this weaker version is also proved in [7]). This proof
is much simpler and contains the main ideas of the proof of Theorem 2.1.

The proof is by a counting argument. Suppose, by way of contradiction, that

0<x_{e}<\displaystyle \frac{1}{3} for every edge e . Let x be the current basic solution. By Lemma 2.3, there

is a laminar family \mathcal{L} of tight constraints that defines x . We assign two tokens to each

edge, one to each endpoint, for a total of 2|E| tokens. Then we will redistribute the

tokens so that each member in \mathcal{L} receives at least 2 tokens and there are some tokens

left. This would imply that |E|>|\mathcal{L}| and contradicts Lemma 2.3.

A laminar family \mathcal{L} defines naturally a forest as follows: Each node of the forest

corresponds to a set in \mathcal{L} , and there is an edge from set R to set S if R is the smallest

set containing S. R is called the parent of S ,
and S is called the child of R . A node

with no parent is called a root, and a node with no children is called a leaf. Given a

node R ,
the subtree rooted at R consists of R and all its descendants.

We say an endpoint v is owned by a set S if S is the smallest set in \mathcal{L} that contains v.

Initially each vertex v gives its tokens to the set S\in \mathcal{L} that owns v . The redistribution

of tokens is by an inductive argument using the forest structure of the laminar family \mathcal{L}.

We will prove the following lemma, which would yield the contradiction that |E|>|\mathcal{L}|.

176 LAP Chi Lau and Mohit Singh

Lemma 2.4 ([7]). For any rooted subtree of the forest \mathcal{L} with root S ,
the tokens

assigned to vertices in S can be redistributed such that every node in the subtree gets at

least two tokens, and the root S gets at least four tokens.

Proof. The proof is by induction. In the base case, consider a leaf node S in the

laminar family. Since f(S)\geq 1 and x_{e}<\displaystyle \frac{1}{3} for all e
,

this implies that | δ(S)|\geq 4 and

thus S can collect four tokens. This verifies the base case.

For the induction step, consider a non‐leaf node S . Note that by induction each

child has at least two extra tokens. If S has at least two children, then S can collect

four tokens by taking two extra tokens from each child. The only case left is when S

has only one child R . Since χ_{ δ(S)} and χ_{ δ(R)} are linearly independent, S must owns at

least one endpoint. As both f(S) and f(R) are integers and there is no edge of integral

value, this actually implies that S cannot own exactly one endpoint, and thus S owns

at least two endpoints. Therefore, S can collect four tokens by taking two extra tokens

from R and two tokens from the endpoints that it owns. This completes the proof of

the induction step. \square

Lemma 2.4 implies that there are extra tokens at the roots of the laminar family,
and thus |E|>|\mathcal{L}| , contradicting that x is a basic solution. Therefore, in a basic

solution, there exists an edge with value at least \displaystyle \frac{1}{3} , completing the proof of the weaker

version of Theorem 2.1.

To prove Theorem 2.1, one requires a more careful counting argument; the inter‐

ested reader is referred to [7] or [14] for details. Also, we mention that Nagarajan, Ravi

and Singh (see [9]) have a simple proof of Theorem 2.1 using the idea of fractional token

assignment by Bansal, Khandekar and Nagarajan in [1]. We will also see this fractional

token idea in Section 4 to give a simple proof of an iterative relaxation algorithm for

the minimum bounded degree spanning tree problem.

§3. Degree Bounded Network Design

In this section we introduce the minimum bounded‐degree Steiner network problem,
and see how to extend Jain�s method to tackle this problem. The key is a new relaxation

step in the iterative method.

In the minimum bounded degree Steiner network problem, we are given an undi‐

rected graph G=(V, E) ,
a cost function c : E\rightarrow \mathbb{R}

,
a connectivity requirement function

r : V\times V\rightarrow \mathbb{Z} ,
and a degree upper bound B_{v} for each vertex v\in V . The task is to find

a Steiner network H of G with minimum total cost satisfying the additional constraints

that d_{H}(v)\leq B_{v} for all v\in G.

Note that finding a feasible solution to this problem is already NP‐hard, as the

Hamiltonian path problem is a special case. Therefore, the minimum bounded degree

Iterative Rounding and Relaxation 177

Steiner network problem has two optimization objectives: to minimize the total cost

and to minimize the degree violation. The goal is to design approximation algorithms
that optimize both objectives simultaneously. Let OPt be the optimal cost of a solution

satisfying all the degree constraints. We say an algorithm is an (α, f(B)) ‐bicriteria

approximation algorithm if the returned solution has cost at most α OPt and the

degree of each vertex v is at most f(B_{v}) .

We will first present a constant factor bicriteria approximation algorithm in Sec‐

tion 3.2, and then mention how to improve it to obtain additive approximation guarantee
on the degree violation in Section 3.3. Note that the latter result implies additive ap‐

proximation algorithms for the minimum maximum‐degree Steiner network problem,
where the goal is to find a Steiner network with minimum maximum‐degree.

§3.1. Previous Work

A simpler problem is the minimum maximum‐degree Steiner network problem,
where the goal is to find a Steiner network with minimum maximum degree. For the

minimum maximum‐degree spanning tree problem, Fürer and Raghavachari [4] gave an

approximation algorithm returning a solution with maximum degree at most one more

than the optimal solution. (Their result holds for Steiner trees as well.) This result has

generated much interest to degree‐bounded network design problems.
Goemans conjectured that there is \mathrm{a}(1, B_{v}+1) ‐bicriteria approximation algorithm

for the minimum bounded degree spanning tree problem. This problem has been stud‐

ied by several group of researchers, and Goemans made a breakthrough by giving a

(1, B_{v}+2) ‐bicriteria approximation algorithm [5]. Only some partial results are known

for more general connectivity requirements. The interested reader is referred to [5, 12]
for previous work on the minimum bounded degree spanning tree problem, and [10, 11]
for previous work on the minimum bounded degree Steiner network problem.

