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Abstract

Recent developments on even factors are presented. In a directed graph (digraph), \mathrm{a}

subset of edges is called an even factor if it forms a vertex‐disjoint collection of directed cycles
of even length and directed paths. The even factor problem is to find an even factor of

maximum cardinality in a given digraph, which draws attention as a combinatorially tractable

generalization of the non‐bipartite matching problem. This problem is NP‐hard, and solved in

polynomial time for a certain class of digraphs, called odd‐cycle‐symmetric.
The independent even factor problem is a common generalization of the even factor and

matroid intersection problems. In odd‐cycle‐symmetric digraphs, the independent even factor

problem is polynomially solvable for general matroids. Also, the weighted version of the (in‐
dependent) even factor problem is solved in polynomial time in odd‐cycle‐symmetric weighted
digraphs, which are odd‐cycle‐symmetric digraphs accompanied by an edge‐weight vector with

a certain property.
In this paper, we exhibit that several important results on non‐bipartite matching such as

the Tutte‐Berge formula, the TDI description and the Edmonds‐Gallai decomposition extend

to the even factor problem in odd‐cycle‐symmetric digraphs. Moreover, we show that for the

independent even factor problem in odd‐cycle‐symmetric digraphs we can establish a min‐

max formula, a linear description with dual integrality and a decomposition theorem, which

contain their counterparts in the matching problem and the matroid intersection problem.
In particular, we focus on augmenting path algorithms for those problems, which commonly
extends the classical algorithms for matching and matroid intersection. We also discuss the

reasonableness of assuming the digraphs to be odd‐cycle‐symmetric.

§1. Introduction

The non‐bipartite matching and matroid intersection problems are two celebrated

combinatorial optimization problems which can be solved efficiently. Many elegant re‐
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sults such as combinatorial algorithms [7, 9, 17] and totally dual integral (TDI) descrip‐
tion [5, 8] are known. As a common framework of these two problems, Cunningham and

Geelen [3] introduced the independent path‐matching problem and showed a min‐max

formula and a TDI description, which commonly extend those for matching and ma‐

troid intersection. They also claimed that this problem can be solved in polynomial time

by the ellipsoid method. Then, combinatorial approaches to path‐matchings followed

[10, 24, 25]. However, it was still unsettled whether we can establish a combinatorial

algorithm for independent path‐matchings.
In this context, Cunningham and Geelen [4] introduced a further generalization,

independent even fa ctors. Let (G, c) be a weighted digraph with G=(V, E) and c\in \mathrm{R}_{+}^{E},
and let \mathrm{M}^{+} and \mathrm{M}^{-} be two matroids on V . An edge set M\subseteq E is an even factor in G if

M forms a vertex‐disjoint collection of directed cycles of even length and directed paths.
Remark that an odd‐length path may be contained. An even factor M is independent
if the set of vertices which have an leaving edge in M is an independent set in \mathrm{M}^{+} and

the set of vertices which have an entering edge in M is an independent set in \mathrm{M}^{-} . We

consider the following problems.

The even factor problem (EFP): Finding an even factor M maximizing |M|.

The weighted even factor problem (WEFP): Finding an even factor M maximiz‐

ing c(M) .

The independent even factor problem (IEFP): Finding an independent even fac‐

tor M maximizing |M|.

The weighted independent even factor problem (WIEFP): Finding an indepen‐
dent even factor M maximizing c(M) .

Here, c(M) denotes \displaystyle \sum_{e\in M}c(e) . It is easily seen that the EFP generalizes the non‐

bipartite matching problem and the IEFP commonly generalizes the EFP and the ma‐

troid intersection problem.
In [4], it is exhibited that the EFP is NP‐hard in general and polynomially solvable

in weakly symmetric digraphs, in which every edge e in any directed cycle has the re‐

verse edge \overline{e} . For the EFP in weakly symmetric digraphs, they presented an extension

of the Tutte‐Berge formula and Edmonds‐Gallai decomposition, and also presented a

polynomial algorithm which extends the Tutte matrix for matchings. Moreover, they
showed that the IEFP in weakly symmetric digraphs can be solved by calling an al‐

gorithm for the EFP polynomially many times. For the WEFP and WIEFP, they
considered weakly symmetric weighted digraphs. A weighted digraph (G, c) is weakly

symmetric if G is weakly symmetric and c(e)=c(\overline{e}) if e, \overline{e}\in E . They proposed a linear

programming description of the even factors in weakly symmetric weighted digraphs
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which has dual integrality. They also proposed a primal‐dual method for solving the

WEFP which calls an algorithm for the EFP polynomially many times. For the WIEFP

in weakly symmetric weighted digraphs, they gave a reduction to the valuated matroid

intersection [18, 19], which calls an algorithm for the WEFP polynomially many times.

We remark here that the class of weakly symmetric weighted digraphs is broad

enough to include the matching and matroid intersection problems. Cunningham and

Geelen�s approach [4] applies to a broader class of digraphs, called odd‐cycle‐symmetric.
A digraph is odd‐cycle‐symmetric if every odd‐length cycle (odd cycle) C has the reverse

cycle \overline{C} . A weighted digraph (G, c) is odd‐cycle‐symmetric if G is odd‐cycle‐symmetric
and c(C)=c(\overline{C}) for every odd cycle C . Note that a weakly symmetric (weighted)
digraph is odd‐cycle‐symmetric. Király and Makai [15] presented a linear description
of even factors in odd‐cycle‐symmetric weighted digraphs and proved its dual integral‐

ity. Harvey�s algebraic matching algorithm [11] applies to the IEFP in an odd‐cycle‐

symmetric digraph with two matroids linearly represented over the same field.

A combinatorial algorithm for the EFP in odd‐cycle‐symmetric digraphs had been

open for several years since the introduction of the problem, and it was solved by

Pap [22], who presented an augmenting path algorithm similar to Edmonds� matching

algorithm [7]. Since then, the EFP is recognized as a combinatorially tractable general‐
ization of the non‐bipartite matching problem. Takazawa [26] extended Pap�s algorithm
to the WEFP by combining it with the weighted matching algorithm [6]. Iwata and

Takazawa [14] extended Pap�s algorithm to the IEFP by combining it with the ma‐

troid intersection algorithms [9, 17]. More recently, a combinatorial algorithm for the

WIEFP is also proposed [27]. Even factors are not only a combinatorially tractable

generalization of non‐bipartite matching, but also compatible with matroids.

As above, most work on even factors is done for odd‐cycle‐symmetric digraphs. You

may be worried whether assuming the digraphs to be odd‐cycle‐symmetric is reasonable.

A characterization of odd‐cycle‐symmetric digraphs is given by Z. Király (see [15]).
Also, Kobayashi and Takazawa [16] showed that the odd‐cycle‐symmetry of a digraph
is a necessary and sufficient condition for the degree sequences of the even factors in

the digraph to form ajump system, and the odd‐cycle‐symmetry of a weighted digraph
is also a necessary and sufficient condition for the weighted even factors to induce an

\mathrm{M}‐concave function on the jump system. This result connects the fields of even factors

and discrete convexity analysis, and suggests that assuming that the digraphs to be

odd‐cycle‐symmetric is reasonable and essential in considering an optimization problem
of even factors.