§3.2. A Constant Factor Approximation Algorithm

The iterative rounding method is extended to prove the following result.

Theorem 3.1 ([10]). There is a polynomial time (2, 2B_{v}+3) ‐approximation al‐

gorithm for the minimum bounded degree Steiner network problem.

As in the survivable network design problem, we define f(S) :=\displaystyle \max_{u\not\in S,v\in S}\{r_{u,v}\}
for every subset S\subset V ,

which is a skew supermodular function. The linear programming
relaxation is almost the same as (LP1), with the addition of degree constraints on a

subset W\subseteq V of vertices.

178 LAP Chi Lau and Mohit Singh

(LP2) minimize \displaystyle \sum_{e\in E}c_{e}x_{e}
subject to x(δ(S))\geq f(S) , \forall S\subseteq V

x(δ(v))\leq B_{v}, \forall v\in W

0\leq x_{e}\leq 1 \forall e\in E

Note that degree constraints are defined only on single vertices, and so the un‐

crossing technique as in [7, 5] can be applied to show that a basic optimal solution is

characterized by a laminar family of tight constraints (see Lemma 2.3). This immedi‐

ately implies that, in the first iteration, there exists an edge having value at least \displaystyle \frac{1}{2}.
Now comes the main difference. Since degree constraints are packing constraints, after

we have picked some fractional edges in the previous iterations, we need to allow for

non‐integral degree constraints in the residual problem, otherwise the residual problem

may be infeasible, or its cost may be significantly higher. By doing so, however, it is

not necessarily true that the picked edges in later iterations have value at least \displaystyle \frac{1}{2} ,
as

the proof of Theorem 2.1 uses the fact that the function f is integer‐valued.
The idea of iterative relaxation is introduced in [10] to overcome this difficulty.

When there is no edge of value at least \displaystyle \frac{1}{2} in a basic optimal solution, it is proved in

[10] that there is a vertex v with degree constraint and it has degree at most 4. The

new step is to �relax� the problem by removing the degree constraint on v . After that,
a basic optimal solution is recomputed for the residual problem, and this procedure is

iterated. So, in each iteration, either an edge of value at least \displaystyle \frac{1}{2} is rounded up or the

problem is relaxed by removing the degree constraint of a vertex of degree at most 4.

Note that the relaxation step only incurs an extra additive constant 3 in the degree
violation. This implies \mathrm{a}(2,2B_{v}+3) ‐approximation algorithm for the problem [10],
which is described formally in the following.

Similar to the proof of Lemma 2.3, the following lemma about the basic solutions

of (LP2) is needed to prove Theorem 3.1.

Lemma 3.2 ([10]). Let the requirement function f of (LP2) be skew supermod‐

ular, and let x be a basic solution of (LP2) such that 0<x_{e}<1 for all edges e\in E.

Then, there exists a laminar family \mathcal{L} of tight inequalities, where \mathcal{L} partitions into a set

of singletons \mathcal{L}' for the degree constraints, and the remaining sets \mathcal{L}''=\mathcal{L}-\mathcal{L}' for the

connectivity constraints such that:

1. x(δ(v))=B_{v} for each v\in \mathcal{L}' and x(δ(S))=f(S) for each S\in \mathcal{L}

2. |\mathcal{L}|=|E|.

Iterative Rounding and Relaxation 179

Iterative Algorithm for Minimum Bounded Degree Steiner Network

1. Initialization F\leftarrow\emptyset, f'\leftarrow f ,
and \forall v\in W:B_{v}'=B_{v} ;

2. While f'\neq\emptyset do

(a) Find a basic optimal solution x with cut requirement f' and remove every edge
e with x_{e}=0.

(b) If there exists a vertex v\in W with degree at most 4, remove v from W and

goto (a).

(c) If there exists an edge e=(u, v) with x_{e}\displaystyle \geq\frac{1}{2} ,
then add e to F and remove x_{e}

and decrease B_{u}' and B_{v}' by \displaystyle \frac{1}{2}.
(d) For every S\subseteq V:f'(S)\leftarrow f(S)-|δ_{F}(S)|.

3. Return H=(V, F) .

Figure 2. Iterative Algorithm for Minimum Bounded Degree Steiner Network

3. The characteristic vectors χ_{ δ(S)} for S\in \mathcal{L} are linearly independent.

Then a counting argument similar to Jain�s counting argument is used to prove

that the algorithm in Figure 2 always terminates successfully.

Lemma 3.3 ([10]). Let x be a basic solution of (LP2), and W be the set of
vertices with degree constraints. Then either one of the following is true:

1. There exists an edge with value at least \displaystyle \frac{1}{2}.

2. There exists a vertex v\in W such that deg(v) \leq 4.

We prove the weaker version of the lemma by replacing \displaystyle \frac{1}{2} in Lemma 3.3(1) by

\displaystyle \frac{1}{3} ,
whose proof is much simpler and contains the main ideas. Suppose, by way of

contradiction, that every edge e with 0<x_{e}<\displaystyle \frac{1}{3} and each vertex v\in W has deg(v) \geq 5.

We use a counting argument to prove that |E|>|\mathcal{L}| . Each edge is assigned two tokens,
for a total of 2|E| tokens. For each edge e

,
one token is assigned to each endpoint. We

show that the tokens can be redistributed in such a way that each set in \mathcal{L} can collect

two tokens, and there are some tokens left. This would imply |E|>|\mathcal{L}| , contradicting
that x is a basic solution. Initially each vertex v gives its tokens to the set S\in \mathcal{L}

that owns v . The redistribution of tokens is by an inductive argument using the forest

structure of the laminar family \mathcal{L}.

180 LAP Chi Lau and Mohit Singh

Lemma 3.4. For any rooted subtree of the forest \mathcal{L} with root S ,
the tokens as‐

signed to vertices in S can be redistributed such that every member in the subtree gets
at least two tokens, and the root S gets at least four tokens.

Proof. Since each vertex with degree constraint has degree at least five, each

degree constraint has at least three extra tokens. For a leaf node S in \mathcal{L} which is not a

degree constraint, since f(S)\geq 1 and there is no edge with x_{e}\displaystyle \geq\frac{1}{3}, | δ(S)|\geq 4 and so

S can collect four tokens. This verifies the base case.

For the induction step, consider a non‐leaf node S . Note that by induction each

child has at least two extra tokens. If S has at least two children, then S can collect

four tokens by taking two extra tokens from each child. The only case left is when S

has only one child R . Since χ_{ δ(S)} and χ_{ δ(R)} are linearly independent, S must owns

at least one endpoint. If R is a degree constraint, then S can collect four tokens by

taking one token from the endpoint it owns and three tokens from R . Otherwise, R is a

connectivity constraint. Since both f(S) and f(R) are integers and there is no edge of

integral value, this implies that S cannot own exactly one endpoint, and thus S owns

at least two endpoints. Therefore, S can collect four tokens by taking two extra tokens

from R and two tokens from the endpoints that it owns. This completes the proof of

the induction step. \square

Therefore, by Lemma 3.4, there are extra tokens left in the roots of the laminar

family, and this gives us the contradiction that |E|>|\mathcal{L}| . This completes the proof
of the weaker version of Lemma 3.3. The proof of Lemma 3.3 is by a more careful

counting argument, which we refer to the reader to [10] for details. Theorem 3.1 follows

immediately from Lemma 3.3.

§3.3. An Additive Approximation Algorithm

Motivated by the results on the minimum bounded degree spanning tree problem,
it is natural to ask whether there is a bicriteria approximation algorithm with degree
violation bounded by an additive constant. However, the following example shows that

the integrality gap for the worst case degree violation is at least a multiplicative \displaystyle \frac{3}{2} or

an additive \displaystyle \frac{n}{4}.
We note that in the integrality gap example there is a pair of vertices with high

connectivity requirement. In the minimum bounded degree Steiner tree problem, the

maximum connectivity requirement is one, and there is an approximation algorithm

by Fürer and Raghavachari with degree violation at most one in the unweighted case

[4]. This leads to the question whether there is an additive approximation algorithm
when the maximum connectivity requirement is small, and the following result provides
a positive answer.

Iterative Rounding and Relaxation 181

x_{1} x_{2}

Figure 3. In this example, we have a complete bipartite graph B=(X, Y, E) where X=

\{x_{1}, x_{2}\} and Y=\{y_{1}, . . :; y_{n}\} . We set the connectivity requirements between y_{i} and y_{j} to be

1 for all i, j ,
between x_{1} and x_{2} to be \displaystyle \frac{n}{2} ,

and 0 otherwise. The fractional solution where all

edges have fractional value \displaystyle \frac{1}{2} is the optimal solution, in which the degree of x_{1} and x_{2} is equal
to \displaystyle \frac{n}{2}=\triangle_{f}^{*} . On the other hand, in any integer solution, the degree of x_{1} and x_{2} must be at

least \displaystyle \frac{3}{4}n=\frac{3}{2}\triangle_{f}^{*} . This example also shows that the integrality gap is at least an additive \displaystyle \frac{n}{4}.

Theorem 3.5 ([11]). There is a polynomial time (2, B_{v}+6r_{\max}+3) ‐approximation

algorithm for the minimum bounded degree Steiner network problem, where r_{\max}=

\displaystyle \max_{u,v}\{r_{u,v}\} is the maximum connectivity requirement.

In particular, for the minimum bounded degree Steiner forest problem, when the

maximum connectivity requirement is one, Theorem 3.5 gives a bicriteria approxima‐
tion algorithm with degree violation bounded by an additive constant. Similar results

hold for the minimum bounded degree k‐edge‐connected subgraph problem when k is a

constant.

To achieve additive approximation on the degree bounds, the algorithm needs to

avoid picking many edges with value \displaystyle \frac{1}{2} incident on the same vertex. Interestingly, it

turns out that in any basic solution there is an edge with x_{e}\displaystyle \geq\frac{1}{2} between two �low

degree� vertices.

Lemma 3.6 ([11]). Let x be a basic feasible solution of (LP) , W be the set of
vertices with degree constraints, and W_{h}=\displaystyle \{v\in W|\sum_{e\in δ(v)}x_{e}\geq 6r_{\max}\} . Then at

least one of the following must be true.