This paper presents a more detailed description of the aforementioned results. In

§ 2, we introduce the EFP more formally and show how the theorems for non‐bipartite

matching are extended. In particular, we devote most part of this section to exhibiting a
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combinatorial algorithm for the EFP in odd‐cycle‐symmetric digraphs [22] and construc‐

tive proofs for these theorems. In §§3, 4 and 5, we deal with the WEFP, the IEFP and

the WIEFP, respectively. In § 6, we discuss characterizations of odd‐cycle‐symmetric

digraphs.
Let us close this section by presenting some notations which will be used in the

following sections. Let G=(V, E) be a digraph with vertex set V and edge set E . For

u, v\in V ,
we denote an edge e from u to v by uv. The reverse edge of e is denoted

by \overline{e} . The initial vertex and terminal vertex of e are respectively denoted by \partial^{+}e and

\partial^{-}e . That is, \overline{e}=vu, \partial^{+}e=u and \partial^{-}e=v . Similarly, for F\subseteq E ,
define \partial^{+}F=

\{v|v\in V, \exists e\in F;@+e =v\} and \partial^{-}F=\{v|v\in V, \exists e\in F;@- e =v\} . For U\subseteq V,
let $\delta$^{+}U=\{e|e\in E, @+e\in U\} and $\delta$^{-}U=\{e|e\in E, \partial^{-}e\in U\} . For v\in V, $\delta$^{+}\{v\}
and $\delta$^{-}\{v\} are simply denoted by $\delta$^{+}v and $\delta$^{-}v

, respectively. For U\subseteq V ,
the induced

subgraph of U is G[U]=(U, E[U]) ,
where E[U]=\{e e\in E, \partial^{+}e\in U, \partial^{-}e\in U\}.

For x\in \mathrm{R}^{E} and F\subseteq E ,
denote x(F)=\displaystyle \sum_{e\in F}x(e) . The numbers |V| and |E| are

denoted by n and m
, respectively, which will be used for displaying time‐complexity of

algorithms.
A subset of edges \{e_{1}, . . :; e_{k}\} is said to be a path if \partial^{+}e_{1}, \partial^{-}e_{1}=\partial^{+}e_{2}, \partial^{-}e_{2}=

\partial^{+}e_{3} ,
. . .

, \partial^{-}e_{k-1} = @+
ek and \partial^{-}e_{k} are distinct. A cycle is a subset of edges \{e_{1}, . . :; e_{k}\}

such that \partial^{-}e_{1}=\partial^{+}e_{2}, \partial^{-}e_{2}=\partial^{+}e_{3} ,
. . .

, \partial^{-}e_{k-1} = @+
ek and \partial^{-}e_{k} = @+

el are dis‐

tinct. A path or a cycle F=\{e_{1}, . . :; e_{k}\} is said to be odd if k is odd, and even if k is

even. For F, V(F) denotes the set of incident vertices \displaystyle \bigcup_{i=1}^{k}\{\partial^{+}e_{i}, \partial^{-}e_{i}\} and \overline{F} denotes

\{\overline{e}_{k}, . . . , \overline{e}_{1}\}.
For U\subseteq V ,

we denote by $\chi$_{U} the characteristic vector of U ,
with $\chi$_{U}(v)=1 for

v\in U and $\chi$_{U}(v)=0 for v\in V\backslash U . For u\in V ,
we denote $\chi$_{\{u\}} simply by $\chi$_{u}.

A strongly connected component that has no edge entering from other components

is called a source‐component, and the number of source‐components in G[U] is denoted

by \mathrm{o}\mathrm{d}\mathrm{d}^{+}(U) . Similarly, a strongly connected component that has no edge leaving to

other components is called a sink‐component, and the number of sink‐components in

G[U] is denoted by \mathrm{o}\mathrm{d}\mathrm{d}^{-}(U) . For two vertex sets X^{+} and X^{-}
,

we call (X^{+}, X^{-})\mathrm{a}
stable pair if there is neither an edge e with \partial^{+}e\in X^{+}\backslash X^{-} and \partial^{-}e\in X^{-} ,

nor an

edge e with @+
e \in X+ and \partial^{-}e\in X^{-}\backslash X^{+}.

§2. The Even Factor Problem

First of all, let us exhibit the definition an even factor, the central object in this

paper.

Denition 2.1 (Even factors [4]; see also [2]). Let G=(V, E) be a digraph. \mathrm{A}

subset of edges M\subseteq E is an even factor in G if it forms a vertex‐disjoint collection of

paths and even cycles.
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Note that this definition implies that |M\cap$\delta$^{+}v|\leq 1 and |M\cap$\delta$^{-}v|\leq 1 for an even

factor M and a vertex v\in V ,
that is, |M|= | @+ M | = | @‐M | .

The objective of the even factor problem (EFP) is to find an even factor M max‐

imizing |M| in a given digraph G . In the weighted even factor problem (WEFP), we

are also given a weight vector c\in \mathrm{R}_{+}^{E} and the objective is to find an even factor M

maximizing c(M) in the weighted digraph (G, c) .

It is easy to see that even factors generalize non‐bipartite matchings. Let (\overline{G},\overline{c}) be

a weighted undirected graph with \overline{G}=(\overline{V},\overline{E}) and \overline{c}\in \mathrm{R}_{+}^{\overline{E}} in which you are supposed
to find a maximum‐weight matching. Then, construct an instance (G, c) of the WEFP

as follows: G=(V, E) ,
where V=\overline{V};E= {uv; vu |u, v\in V are adjacent in \overline{G} }; and

c(uv)=\overline{c}(\{u, v\}) ,
where \{u, v\}\in\overline{E} is an edge connecting u and v . Observe that (G, c)

has a maximum‐weight even factor consisting of even cycles. By alternately picking up

edges along these cycles, we obtain a vertex‐disjoint set of edges, which corresponds to

a maximum‐weight matching in (\overline{G},\overline{c}) .

Unfortunately, the EFP is NP‐hard. It is known, however, that several nice prop‐

erties of the non‐bipartite matching problem extend to the even factor problem in odd‐

cycle‐symmetric digraphs.

Denition 2.2 (Odd‐cycle‐symmetric digraphs).
A digraph G is odd‐cycle‐symmetric if any odd cycle C has the reverse cycle \overline{C}.

For the EFP in odd‐cycle‐symmetric digraphs, a min‐max theorem which corre‐

sponds to the Tutte‐Berge formula can be established [4, 22, 23].

Theorem 2.3. Let G= (V;, E) be an odd‐cycle‐symmetric digraph. Then, it

holds that

(2.1) \displaystyle \max { |M||M is an even fa ctor in G}

= \displaystyle \min \{|V\backslash X^{+}|+|V\backslash X^{-}|+|X^{+}\cap X^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X
(x+,x-)

where (X^{+}, X^{-}) runs over all stable pairs.