1. There exists an edge e with x_{e}=1.

2. There exists an edge e=\{u, v\} with x_{e}\geq 1/2 and u, v\not\in W_{h}.

3. There exists a vertex v\in W such that deg(v) \leq 4.

The counting argument of Lemma 3.6 is more involved; we refer the reader to [11]
for its proof. This lemma leads to the algorithm in Figure 4 that only picks edges with

x_{e}\displaystyle \geq\frac{1}{2} when both endpoints have low degrees.
It is easy to see that the cost of the solution is at most twice the cost of an optimal

fractional solution, since only edges with value at least \displaystyle \frac{1}{2} are picked. We argue that

182 LAP Chi Lau and Mohit Singh

Additive Approximation for Minimum Bounded Degree Steiner Network

1. Initialization F\leftarrow\emptyset, f'(S)\leftarrow f(S)\forall S\subseteq V.

2. While f'\neq 0 do

(a) Find a basic optimal solution x satisfying cut requirement f' and remove every

edge e with x_{e}=0 . Set W_{h}=\displaystyle \{v\in W|\sum_{e\in δ(v)}x_{e}\geq 6r_{\max}\} and B_{v}=

\displaystyle \sum_{e\in δ(v)}x_{e} for v\in W.

(b) For every v\in W with degree at most 4, remove v from W and goto (a).

(c) For each edge e=(u, v) with x_{e}=1 ,
add e to F and remove x_{e} and decrease

B_{u} and B_{v} by 1.

(d) For each edge e=(u, v) with x_{e}\geq 1/2 and u, v\not\in W_{h} ,
add e to F and remove

x_{e} and and decrease B_{u} and B_{v} by 1/2.

(e) For every S\subseteq V:f'(S)\leftarrow f(S)-|δ_{F}(S)|.

3. Return H=(V, F) .

Figure 4. Additive approximation for minimum bounded degree Steiner network.

the degree of any vertex v in solution H is at most B_{v}+6r_{\max}+3 . In Step 2(a),
we define the set W_{h} of vertices with fractional degree at least 6r_{\max} as �high� degree
vertices. Consider an edge e with v as an endpoint. By Step 2(c) of the algorithm,
when v\in W_{h}, e is picked only if x_{e}=1 . Hence, while v\in W_{h} ,

at most B_{v}-6r_{\max}

edges incident at v are added to H . By Step 2(d) of the algorithm, while v\in W\backslash W_{h},
e is picked only if x_{e}\displaystyle \geq\frac{1}{2} . Hence, while v\in W\backslash W_{h} , strictly less than 12r_{\max} edges
incident at v are added to H . Finally, by Step 2(b) of the algorithm, v\not\in W only if v

is incident to at most four edges. Therefore, the degree of v in H is strictly less than

(B_{v}-6f_{\max})+12f_{\max}+4=B_{v}+6f_{\max}+4 . As B_{v} is an integer, the degree of v in H

is at most B_{v}+6f_{\max}+3 . This proves Theorem 3.5. A stronger result can be proved
for the special cases of Steiner trees and Steiner forests.

Theorem 3.7 ([11]). There is a polynomial time (2, B_{v}+3) ‐bicriteria approxi‐
mation algorithm for the minimum bounded degree Steiner forest problem.

§4. Degree Bounded Spanning Trees

In this section we consider the minimum bounded degree spanning tree problem,
and prove Goemans conjecture by a simple iterative relaxation algorithm.

Iterative Rounding and Relaxation 183

Theorem 4.1 ([12]). There is a polynomial time (1, B_{v}+1) ‐bicriteria approxi‐
mation algorithm for the minimum bounded degree spanning tree problem.

This result is first proved in [12], and the analysis is subsequently simplified in [1].
Here we use the idea in [1] to present an even simpler algorithm for Theorem 4.1.

§4.1. Linear Programming Relaxation

The following linear programming relaxation is used for the minimum bounded

degree spanning tree problem [5, 12], where the degree bounds are given for vertices in

W\subseteq V . In the following E(S) denotes the set of edges with both endpoints in S.

(LP3) minimize \displaystyle \sum_{e\in E}c_{e}x_{e}
subject to x(E(V))=|V|-1

x(E(S))\leq|S|-1 \forall S\subset V

x(δ(v))\leq B_{v} \forall v\in W

x_{e}\geq 0 \forall e\in E

Although this linear program has exponentially many constraints, there is a poly‐
nomial time separation oracle to decide whether a given fractional solution is feasible,
and thus it can be solved in polynomial time by the ellipsoid method.

§4.2. Iterative Relaxation Algorithm

The following algorithm in Figure 5 removes degree constraints one by one, and

eventually reduces the problem to a minimum spanning tree problem. Note that there

is no rounding step in this algorithm.

Iterative Relaxation for Minimum Bounded Degree Spanning Tree

1. While W\neq\emptyset do

(a) Find a basic optimal solution x of (LP3) and remove every edge e with x_{e}=0.

(b) If there exists a vertex v\in W with deg(v) \leq B_{v}+1 then remove v from W.

2. Return a basic solution x of (LP3).

Figure 5. Iterative Relaxation Algorithm for Minimum Bounded Degree Spanning Tree

In the next subsection we prove that in each iteration the algorithm can always
find some vertex to remove the degree constraint. Once all the degree constraints are

184 LAP Chi Lau and Mohit Singh

removed, the problem reduces to the minimum spanning tree problem, and hence a

basic solution is integral. Since we only relax the linear program at each step, the cost

of the final solution is at most the cost of the initial solution, and thus the tree returned

by the algorithm has optimal cost. A simple inductive argument also shows that the

degree bound is violated by at most an additive one.

§4.3. A Counting Argument

Using standard uncrossing technique, one can obtain the following characterization

of the basic solutions of (LP3).

Lemma 4.2 ([5,12 Let x be a basic solution of (LP3) with x_{e}>0 for each

edge e\in E . Then there exists a set T\subseteq W and a laminar family \mathcal{L} such that

1. x(δ(v))=B_{v} for each v\in T and x(E(S))=|S|-1 for each S\in \mathcal{L}.

2. The characteristic vectors χ_{E(S)} for S\in \mathcal{L} and the characteristic vectors χ_{ δ(v)} for
v\in T are linearly independent.

3. |\mathcal{L}|+|T|=|E|.

To prove Theorem 4.1, it remains to prove that the iterative relaxation algorithm
can always find a degree constraint to remove at each step. The proof of the following
lemma uses the fractional token idea by Bansal, Khandekar and Nagarajan [1].

Lemma 4.3. If W\neq\emptyset , then in any basic solution to (LP3) with x_{e}>0 for all

e\in E ,
there exists some vertex v\in W with deg(v) \leq B_{v}+1.

Proof. Suppose, by way of contradiction, that W\neq\emptyset and deg(v) \geq B_{v}+2 for

each v\in W . We show by a counting argument that |E|>|T|+|\mathcal{L}| , contradicting
Lemma 4.2. We give one token for each edge in E . We then redistribute the token such

that each vertex in T and each set in \mathcal{L} gets one token and there are some extra tokens

left. This will contradict |E|=|T|+|\mathcal{L}| . The token redistribution is as follows. Each

edge e\in E gives (1-x_{e})/2 to each of its endpoints for the degree constraints and x_{e}

token to the smallest set in \mathcal{L} containing both endpoints of e.

We now show that each vertex with a degree constraint gets one token. Let v\in W

be such a vertex. Then v receives (1-x_{e})/2 tokens for each edge incident at v for a

total of

\displaystyle \sum_{e\in δ(v)}\frac{1-x_{e}}{2}\geq\frac{deg(v)-B_{v}}{2}\geq 1
token, where the first inequality holds since \displaystyle \sum_{e\in δ(v)}x_{e}\leq B_{v} and the second inequality
holds since deg(v) \geq B_{v}+2 by the relaxation step of the algorithm.

Iterative Rounding and Relaxation 185

Now we show that each member S\in \mathcal{L} also obtains one token. By the token

redistribution rule, S receives x_{e} token for each edge e such that S is the smallest set

containing both endpoints of e . Let R_{1} ,
. . .

, R_{k} be the children of S in the laminar

family \mathcal{L} where k\geq 0 . We have

x(E(S))=|S|-1

x(E(R_{i}))=|R_{i}|-1 for each 1\leq i\leq k

\displaystyle \Rightarrow x(E(S))-\sum_{i=1}^{k}x(E(R_{i}))=|S|-1-\sum_{i=1}^{k}(|R_{i}|-1)
\displaystyle \Rightarrow x(A)=|S|-1-\sum_{i=1}^{k}(|R_{i}|-1) ,

where A=E(S)\displaystyle \backslash (\bigcup_{i=1}^{k}E(R_{i})) . By the token redistribution rule, S receives exactly

x(A) tokens, which is an integer by the above equation. Note that x(A)\neq 0 ; otherwise

χ_{E(S)}=\displaystyle \sum_{i=1}^{k}χ_{E(R_{i})} which contradicts the linear independence of the characteristic

vectors in \mathcal{L} . Hence each set also receives at least one token.

It remains to show that there is some extra token left for contradiction. If V\not\in \mathcal{L}
then there exists an edge e which is not contained in any set of \mathcal{L} and the x_{e} token for

that edge gives us some extra tokens. Similarly, if there is a vertex v\in W-T then v

collects one extra token. Moreover, if there is an edge e with x_{e}<1 incident on a vertex

v\in V-T ,
then there are (1-x_{e})/2>0 extra tokens on v . Note that e\in span() for

each e with x_{e}=1 ,
since e is a tight set of size two. We have

2χ_{E(V)}=\displaystyle \sum_{v\in V}χ_{ δ(v)}=\sum_{v\in T}χ_{ δ(v)}+\sum_{v\in V-T}χ_{ δ(v)}=\sum_{v\in T}χ_{ δ(v)}+\sum_{v\in V-T}\sum_{e\in δ(v)}χ_{e}.
We have argued that V\in \mathcal{L} and e\in span() for each edge e\in δ(v) for v\in V-T.

Since T=W\neq\emptyset ,
this implies the linear dependence of the tight constraints in T and

those in \mathcal{L} , giving us the contradiction. \square

§5. Degree Bounded Arborescences

There is a natural analog of the minimum bounded degree spanning tree problem in

directed graphs‐ the minimum bounded degree arborescence problem. In this problem,
we are given an edge weighted directed graph and an out‐degree bound B_{v} for each

vertex v
,

and the task is to find an arborescence with minimum total cost satisfying all

the out‐degree bounds. \mathrm{A}(2,2B_{v}+2) ‐bicriteria approximation algorithm is obtained

in [10] for the minimum bounded degree arborescence problem using a similar approach
as in Section 3. It is a very natural question whether there is \mathrm{a}(1, B_{v}+1) ‐bicriteria ap‐

proximation algorithm for the minimum bounded degree arborescence problem. Bansal,

186 LAP Chi Lau and Mohit Singh

Khandekar and Nagarajan [1] proved some surprising results for this problem. On one

hand, they give an additive approximation algorithm for the minimum maximum out‐

degree arborescence problem, where the goal is to find an arborescence with minimum

maximum out‐degree.