Observe that we obtain the Tutte‐Berge formula by applying Theorem 2.3 to a

digraph in which every edge has the reverse edge.

Here, let us show a constructive proof for Theorem 2.3 based on Pap�s even factor

algorithm [22]. First, let us prove the easier part of Theorem 2.3, \displaystyle \max\leq\min.

Let M be an even factor and (X^{+}, X^{-}) be a stable pair in G . Then, it holds that

M=M_{1}\cup M_{2}\cup M_{3} ,
where

(2.2) M_{1}=\{e|e\in M, \partial^{+}e\in V\backslash X^{+}\},
(2.3) M_{2}=\{e|e\in M, \partial^{-}e\in V\backslash X^{-}\},
(2.4) M_{3}=\{e|e\in M, e\in E[X^{+}\cap X^{-}]\}.
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Remark that M_{1} and M_{2} are not necessarily disjoint. Now, we have

|M_{1}|\leq|V\backslash X^{+}|, |M_{2}|\leq|V\backslash X^{-}|, |M_{3}|\leq|X^{+}\cap X^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X^{-}) .

Thus,

(2.5) |M|\leq|M_{1}|+|M_{2}|+|M_{3}|

\leq|V\backslash X^{+}|+|V\backslash X^{-}|+|X^{+}\cap X^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X^{-}) .

Next, let us show that there exists an even factor M and a stable pair (X^{+}, X^{-})
that satisfy (2.5) by equality. The existence can be verified by looking at the following
even factor algorithm.

Algorithm 2.4 (Even factor algorthm [22]).

Input: An odd‐cycle‐symmetric digraph G=(V, E) .

Output: A maximum even factor M in G.

Step 1: Set M to be an arbitrary even factor. (For instance, M:=\emptyset. )

Step 2: Construct an auxiliary digraph G_{M}=(V^{*}, E^{*}) as follows:

V^{*}=V^{+}\cup V^{-} ; E^{*}=\{u^{+}v^{-}|uv\in E\backslash M\}\cup\{v^{-}u^{+}|uv\in M\} ;

where V^{+}=\{v^{+}|v\in V\} and V^{-}=\{v^{-}|v\in V\} are two copies of V . Also, define

S^{+}=\{v^{+}|v\in V\backslash \partial^{+}M\}, S^{-}=\{v^{-}|v\in V\backslash \partial^{-}M\}.

For F\subseteq E^{*} ,
denote the subset of E that corresponds to F by E(F) .

Search a path P from a vertex in S^{+} to a vertex in S^{-} . If such a path does not

exist, then expand each pseudo‐vertex in G and return M.

Step 3: If M\triangle E(P) has no odd cycle, then update M:=M\triangle E(P) , expand every

pseudo‐vertex in G and go to Step 2.

Step 4. Denote P=\{e_{1}, e_{2}, . . . ; e_{2k+1}\} and define

P_{i}=\left\{\begin{array}{ll}
\emptyset & i=0,\\
\{e_{1}, e_{2}, . . . , e_{2i}\} & i=1, . :. ; k,\\
P & i=k+1.
\end{array}\right.
Let i^{*} be the minimum integer such that ME (P) contains an odd cycle C . Then,

update M:=ME(P) and shrink C into a pseudo‐vertex to obtain a new

digraph G' and a new even factor M' in G' . Set G:=G' and M:=M'
,

and then

go to Step 2.
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Figure 1. Shrinking of an odd cycle C (the bold edges belong to M).

Let us provide a detailed description of shrinking an odd cycle C into a pseudo‐
vertex v_{C} and expanding v_{C} to C . Shrinking of C consists of the following two oper‐

ations: identifying the vertices in V(C) to a single vertex v_{C} ; and deleting the edges
in E[V(C)] . The resulting digraph is denoted by G' ,

and define M' to be edges in

G' which correspond to the edges M\backslash E[V(C)] in G . Before shrinking C ,
we update

M:=ME(P) so that |M\cap C|=|C|-1 . This implies that M' is an even factor

in G' with |M'|=|M|-|C|+1 . An example of shrinking an odd cycle is shown in

Figure 1.

Expanding of v_{C} is the reverse procedure of shrinking of C . The pseudo‐vertex v_{C}

is replaced by G[V(C)] and an edge e incident to v_{C} connected to a vertex in V(C) to

which e was incident before shrinking C . An edge in M before expanding C remains to

be in M after expanding v_{C} . Here, we have to take care that which edges in E[V(C)]
belong to M . In terms of |M| ,

we have to pick up |C|-1 edges from E[V(C)] . Let

e^{+} denote the edge in M\cap$\delta$^{+}v_{C} and e^{-} denote the edge in M\cap$\delta$^{-}v_{C} ,
if they exist.

In the expanded digraph, an even path P_{C} from \partial^{-}e^{-} to \partial^{+}e^{+} is contained in C\cup\overline{C}.

Also, pick up disjoint cycles of length two that cover V(C)\backslash V(P_{C}) . Adding the edges
in P_{C} and these cycles to M

,
we have a new even factor in G with the desired size. An

example of expanding of C is shown in Figure 2. The case where e^{+} or e^{-} does not

exist is easier.

This is a full description of the even factor algorithm. Observe that the time‐

complexity of the algorithm is \mathrm{O} (n4).
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\rightarrow^{\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}}

Figure 2. Expanding of an odd cycle C (the bold edges belong to M ).

Theorem 2.5. Algorithm 2.4 runs in \mathrm{O}(n^{4}) time.

Now, let us prove that the output M of Algorithm 2.4 is a maximum even factor

by showing that there exists a stable pair (X^{+}, X^{-}) such that M and (X^{+}, X^{-}) satisfy

(2.5) with equality.

Algorithmic proof for Theorem 2.3. Denote by G_{M} the digraph in which P was

not found in Step 2. Let R\subseteq V^{*} be the set of vertices to which G_{M} has a path from a

vertex in S^{+}, X^{+}=\{v|v^{+}\in R\} ,
and X^{-}=\{v|v^{-}\not\in R\} . Observe that (X^{+}, X^{-})

is a stable pair, and define M_{1}, M_{2}, M_{3}\subseteq M by (2.2)(2.4). By the definition of R ,
we

have that  M_{1}\cap M_{2}=\emptyset ,
and  M_{3}=\emptyset . Moreover,  E[X^{+}\cap X^{-}]=\emptyset ,

which implies that

|X^{+}\cap X^{-}|=\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X^{-}) . Thus, we have that (2.5) holds with equality for M and

(X^{+}, X^{-}) .

The argument above just assures that (2.1) holds in G ,
which may be obtained

by shrinking odd cycles repeatedly. In what follows, we show that (2.1) holds in the

original digraph by induction on the number of shrinking. Suppose that G is obtained

by shrinking an odd cycle C in a digraph \hat{G}= ( \hat{V}, Ê). The proof gets completed if (2.1)
holds for \hat{G}.