Theorem 5.1 ([1]). There is an approximation algorithm with error at most an

additive constant 2 for the minimum maximum out‐degree arborescence problem.

On the other hand, they show that for the linear programming relaxation (LP4),
there is a cost‐degree tradeoff for approximating the minimum bounded degree arbores‐

cence problem.

Theorem 5.2 ([1]). For (LP4), for any 0< ϵ<1 ,
there are instances in which

any arborescence with |δ^{out}(v)|\displaystyle \leq\frac{B_{v}}{1- ϵ}+O(1) for all v has cost at least (\displaystyle \frac{1-o(1)}{ ϵ}) times

the optimal fractional cost.

This shows that, unlike the results in undirected graphs, one cannot simultaneously
minimize both the cost and the degree violation using the natural linear programming
relaxation for the problem. In the following we present the proof of Theorem 5.1, in

which the idea of fractional token is first used.

§5.1. Linear Programming Relaxation

For the purpose of iterative relaxation, the problem is defined in a more general

setting where the connectivity requirement is defined by a 0‐1 intersecting supermodular
function f ,

where f(S)=\{0 ,
1 \} and for two intersecting subsets S and T,

f(S)+f(T)\leq f(S\cap T)+f(S\cup T) .

In the following the out‐degree constraints are defined on a subset W\subseteq V.

(LP4) minimize \displaystyle \sum_{e\in E}c_{e}x_{e}
subject to x(δ^{in}(S))\geq f(S) \forall S\subseteq V-r

x(δ^{out}(v))\leq B_{v} \forall v\in W
0\leq x_{e}\leq 1 \forall e\in E

Although this linear program has exponentially many constraints, it can be solved

by the ellipsoid method using a minimum cut algorithm as a separation oracle.

Iterative Rounding and Relaxation 187

§5.2. Iterative Relaxation Algorithm

For the minimum maximum out‐degree arborescence problem, the iterative algo‐
rithm in Figure 6 is based on rounding a basic solution of (LP4) where there is no

objective function.

Iterative Relaxation for Minimum Maximum Out‐Degree Arborescence

1. Initialization F\leftarrow\emptyset.

2. While W\neq\emptyset do

(a) Find a basic solution x of (LP4) where there is no objective function, and

remove every edge e with x_{e}=0.

(b) If there is a vertex v\in W with |δ^{out}(v)|\leq B_{v}+2 ,
then add all the edges in

δ^{out}(v) to F and remove all the edges in δ^{out}(v) and remove v from W.

3. Return any arborescence in F.

Figure 6. Iterative Relaxation for Minimum Maximum Out‐Degree Arborescence

The degree constraint is violated only in Step 2(b) by at most two. So if the algo‐
rithm terminates successfully, then the algorithm is an additive approximation algorithm
for the minimum maximum out‐degree arborescence problem.

Remark. In Step 2(b) of the algorithm, some edges with very small fractional

values may be added, and thus there is no guarantee on the total cost of the returned

arborescence if we are also given costs on the edges.

Remark. The algorithm in Figure 6 is a slightly simplified version of the algorithm
in [1], in which there is a step of picking an edge of value one. The algorithm in Figure 6

is very similar to the algorithm in Figure 5 for the minimum bounded degree spanning
tree problem.

§5.3. A Counting Argument

Using standard uncrossing argument, one can obtain the following characterization

of the basic solutions of (LP4).

Lemma 5.3 ([10, 1 Let x be any basic solution of the linear programming
relaxation (LP4). Then there exists a set T\subseteq W and a laminar family \mathcal{L} such that

1. x(δ^{out}(v))=B_{v} for each v\in T and x(δ^{in}(S))=f(S) for each S\in \mathcal{L}.

188 LAP Chi Lau and Mohit Singh

2. The characteristic vectors \{ in
\in \mathrm{L}\} \text{∪}\{ out

\in \} are linearly inde‐2. The characteristic vectors \{χ_{δ^{in}(S)} : S\in \mathcal{L}\}\cup\{χ_{δ^{out}(v)} : v\in T\} are linearly inde‐

pendent.

3. |E|=|\mathcal{L}|+|T|.

We are ready to prove that the algorithm in Figure 6 can always terminate suc‐

cessfully, which will then complete the proof of Theorem 5.1.

Lemma 5.4. If W\neq\emptyset , then in any basic solution x of (LP4) with x_{e}>0 for
all e

,
there exists a vertex v with out‐degree at most B_{v}+2.

Proof. Suppose, by way of contradiction, that x_{e}>0 for all e and |δ^{out}(v)|\geq
 B_{v}+3 for each v\in W . Each edge is assigned one token, for a total of |E| tokens. For

each edge e, 1-x_{e} token is assigned to its tail, and x_{e} token is assigned to its head. We

will redistribute the tokens so that each set in \mathcal{L} and each degree constraint in T can

collect one token, and there are some tokens left. This would imply that |E|>|\mathcal{L}|+|T|,
which contradicts that x is a basic solution.

For each vertex v with nonzero out‐degree, it collects

\displaystyle \sum_{e\inδ^{out}(v)}(1-x_{e})=|δ^{out}(v)|-\sum_{e\inδ^{out}(v)}x_{e}\geq|δ^{out}(v)|-B_{v}\geq 3
tokens; the first inequality follows from the constraints in (LP4), and the last inequality
follows because of the relaxation step in the algorithm. This shows that each vertex

with nonzero out‐degree can collect at least three tokens, and thus has at least two extra

tokens.