Associated with the stable pair (X^{+}, X^{-}) in G ,
define \hat{X}, \hat{X}\subseteq\hat{V} by

(2.6) \hat{X}^{+}=\left\{\begin{array}{ll}
X^{+} & (v_{C}\not\in X^{+}) ,\\
X^{+}\cup V(C) & (v_{C}\in X^{+}) ,
\end{array}\right. \hat{X}^{-}=\left\{\begin{array}{ll}
X^{-} & (v_{C}\not\in X^{-}) ,\\
X^{-}\cup V(C) & (v_{C}\in X^{-}) .
\end{array}\right.
Now we prove that (\hat{X}^{+},\hat{X}^{-}) is a stable pair which certificates (2.1).

Firstly, one can easily see that (\hat{X}^{+},\hat{X}^{-}) forms a stable pair in \hat{G} ,
which follows

from the fact that (X^{+}, X^{-}) is a stable pair in G.

Secondly, we estimate the value |\hat{V}\backslash \hat{X}^{+}|+|\hat{V}\backslash \hat{X}^{-}|+|\hat{X}^{+}\cap\hat{X}^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(\hat{X}^{+}\cap\hat{X}^{-}) .

Since v_{C} is the pseudo‐vertex created in the latest shrinking, we have that v_{C} \not\in @+ M,
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in particular v_{C}\in X^{+} . (Hence, in (2.6) we do not have the case v_{C}\not\in X^{+}. ) Thus,

|\hat{V}\backslash \hat{X}^{+}|=|V\backslash X^{+}|.
Assume v_{C}\in X^{+}\cap X^{-} . Then, we have |\hat{V}\backslash \hat{X}^{-}|=|V\backslash X^{-}| . Moreover, |\hat{X}\cap\hat{X}|-

\mathrm{o}\mathrm{d}\mathrm{d}^{+}(\hat{X}^{+}\cap\hat{X}^{-})=|X^{+}\cap X^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X^{-})+|C|-1 follows from the following

equations: |\hat{X}^{+}\cap\hat{X}^{-}|=|X^{+}\cap X^{-}|+|C|-1 ; and \mathrm{o}\mathrm{d}\mathrm{d}^{+}(\hat{X}^{+}\cap\hat{X}^{-})=\mathrm{o}\mathrm{d}\mathrm{d}(X^{+}\cap X^{-}) .

Assume v_{C}\in X^{+}\backslash X^{-} . In this case, |\hat{V}\backslash \hat{X}^{-}|=|V\backslash X^{-}|+|C|-1 ,
and it is

obvious that |\hat{X}\cap\hat{X}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(\hat{X}^{+}\cap\hat{X}^{-})=|X^{+}\cap X^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X^{-}) .

Therefore, in any case we have

(2.7) |\hat{V}\backslash \hat{X}^{+}|+|\hat{V}\backslash \hat{X}^{-}|+|\hat{X}^{+}\cap\hat{X}^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(\hat{X}^{+}\cap\hat{X}^{-})
=|V\backslash X^{+}|+|V\backslash X^{-}|+|X^{+}\cap X^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X^{-})+|C|-1.

Since |M| increases by |C|-1 by expanding C ,
we have that (2.5) holds with equality

for M and (\hat{X}^{+},\hat{X}^{-}) ,
and hence (2.1) holds for \hat{G}. \square 

The Edmonds‐Gallai decomposition for the matching problem also extends to the

EFP in odd‐cycle‐symmetric digraphs [4, 23]. Algorithm 2.4 provides not only a con‐

structive proof for Theorem 2.3, but also such a decomposition theorem.

Let G=(V, E) be an odd‐cycle‐symmetric digraph. As we have seen in the proof
for Theorem 2.3, we obtain a stable pair (X^{+}, X^{-}) in G minimizing the right hand side

(RHS) of (2.1) among all stable pairs, by applying Algorithm 2.4 to G . Besides, exchang‐

ing the roles of V^{+} and V^{-} in the algorithm, we obtain another stable pair (Y^{+}, Y^{-}) ,

which minimizes

(2.8) |V\backslash Y^{+}|+|V\backslash Y^{-}|+|Y^{+}\cap Y^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{-}(Y^{+}\cap Y^{-})

among all stable pairs (Y^{+}, Y^{-}) . For these stable pairs, we have the following theorem,
whose proof is left to the reader.

Theorem 2.6 (See also [4, 23 For the stable pairs (X^{+}, X^{-}) and (Y^{+}, Y^{-})
dened above, set V_{D}^{+}=X^{+}, V_{A}^{+}=V\backslash X^{-}, V_{D}^{-}=Y^{-} ,

and V_{A}^{-}=V\backslash Y^{+} . Then, the

following 1 −4 hold.

1. V_{D}^{+}=\{v v\in V, \exists maximum even factor  M, v\not\in\partial^{+}M\} ,
and V_{D}^{-}=\{v  v\in

 V, \exists maximum even factor  M
,
v \not\in @‐M}.

2. For every strongly connected component  C in G[V_{D}^{+}\cap(V\backslash V_{A}^{+})] or in G[V_{D}^{-}\cap(V\backslash 
V_{A} , |V(C)| is odd.

3. If M is a maximum even factor, then the following (\mathrm{a})-(\mathrm{c}) hold.

(a) For every strongly connected component C in G[V_{D}^{+}\cap(V\backslash V_{A}^{+})] or in  G[V_{D}^{-}\cap
(V\backslash V_{A}^{-})], |M\cap E(C)|=|C|-1.
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(b) V\backslash V_{D}^{+} \subseteq @+ M, V_{A}^{+}\subseteq\partial^{-}M, V_{A}^{-} \subseteq @+ M, and (V\backslash V_{D}^{-})\subseteq\partial^{-}M.

(c) For a vertex v\in V_{A}^{+}\cap\partial^{-}M ,
there exists a vertex u\in V_{D}^{+} with uv\in M ,

and

for a vertex v\in V_{A}^{-}\cap\partial^{+}M ,
there exists a vertex u\in V_{D}^{-} with vu\in M.

4. Any stable pair (U^{+}, U^{-}) minimizing the RHS of (2.1) satises that V_{D}^{+}\subseteq U^{+}
and V_{D}^{-}\subseteq U^{-} . Similarly, any stable pair (U^{+}, U^{-}) minimizing (2.8) satises that

V_{D}^{+}\subseteq U^{+} and V_{D}^{-}\subseteq U^{-}

§3. The Weighted Even Factor Problem

Let (G, c) be a weighted digraph with G=(V, E) and c\in \mathrm{R}_{+}^{E} . This section con‐

siders the weighted even factor problem (WEFP), finding an even factor M maximizing

c(M) .

The WEFP is NP‐hard in general, since its special case, the EFP, is NP‐hard. Here,
we deal with odd‐cycle‐symmetric weighted digraphs, which are defined by extending
Definition 2.2 to a weighted version.