For a leaf node S\in \mathcal{L} ,
it collects \displaystyle \sum_{e\inδ^{in}(v)}x_{e}=1 token. Furthermore S has

at least one extra token if |δ^{out}(S)|\geq 1 . We call S with |δ^{out}(S)|=0 a sink node.

Hence each non‐sink node has at least one extra token. We prove inductively that

each sink node has at least one token and each non‐sink node has at least two tokens,
which holds in the base case when S is a leaf node. Consider a non‐leaf node S\in \mathcal{L},
and let its children be R_{1} ,

. . .

, R_{l} . If S has at least two non‐sink children, then S can

collect one extra token from each non‐sink child by the induction hypothesis, and hence

S has at least one extra token, as required. So assume S has at most one non‐sink

child R_{1} . Since x(δ^{in}(S))=x(δ^{in}(R_{1}))=1 and χ_{δ^{in}(S)}\neqχ_{δ^{in}(R_{1})} ,
there is an edge

f\inδ^{in}(R_{1})-δ^{in}(S) . Since other children of S are sink nodes, the tail of f is contained

in S-(R_{1}\cup R_{2}\cup\ldots\cup R_{l}) ,
and hence can contribute two tokens to S ,

as required.

Therefore, by an inductive argument, there are extra tokens left at the roots of the

laminar family. This completes the proof. \square

Iterative Rounding and Relaxation 189

§6. Degree Bounded Matroids and Submodular Flows

One can also use an iterative method to prove exact linear programming formu‐

lations for classical combinatorial optimization problems. To use this method, it is

enough to prove that there is a variable with value one using a counting argument.
This approach can be used to give new proofs of exact linear programming formulations

for classical combinatorial optimization problems [9], including spanning trees, arbores‐

cences, maximum matchings in general graphs, matroid intersections, submodular flows,
etc. These new proofs can be used to obtain new results in approximation algorithms.
In this section we mention some results in degree bounded matroids and submodular

flows.

§6.1. Degree Bounded Matroids

The minimum bounded degree matroid basis problem is a generalization of the

minimum bounded degree spanning tree problem. In this problem, we are given a

matroid M=(V, \mathcal{I}) ,
a cost function c on the ground set V ,

a hypergraph H=(V, E) ,

and an upper bound g(e) for each hyperedge e\in E(H) . The task is to find a basis B

of minimum cost such that |B\cap e|\leq g(e) for each hyperedge e\in E(H) . The following
result can be obtained by extending the proof technique in Section 4.

Theorem 6.1 ([8]). There is a polynomial time algorithm for the minimum

bounded degree matroid basis problem which returns a basis B of cost at most OPt such

that |B\cap e|\leq g(e)+\triangle-1 for each e\in E(H) ,
where \displaystyle \triangle=\max_{v\in V}|\{e\in E(H) : v\in e\}|

is the maximum degree of the hypergraph H and OPt is the cost of an optimal solution

which satises all the degree constraints.

This result has application in the minimum crossing spanning tree problem, in

which we are given a graph G=(V, E) with edge cost function c
,

a collection of cuts

(edge subsets) C=\{C_{1}, . . . , C_{m}\} and an upper bound g_{i} for each cut C_{i} . The task

is to find a tree T of minimum cost such that T contains at most g_{i} edges from cut

C_{i} . The minimum bounded degree spanning tree problem is the special case where

C=\{ δ(v) : v\in V\} . The following result can be obtained as a corollary of Theorem 6.1.

Note that d=2 for the minimum bounded degree spanning tree problem, and so the

following result generalizes Theorem 4.1.

Corollary 6.2 ([1]). There is a polynomial time algorithm for the Minimum

Crossing Spanning Tree problem that returns a tree T with cost at most OPt and

such that T contains at most g_{i}+d-1 edges from cut C_{i} for each i where d=

\displaystyle \max_{e\in E}|\{C_{i} : e\in C_{i}\}| ,
where OPT is the cost of an optimal solution which satises

all the cut constraints.

190 LAP Chi Lau and Mohit Singh

Theorem 6.1 can also be applied to the minimum bounded degree spanning tree

union problem; see [8] for details.

§6.2. Degree Bounded Submodular Flows

The minimum bounded degree submodular flow problem is a generalization of the

submodular flow problem [3, 13]. In this problem we are given a digraph D=(V, E) ,

a crossing submodular set function b : 2^{V}\rightarrow \mathbb{Z}\cup\{+\infty\} ,
a subset of vertices W\subseteq V,

and a function g : W\rightarrow \mathbb{Z}+\cdot A degree‐constrained 0‐1 submodular flow is a vector

 x\in E\rightarrow\{0 ,
1 \} with the following properties:

x(δ^{in}(X))-x(δ^{out}(X))\leq b(X) for every X\subseteq V,

x(δ(v))\leq g(v) for every v\in W.

If W=\emptyset ,
then this is the well‐studied submodular flow problem [3]. There are several

efficient algorithms for finding a feasible submodular flow, or even a minimum cost sub‐

modular flow for a linear cost function. However, the addition of the degree constraints

makes the feasibility problem NP‐complete [8]. The following result can be obtained

using an iterative relaxation algorithm.