Denition 3.1 (Odd‐cycle‐symmetric weighted digraphs). A weighted digraph

(G, c) is odd‐cycle‐symmetric if any odd cycle C has the reverse cycle \overline{C} such that

c(C)=c(\overline{C}) .

Define \mathcal{U}= { U|U\subseteq V, |U| is odd and \geq 3 }. The following is a linear relaxation

of an integer program for the WEFP in (G, c) .

(P‐EF) \displaystyle \max. \displaystyle \sum_{e\in E}c(e)x(e)
sub: to x($\delta$^{+}v)\leq 1 v\in V,

x($\delta$^{-}v)\leq 1 v\in V,
x(E[U])\leq|U|-1 U\in \mathcal{U},

x(e)\geq 0 e\in E.

Observe that a characteristic vector of an even factor in G is an integer feasible solution

for (P‐EF). The dual program of (P‐EF) is given by

(D‐EF) \displaystyle \min. \displaystyle \sum_{v\in V}(y^{+}(v)+y^{-}(v))+\sum_{U\in \mathcal{U}}(|U|-1)z(U)
sub: to y^{+}(u)+y^{-}(v)+\displaystyle \sum_{U\in \mathcal{U}}, z(U)\geq c(e) e=uv\in E,

e\in E[U]

y^{+}(v)\geq 0 v\in V,

y^{-}(v)\geq 0 v\in V,

z(U)\geq 0 U\in \mathcal{U}.
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For these two linear programs, Király and Makai [15] showed the following integral‐

ity theorem. We say that a set family \mathcal{F} is laminar if U_{1}\subseteq U_{2}, U_{2}\subseteq U_{1} or  U_{1}\cap U_{2}=\emptyset
for all  U_{1}, U_{2}\in \mathcal{F}.

Theorem 3.2 ([15]). If (G, c) is an odd‐cycle‐symmetric weighted digraph, then

(P‐EF) has an integral optimal solution. Moreover, if (G, c) is odd‐cycle‐symmetric and

c is integer, then (D‐EF) also has an integral optimal solution (y^{+}, y^{-}, z) such that

\{U|z(U)>0\} is laminar.

This theorem is an extension of the TDI theorem for non‐bipartite matching [5].
Denote the polytope defined by the constraints in (P‐EF) by P_{\mathrm{E}\mathrm{F}} ,

and that of (D‐EF) by

D_{\mathrm{E}\mathrm{F}} . Theorem 3.2 claims that if (G, c) is odd‐cycle‐symmetric then P_{\mathrm{E}\mathrm{F}} has an integer
extreme point in the direction of the vector c . Moreover, D_{\mathrm{E}\mathrm{F}} also has an integer extreme

point in the direction of the vector corresponding to the objective function of (D‐EF) if

(G, c) is odd‐cycle‐symmetric and c is integer. Remark that neither P_{\mathrm{E}\mathrm{F}} nor D_{\mathrm{E}\mathrm{F}} has

an integer extreme point in all directions, which is expected by the NP‐hardness of the

EFP.

Several algorithm for the WEFP in odd‐cycle‐symmetric weighted digraphs are

proposed [4, 26]. Cunningham and Geelen�s [4] is a primal‐dual method that calls

an algorithm for the EFP polynomially many times. Incorporating Algorithm 2.4,
their method obtains a combinatorial algorithm which runs in \mathrm{O}(n^{7}) time. Takazawa�s

algorithm [26] is also a combinatorial and primal‐dual algorithm. It finds integer optimal
solutions for (P‐EF) and (D‐EF) by combining Algorithm 2.4 and the weighted matching

algorithm [6]. The time‐complexity of the algorithm is \mathrm{O}(n^{3}m) .

§4. The Independent Even Factor Problem

Let G=(V, E) be a digraph, and \mathrm{M}^{+} and \mathrm{M}^{-} be matroids on V whose independent
set families are \mathcal{I}^{+} and \mathcal{I}^{-}

, respectively. In this paper, we indicate a matroid by a pair
of its ground set and independent set family. So, \mathrm{M}^{+}=(V, \mathcal{I}^{+}) and \mathrm{M}^{-}=(V, \mathcal{I}^{-}) .

Denote the rank function and closure function of \mathrm{M}^{+} by $\rho$^{+} and \mathrm{c}1^{+}
, respectively.

The fundamental circuit with respect to I\in \mathcal{I}^{+} and v\in V\backslash \mathrm{c}1^{+}(I) is denoted by

C^{+}(I|v) . Their counterparts in \mathrm{M}^{-} are denoted by $\rho$^{-}, \mathrm{c}1^{-} and C^{-}(I|v) .

Denition 4.1 (Independent even factors). Let G=(V, E) be a digraph, and

\mathrm{M}^{+}=(V, \mathcal{I}^{+}) and \mathrm{M}^{-}=(V, \mathcal{I}^{-}) be matroids. An edge set M\subseteq E is an independent
even fa ctor in (G, \mathrm{M}^{+}, \mathrm{M}^{-}) if M is an even factor in G such that \partial^{+}M\in \mathcal{I}^{+} and

\partial^{-}M\in \mathcal{I}^{-}

The objective of the independent even factor problem (IEFP) is to find an in‐

dependent even factor M maximizing |M| for given (G, \mathrm{M}^{+}, \mathrm{M}^{-}) . In the weighted
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independent even factor problem (WIEFP), we are also given a weight vector c\in \mathrm{R}_{+}^{E}
and the objective is to find an independent even factor maximizing c(M) . Of course, the

IEFP generalizes the EFP and the WIEFP generalizes the WEFP (consider a special
case where \mathrm{M}^{+} and \mathrm{M}^{-} are free matroids). Moreover, the independent even factors

also generalize matroid intersection.

Let \mathrm{M}_{1}=(V, \mathcal{I}_{1}) and \mathrm{M}_{2}=(V, \mathcal{I}_{2}) be matroids and c\in \mathrm{R}_{+}^{V} a weight vector. You

are supposed to find a common independent set I\in \mathcal{I}_{1}\cap \mathcal{I}_{2} maximizing c(I) . This

problem is reduced to the WIEFP. Construct an associated bipartite digraph G=

(V_{1}, V_{2};E) as follows. The vertex set V_{1} and V_{2} are copies of V , respectively, and

the edge set is E=\{v_{1}v_{2}|v\in V\} ,
where v_{1}\in V_{1} (resp. v_{2}\in V_{2} ) denotes the copy

of v\in V . On the edge set E
,

define a weight function c' by c'(v_{1}v_{2})=c(v) . Let

\mathrm{M}^{+}=(V_{1}\cup V_{2}, \mathcal{I}^{+}) be a matroid which is the direct sum of \mathrm{M}_{1} and a free matroid on

V_{2} ,
and let \mathrm{M}^{-}=(V_{1}\cup V_{2}, \mathcal{I}^{-}) be a matroid which is the direct sum of a free matroid

on V_{1} and \mathrm{M}_{2} . Then, it is easily seen that a subset I\subseteq V belongs to \mathcal{I}_{1}\cap \mathcal{I}_{2} if and only
if the edge set E_{I}=\{(v_{1}, v_{2})|v\in I\} is an independent even factor in (G, \mathrm{M}^{+}, \mathrm{M}^{-}) ,

and c(I)=c'(E_{I}) .

By the NP‐hardness of the EFP, we know that the IEFP is also NP‐hard. In odd‐

cycle‐symmetric digraphs with general matroids, however, we can establish a min‐max

formula, decomposition theorem and a polynomial algorithm, which commonly extends

those for matching and matroid intersection.

Theorem 4.2 ([14]). Let G= (V;, E) be an odd‐cycle‐symmetric digraph and

\mathrm{M}^{+}=(V, \mathcal{I}^{+}) , \mathrm{M}^{-}=(V, \mathcal{I}^{-}) be matroids. It holds that

(4.1) \displaystyle \max { |M||M is an independent even fa ctor in (G, \mathrm{M}^{+}, \mathrm{M}^{-}) }

= \displaystyle \min \{$\rho$^{+}(V\backslash X^{+})+$\rho$^{-}(V\backslash X^{-})+|X^{+}\cap X^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{+}(X^{+}\cap X^{-})\},
(x+,x-)

where (X^{+}, X^{-}) runs over all stable pairs.

Observe that this theorem is a common extension of Theorem 2.3 and a min‐max

formula for matroid intersection [8].
Several algorithms are proposed for solving the IEFP in odd‐cycle‐symmetric di‐

graphs [4, 11, 14]. Among them, Iwata and Takazawa�s one [14] is a common extension

of Algorithm 2.4 and the classical matroid intersection algorithms [9, 17]. This algo‐
rithm provides a constructive proof for Theorem 4.2 and a decomposition theorem which

commonly extends the Edmonds‐Gallai decomposition for matching and the principal

partition for matroid intersection (cf. [12, 13]).

Algorithm 4.3 (Independent even factor algorthm [14]).

Input: An odd‐cycle‐symmetric digraph G=(V, E) ,
and two matroids \mathrm{M}^{+}=(V, \mathcal{I}^{+})

and \mathrm{M}^{-}=(V, \mathcal{I}^{-}) .
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Output: A maximum independent even factor M in (G, \mathrm{M}^{+}, \mathrm{M}^{-}) .

Step 1: Set M to be an arbitrary independent even factor. (For instance, M:=\emptyset. )

Step 2: Construct an auxiliary digraph G_{M}=(V^{*}, E^{*}) as follows:

V^{*}=V^{+}\cup V^{-} ;

E^{*}=\{u^{+}v^{-}|uv\in E\backslash M\}\cup\{v^{-}u^{+}|uv\in M\}

\cup\{(u^{+}, v^{+})|u\in\partial^{+}M, v\in \mathrm{c}1^{+}(\partial^{+}M)\backslash \partial^{+}M, u\in C^{+}(\partial^{+}M|v)\}

\cup\{(u^{-}, v^{-})|u\in \mathrm{c}1^{-}(\partial^{-}M)\backslash \partial^{-}M ,  v\in @‐  M
; v\in C^{-}(\partial^{-}M|u

where V^{+}=\{v^{+}|v\in V\} and V^{-}=\{v^{-}|v\in V\} are two copies of V . Also, define

S^{+}=\{v^{+}|v\in V\backslash \mathrm{c}1^{+}(@^{+}M)_{;} S^{-}=\{v^{-}|v\in V\backslash \mathrm{c}1^{-}(@^{-}M)\}.

For F\subseteq E^{*} ,
denote the subset of E that corresponds to F by E(F) .

Search a path P from a vertex in S^{+} to a vertex in S^{-} with minimum number of

edges. If such a path does not exist, then expand every pseudo‐vertex in G and

return M.

Step 3: If M\triangle E(P) has no odd cycle, then update M:=M\triangle E(P) , expand every

pseudo‐vertex in G and go to Step 2.

Step 4. Denote E(P)=\{e_{1}, e_{2}, . :. ; e_{2k+1}\} and define

E(P_{i})=\left\{\begin{array}{ll}
\emptyset & i=0,\\
\{e_{1}, e_{2}, . . . , e_{2i}\} & i=1, . . :; k,\\
E(P) & i=k+1.
\end{array}\right.
Let i^{*} be the minimum integer such that ME (P) contains an odd cycle C . Then,

update M:=ME(P) and shrink C into a pseudo‐vertex to obtain a new

digraph G' and a new independent even factor M' in G' . Set G:=G' and M:=M',
and then go to Step 2.

One would see that this algorithm is a natural extension of Algorithm 2.4 which

contains the idea of simultaneous exchangeability in matroids. The time‐complexity of

Algorithm 4.3 is \mathrm{O}(n^{4} $\gamma$) ,
where  $\gamma$ is the time for an independence test.

Remark. In Algorithm 4.3, a non‐trivial operation appears in Step 4, shrinking
an odd cycle  C . When shrinking C ,

not only the digraph G but also the matroids \mathrm{M}^{+}

and \mathrm{M}^{-} should be changed in order to maintain M to be an independent even factor

in (G, \mathrm{M}^{+}, \mathrm{M}^{-}) . In [14], an operation shrinking of C for matroids is proposed, which

constructs a matroid on (V\backslash V(C))\cup\{v_{C}\} from a matroid on V.
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As Algorithm 2.4 provided a proof for Theorems 2.3 and 2.6, Algorithm 4.3 gives a

proof for Theorem 4.2 and a decomposition theorem. First, Algorithm 4.3 finds a stable

pair (X^{+}, X^{-}) . This stable pair (X^{+}, X^{-}) and the output M can be proven to satisfy

(4.1) with equality, and thus Theorem 4.2 follows.

Next, by exchanging the roles of \mathrm{M}^{+} and \mathrm{M}^{-}
,

we obtain another stable pair

(Y^{+}, Y^{-}) ,
which minimizes

(4.2) $\rho$^{+}(V\backslash Y^{+})+$\rho$^{-}(V\backslash Y^{-})+|Y^{+}\cap Y^{-}|-\mathrm{o}\mathrm{d}\mathrm{d}^{-}(Y^{+}\cap Y^{-}) .

For these two stable pairs, the following theorem holds. Observe that this theorem

commonly extends Theorem 2.6 and the principal partition for matroid intersection.

Theorem 4.4 ([14]). For the stable pairs (X^{+}, X^{-}) and (Y^{+}, Y^{-}) dened above,
set V_{D}^{+}=X^{+}, V_{A}^{+}=V\backslash X^{-}, V_{D}^{-}=Y^{-} ,

and V_{A}^{-}=V\backslash Y^{+} . Then, the following 1-4

hold.