Theorem 6.3. [8] There is a polynomial time algorithm for the minimum bounded

degree submodular flow problem which returns an 0‐1 submodular flow of cost at most

oPt that violates each degree constraint by at most one, where oPt is the cost of an

optimal solution which satises all the degree constraints.

Theorem 6.3 can be applied to the minimum bounded degree graph orientation

problem, in which we are given a digraph D=(V, E) ,
a cost function c : E\rightarrow \mathbb{Z}

,
and a

degree bound g(v) for every v\in V . The task is to find an edge set of minimum cost whose

reversal makes the digraph k‐edge‐connected, so that the number of edges reversed at

each node v is at most g(v) . As graph orientation problems (with crossing supermodular

requirements) can be reduced to the submodular flow problem, Theorem 6.3 implies the

following result.

Corollary 6.4. [8] There is a polynomial time algorithm for the minimum bounded

degree graph orientation problem which finds an edge set of cost at most OPt whose re‐

versal makes the digraph k‐edge‐connected and such that the number of edges reversed

at each node v is at most g(v)+1 ,
where OPt is the cost of an optimal solution which

satises all the degree constraints.

§7. Concluding Remarks

In this survey we present an iterative method to analyze linear programming re‐

laxations of combinatorial optimization problems. We hope that this approach applies

Iterative Rounding and Relaxation 191

to a larger class of combinatorial optimization problems, and provides a more unified

method to analyze linear programming relaxations. Let us conclude with some open

questions.

§7.1. Traveling Salesman Problems

A major open question in approximation algorithm is whether there is a constant

factor approximation algorithm for the asymmetric traveling salesman problem, when

the cost function satisfies triangle inequalities. The asymmetric traveling salesman

problem is an instance of degree bounded network design problem in directed graphs.
Is it possible to apply the iterative method in this paper to the asymmetric traveling
salesman problem? It is also interesting to see whether this method can provide new

insight for the (symmetric) traveling salesman problem.

§7.2. Packing Problems

One difficulty for the traveling salesman problems is that there are hard pack‐

ing constraints, for which the solutions must satisfy exactly. Jain�s iterative rounding
method is suitable for covering problems, and the iterative relaxation method is suitable

for producing solutions with small violation on the packing constraints. One general
direction to investigate is whether this iterative method can be applied to packing prob‐
lems.

§7.3. Combinatorial Algorithms

Another direction to investigate is whether there are combinatorial algorithms for

the problems discussed in this paper. Jain�s algorithm is still the only algorithm that

achieves a constant factor approximation ratio for the survivable network design prob‐
lem. Is there a purely combinatorial algorithm for this problem? Are there purely
combinatorial algorithms for the degree bounded network design problems? Note that

the algorithm by Fürer and Raghavachari [4] is an elegant purely combinatorial algo‐
rithm for the minimum maximum‐degree Steiner tree problem.

References

[1] N. Bansal, R. Khandekar and V. Nagarajan, Additive Guarantees for Degree Bounded

Directed Network Design, in Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC), 769‐778, 2008.

[2] S.C. Boyd, W.R. Pulleyblank, Optimizing over the Subtour Polytope of the Travelling
Salesman Problem, Mathematical Programming 2, 163‐187, 1990.

[3] J. Edmonds and R. Giles, A Min‐Max Relation for Submodular Functions on Graphs,
Annals of Discrete Mathematics 1, 185‐204, 1977.

192 LAP Chi Lau and Mohit Singh

[4] M. Fürer and B. Raghavachari, Approximating the Minimum‐Degree Steiner Tree to within

One of Optimal, J. of Algorithms 17(3), 409‐423, 1994.

[5] M.X. Goemans, Minimum Bounded‐Degree Spanning Trees, Proceedings of the 47th An‐

nual IEEE Symposium on Foundations of Computer Science, 273‐282, 2006.

[6] M.X. Goemans, A.V. Goldberg, S. Plotkin, D.B. Shmoys, É. Tardos, D.P. Williamson,
Improved Approximation Algorithms for Network Design Problems, Proceedings of the

15th Annual ACM‐SIAM Symposium on Discrete Algorithms, 223‐232, 1994.

[7] K. Jain, A Factor 2 Approximation Algorithm for the Generalized Steiner Network Prob‐

lem, Combinatorica 21, 39‐60, 2001.

[8] T. Király, L.C. Lau and M. Singh, Degree Bounded Matroids and Submodular Flows, Pro‐

ceedings of the 13th Conference on Integer Programming and Combinatorial Optimization
(IPCO), 259‐272, 2008.

[9] L.C. Lau, R. Ravi and M. Singh, Iterative Methods in Combinatorial Optimization. In

Preparation, 2009.

[10] L.C. Lau, S. Naor, M. Salavatipour and M. Singh, Survivable Network Design with Degree
or Order Constraints, Proceedings of the 39th ACM Annual Symposium on Theory of

Computing (STOC), 651‐660, 2007.

[11] L.C. Lau, M. Singh, Additive Approximation for Bounded Degree Survivable Network De‐

sign, Proceedings of the 40th ACM Annual Symposium on Theory of Computing (STOC),
759‐768, 2008.

[12] M. Singh, L.C. Lau, Approximating Minimum Bounded Degree Spanning Trees to within

One of Optimal, Proceedings of the 39th ACM Annual Symposium on Theory of Com‐

puting (STOC), 661‐670, 2007.

[13] A. Schrijver, Combinatorial Optimization ‐ Polyhedra and Efficiency, Springer‐Verlag,
New York, 2003.

[14] V. Vazirani, Approximation Algorithms, Springer, 2001.