1. V_{D}^{+}=\{v v\in V, \exists maximum independent even fa ctor  M, v\not\in \mathrm{c}1^{+} (@+M), and

V_{D}^{-}= {v|v\in V, \exists maximum independent even fa ctor  M, v\not\in \mathrm{c}1^{-}(\partial^{-}M) }.

2. For every strongly connected component C in G[V_{D}^{+}\cap(V\backslash V_{A}^{+})] or in G[V_{D}^{-}\cap(V\backslash 
V_{A} , |V(C)| is odd and V(C)\in \mathcal{I}^{+}\cap \mathcal{I}^{-}

3. If M is a maximum independent even factor, then the following (\mathrm{a})-(\mathrm{c}) hold.

(a) For every strongly connected component C in G[V_{D}^{+}\cap(V\backslash V_{A}^{+})] or in  G[V_{D}^{-}\cap
(V\backslash V_{A}^{-})], |M\cap E(C)|=|C|-1.

(b) |(V\backslash V_{D}^{+})\cap\partial^{+}M|=$\rho$^{+}(V\backslash V_{D}^{+}) , |V_{A}^{+}\cap\partial^{-}M|=$\rho$^{-}(V_{A}^{+}) , |V_{A}^{-}\cap\partial^{+}M|=
$\rho$^{+}(V_{A}^{-}) ,

and |(V\backslash V_{D}^{-})\cap\partial^{-}M|=$\rho$^{-}(V\backslash V_{D}^{-}) .

(c) For a vertex v\in V_{A}^{+}\cap\partial^{-}M ,
there exists a vertex u\in V_{D}^{+} with uv\in M ,

and

for a vertex v\in V_{A}^{-}\cap\partial^{+}M ,
there exists a vertex u\in V_{D}^{-} with vu\in M.

4. Any stable pair (U^{+}, U^{-}) minimizing the RHS of (4.1) satises that V_{D}^{+}\subseteq U^{+}
and V_{D}^{-}\subseteq U^{-} . Similarly, any stable pair (U^{+}, U^{-}) minimizing (4.2) satises that

V_{D}^{+}\subseteq U^{+} and V_{D}^{-}\subseteq U^{-}

§5. The Weighted Independent Even Factor Problem

An instance of the weighted independent even factor problem (WIEFP) is denoted

by (G, c, \mathrm{M}^{+}, \mathrm{M}^{-}) ,
where G=(V, E) , c\in \mathrm{R}_{+}^{E}, \mathrm{M}^{+}=(V, \mathcal{I}^{+}) and \mathrm{M}^{-}=(V, \mathcal{I}^{-}) .

The objective of the WIEFP is to find an independent even factor in (G, \mathrm{M}^{+}, \mathrm{M}^{-})
maximizing c(M) .
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The WIEFP in odd‐cycle‐symmetric weighted digraphs is polynomially solvable [4,
27]. The algorithm in [4] reduces the problem to valuated matroid intersection, and it

calls an algorithm for the WEFP polynomially many times. Incorporating the algorithm
in [26], this algorithm archives the time‐complexity \mathrm{O}(n^{6}m+n^{3} $\gamma$) ,

where  $\gamma$ is the time

for an independence test.

On the other hand, the algorithm in [27] combines the algorithm in [26] and Algo‐
rithm 4.3 and runs in \mathrm{O}(n^{5}+n^{4} $\gamma$) . It is a primal‐dual algorithm which finds integer

optimal solutions for the following linear programs:

( \mathrm{P}‐IEF) \displaystyle \max. \displaystyle \sum_{e\in E}c(e)x(e)
sub: to x($\delta$^{+}U)\leq$\rho$^{+}(U) U\subseteq V,

x($\delta$^{-}U)\leq$\rho$^{-}(U) U\subseteq V,
x(E[U])\leq|U|-1 U\in \mathcal{U},

x(e)\geq 0 e\in E.

( \mathrm{D}‐IEF) \displaystyle \min. \displaystyle \sum_{U\subseteq V}($\rho$^{+}(U)y^{+}(U)+$\rho$^{-}(U)y^{-}(U))+\sum_{U\in \mathcal{U}}(|U|-1)z(U)
sub: to \displaystyle \sum_{U\subseteq V}, y^{+}(U)+\displaystyle \sum_{U\subseteq V}, y^{-}(U)+\displaystyle \sum_{U\in \mathcal{U}}, z(U)\geq c(e) e\in E,

U\ni\partial^{+}e U\ni\partial^{-}e e\in E[U]

y^{+}(U)\geq 0 U\subseteq V,

y^{-}(U)\geq 0 U\subseteq V,

z(U)\geq 0 U\in \mathcal{U}.

Thus, the algorithm constructively proves the following integrality theorem, which

corresponds to the TDI theorems for matching [5] and matroid intersection [9]. We say

that a set family \mathcal{F} is laminar if U_{1}\subseteq U_{2}, U_{2}\subseteq U_{1} or  U_{1}\cap U_{2}=\emptyset for all  U_{1}, U_{2}\in \mathcal{F}.

Also, we say that \mathcal{F} is nested if U_{1}\subseteq U_{2} or U_{2}\subseteq U_{1} for all U_{1}, U_{2}\in \mathcal{F}.

Theorem 5.1 ([27]). For an instance (G, c, \mathrm{M}^{+}, \mathrm{M}^{-}) of the WIEFP, ( \mathrm{P}‐IEF)
has an integral optimal solution if (G, c) is odd‐cycle‐symmetric. Moreover, if (G, c)
is odd‐cycle‐symmetric and c is integer, ( \mathrm{D}‐IEF) also has an integral optimal solution

(y^{+}, y^{-}, z) such that \{U|y^{+}(U)>0\} and \{U|y^{-}(U)>0\} are nested and \{U|z(U)>
0\} is laminar.
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§6. Characterization of Odd‐Cycle‐Symmetric Digraphs

In the preceding sections, we dealt with (independent) even factors in odd‐cycle‐

symmetric digraphs. We viewed that in odd‐cycle‐symmetric digraphs,

\bullet the non‐bipartite matching and matroid intersection problems can be reduced,

\bullet the EFP, WEFP, IEFP and WIEFP can be solved in polynomial time, and

\bullet important theorems of non‐bipartite matching and matroid intersection extend.

Now, in the last section of this paper, we discuss how broad the class of odd‐

cycle‐symmetric digraphs is. The following is a characterization of odd‐cycle‐symmetric

digraphs by Z. Király (see [15] for details). A block is a strongly connected component

whose underlying graph is biconnected. A digraph is said to be bipartite if its underlying

graph is bipartite.

Theorem 6.1. A block of an odd‐cycle‐symmetric digraph is either bipartite or

symmetric. That is, in a block of an odd‐cycle‐symmetric digraph, no odd cycle exists

or every edge has the reverse edge.

A characterization of odd‐cycle‐symmetric weighted digraphs immediately follows

Theorem 6.1.

Theorem 6.2. Let (G, c) be an odd‐cycle‐symmetric weighted digraph. Then,

c(C)=c(\overline{C}) holds for any cycle C in a non‐bipartite block of G.

Remark. By these characterizations, we can test in linear time whether a given

(weighted) digraph is odd‐cycle‐symmetric.

Another characterization of odd‐cycle‐symmetric digraphs is proposed [16], which

is from a view point of discrete convex analysis [20]. We devote the rest of this section

to presenting this characterization.

Let V be a finite set. For x=(x(v)) , y=(y(v))\in \mathrm{R}^{V} ,
define

[x, y]=\displaystyle \{z|z\in \mathrm{R}^{V}, \min(x(v), y(v))\leq z(v)\leq\max(x(v), y(v)), \forall v\in V\}.

For x, y\in \mathrm{Z}^{V} ,
a vector s\in \mathrm{Z}^{V} is called an (x, y) ‐increment if s=$\chi$_{u} or s=-$\chi$_{u} for

some u\in V and x+s\in[x, y].

Denition 6.3 (Jump systems [1]). A non‐empty set J\subseteq \mathrm{Z}^{V} is said to be a

jump system if it satisfies the following exchange axiom:

For any x, y\in J and for any (x, y) ‐increment s with x+s\not\in J ,
there exists an

(x+s, y) ‐increment t such that x+s+t\in J.
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A set J\subseteq \mathrm{Z}^{V} is a constant‐parity system if x(V)-y(V) is even for any x, y\in J.
J.F. Geelen characterized constant‐parity jump systems by a stronger exchange axiom

(see [21] for details).

Theorem 6.4. A non‐empty set J is a constant‐parity jump system if and only

if it satises the fo llowing exchange axiom:

(EXC). For any x, y\in J and for any (x, y) ‐increment s
,

there exists an (x+
s

, y)‐increment t such that x+s+t\in J and y-s-t\in J.

An M‐concave ( M‐convex) function on a constant‐parity jump system of [21] is a

quantitative extension of a jump system.

Denition 6.5 ( \mathrm{M}‐concave functions on a constant‐parity jump system [21]).
For J\subseteq \mathrm{Z}^{V} ,

we call f : J\rightarrow \mathrm{R} an M‐concave function on a constant‐parity jump system
if it satisfies the following:

( \mathrm{M}‐EXC). For any x, y\in J and for any (x, y) ‐increment s
,

there exists an

(x+s, y) ‐increment t such that x+s+t\in J, y-s-t\in J ,
and  f(x)+f(y)\leq

 f(x+s+t)+f(y-s-t) .

Observe that (M‐EXC) implies that J satisfies (EXC), i.e., J is a constant‐parity

jump system.
A jump system and an \mathrm{M}‐concave function on a constant‐parity jump system ap‐

pear in many combinatorial optimization problems which can be solved efficiently. For

instance, in undirected graphs, it is known that the degree sequences of all subgraphs
and those of all matchings are jump systems. Formally, for an undirected graph G with

vertex set V and edge set E
,

the degree sequence d_{F}\in \mathrm{Z}^{E} of F\subseteq E is defined by

d_{F}(v)=| {e|e\in F, e is incident to v } |.

Define J_{\mathrm{S}\mathrm{G}}(G)\subseteq \mathrm{Z}^{V} and J_{\mathrm{M}}(G)\subseteq\{0, 1\}^{V} by

J_{\mathrm{S}\mathrm{G}}(G)=\{d_{F}|F\subseteq E\},

J_{\mathrm{M}}(G)= { d_{M}|M is a matching in G }.

Then, both J_{\mathrm{S}\mathrm{G}}(\mathrm{G}) and J(G) are constant‐parity jump systems, provided that G has

no loops.
In a weighted undirected graph (G, c) ,

\mathrm{M}‐concave functions on J_{\mathrm{S}\mathrm{G}} and J_{\mathrm{M}} also

naturally arise. Define f_{\mathrm{S}\mathrm{G}}:J_{\mathrm{S}\mathrm{G}}\rightarrow \mathrm{R} and f_{\mathrm{M}}:J_{\mathrm{M}}\rightarrow \mathrm{R} by

f_{\mathrm{S}\mathrm{G}}(x)=\displaystyle \max\{c(F)|F\subseteq E, d_{F}=x\},

 f_{\mathrm{M}}(x)=\displaystyle \max {  c(M)|M is a matching, d_{M}=x }.
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Then, f_{\mathrm{S}\mathrm{G}} and f_{\mathrm{M}} are \mathrm{M}‐concave functions on J_{\mathrm{S}\mathrm{G}} and J_{\mathrm{M}} , respectively.

Kobayashi and Takazawa [16] considered whether an analogous statement holds

for even factors. To begin with, let us introduce the degree sequence in digraphs. Let

G=(V, E) be a digraph with vertex set V and edge set E . Make two copies V^{+} and

V^{-} of V . The copy of v\in V in V^{+} (resp. in V^{-} ) is denoted by v^{+} (resp. v^{-} ).

Denition 6.6 (Degree sequences in digraphs). For a digraph G=(V, E) and

its edge set F\subseteq E ,
the degree sequence of F is avector d_{F}\in \mathrm{Z}^{V^{+}\cup V-} defined by

d_{F}(v^{+})=|F\cap$\delta$^{+}v|, d_{F}(v^{-})=|F\cap$\delta$^{-}v|(v\in V) .

Let J_{\mathrm{E}\mathrm{F}}(G)\subseteq \mathrm{Z}^{V^{+}\cup V-} be the set of the degree sequences of all even factors in G.

That is,

J_{\mathrm{E}\mathrm{F}}(G)= { d_{M}|M is an even factor in G}.

By the definition of even factors, one would easily see that J_{\mathrm{E}\mathrm{F}}(G)\subseteq\{0, 1\}^{V^{+}\cup V-} and

J(G) is a constant‐parity system. Then, the following theorem holds.

Theorem 6.7 ([16]). The set J_{\mathrm{E}\mathrm{F}}(G) is a constant‐parity jump system if and

only if G is odd‐cycle‐symmetric.

Moreover, this relation is extended to a weighted version. For a weighted di‐

graph (G, c) ,
define f_{\mathrm{E}\mathrm{F}} : J_{\mathrm{E}\mathrm{F}}(G)\rightarrow \mathrm{R} by

f_{\mathrm{E}\mathrm{F}}(x)=\displaystyle \max\{c(M) M is an even factor, d_{M}=x\}
for x\in J_{\mathrm{E}\mathrm{F}}(G) . As an extension of Theorem 6.7, we have the following theorem.

Theorem 6.8 ([16]). The function f_{\mathrm{E}\mathrm{F}} is an M‐concave function on a constant‐

parity jump system if and only if (G, c) is an odd‐cycle‐symmetric weighted digraph.

Theorems 6.7 and 6.8 exhibit necessary and sufficient conditions for the even factors

to have a matroidal structure. These theorems suggest that the assumption of the odd‐

cycle‐symmetry is reasonable and essential in dealing with optimization problems on

even factors.
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