RIMS Koékyiroku Bessatsu
Bx (200x), 000-000

Polarizations on limiting mixed Hodge structures
(announcement)

By

Taro FUJISAWA *

§1. Introduction

§1.1. The aim

This is an announcement of my forthcoming paper [7]. In this article, I will ex-
plain the idea to construct a polarization on the limiting mixed Hodge structure. The
following is the situation which I will consider in this article:

Setting 1.1. Let X be a complex manifold, A the unit disc with the coordinate
function t and f : X — A a projective surjective morphism with connected fibers.
Moreover we assume that f is smooth over A\ {0}, and that the fiber Y = f=1(0) is a
reduced simple normal crossing divisor on X. I simply call such morphism f a semistable
reduction over the unit disc.

Under the situation above, Steenbrink [17] construct a mixed Hodge structure on
the cohomology group HY(Y, Q% /A (logY) ® Oy ) for every integer ¢, which is so called
the limiting mixed Hodge structure. My aim is to construct a polarization on the
limiting mixed Hodge structure above in the following sense:

Definition 1.2 ([1], Definition 2.26). Let V = (Vg, W, F) be a mixed Hodge
structure over R, N an endomorphism of Vi, and S a bilinear form on Vg. The data
(V,N,S) is said to be a polarized mixed Hodge structure if there exists a non-negative
integer ¢ such that the following conditions are satisfied:

1. Nt =0
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2. N(FP) C FP~! for every integer p
3. N(W,,) C W,,_o for every integer m

4. N!': Vg — Vi induces an isomorphism from Grg‘j_l Vk to Grg‘i ; Vr for every positive
integer [

5. Sis (—1)%-symmetric
6. S(FP,F1PT1) =0 for every integer p
7. S(Nz,y) + S(z, Ny) = 0 for every z,y € Vg

8. the bilinear form S(—, N'—) induces a polarization on the Hodge structure P, ; =
Ker(N+! . Grg‘jrl Vg — Gr};‘il_Q Wr) for every non-negative integer .

We remark that P,4; is a Hodge structure of weight ¢ + { by the conditions 2 and 3.

§1.2. The motivation

My motivation comes from the log geometry.

For a semistable reduction over the unit disc, the limiting mixed Hodge structure
on the cohomology group H?(Y, QS / A(logY) ® Oy) can be regarded as the limit of
the variation of Hodge structures on the Betti cohomology groups of general fibers. In
other words, the limiting mixed Hodge structure is the limit of a nilpotent orbit of one
variable as in Schmid [16].

From the viewpoint of log geometry, the singular fiber of a semistable reduction
can be replaced by a log deformation. Under some suitable conditions, Steenbrink [18]
shows that we can directly construct mixed Hodge structures on the relative log de
Rham cohomology groups which are natural analogues of the limiting mixed Hodge
structures. (see also Kawamata-Namikawa [11], Fujisawa-Nakayama [5], Nakkajima
[12].) Namely, the log geometry enables us to construct the “limiting” mixed Hodge
structure directly with no nilpotent orbit nor variation of Hodge structure. One of my
motivation is to reconstruct nilpotent orbits from the limiting mixed Hodge structure
from the viewpoint of log geometry. For this purpose, it is sufficient to construct a
polarization on the limiting mixed Hodge structure by the following result:

Theorem 1.3 ([1], Corollary 3.13).  For a polarized mized Hodge structure (V, N, S),
the map z — exp(zN)F over C is a nilpotent orbit, where F' denotes the Hodge filtration
of the Hodge structure V.

The other motivation concerns the theory of polarized log Hodge structures. (see
[10] for definition.) As far as I understand, the notion of polarized log Hodge structure
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is a generalization of the notion of nilpotent orbit from the viewpoint of log geometry.
It is expected that the geometric objects, such as a semistable reduction and as a log
deformation, give rise to polarized log Hodge structures on the base space by considering
the higher direct images of the relative log de Rham complexes, because they satisfy the
smoothness condition in the sense of log geometry. In fact, Kato-Matsubara-Nakayama
[9] proved that the expectation above is true for a log smooth projective morphism
over a log smooth base space. As a special case of Kato-Matsubara-Nakayama’s result,
a projective semistable reduction over the unit disc gives us a polarized log Hodge
structures on the unit disc.

On the other hand, the base space of a log deformation is the standard log point,
which is not log smooth at all. So, the other motivation is to prove that the expectation
above is true for the case of a log deformation. Once we obtain a polarization on the
limiting mixed Hodge structure, Theorem 1.3 will enable us to construct a polarized log
Hodge structure on the relative log de Rham cohomology group.

Taking these two motivation into account, it is necessary to consider the case of
log deformation instead of the case of semistable reduction. Nevertheless, I restrict
myself to the case of semistable reduction in this article, because I hesitate to explain
the generalities on the log geometry. Modifying the contents of this article to the case
of a log deformation is not a difficult task (see [7]).

Throughout this article, I omit the underlying Q-structure (or R-structure) of the
(mixed) Hodge structures in question for simplicity. Moreover, we omit the Tate twist
of the Hodge structure because we consider the C-structure only.

§1.3. The strategy

First, I recall the previous results concerning the mixed Hodge structure on the
relative log de Rham cohomology group HY(Y, Q% /A (log Y)® Oy ) under the situation in
Setting 1.1. Steenbrink [17] constructed a cohomological mixed Hodge complex which
is quasi-isomorphic to the relative log de Rham complex Q% / AllogY) ® Oy. Thus
the limiting mixed Hodge structure on the relative log de Rham cohomology group is
constructed. The monodromy logarithm gives the endomorphisms N on the relative
log de Rham cohomology groups. The conditions 1, 2 and 3 in Definition 1.2 are
easily seen from the construction of the cohomological mixed Hodge complex in [17].
Steenbrink also claimed that he proved the condition 4 in [17], but there was a gap
in his proof. Morihiko Saito [15], Guillén-Navarro Aznar [8] and Usui [19] filled the
gap independently. Thus the condition 4 is established for the relative log de Rham
cohomology group. Moreover, [15] and [8] proved the weaker version of the condition
8, that is, P,4; is polarizable for every integer [ by using the polarization on the Betti
cohomology groups of strata Y, for subsets A of A (see (2.1) for the definition of Y)).

Hence the remaining part is to construct the bilinear form S on H(Y, Q5 / AllogY)®
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Oy ) which satisfies the condition 6 and which induces the polarization on P,; given
in [15] and [8]. In order to construct a natural bilinear form S above, I follow the way
in the classical Hodge theory. Namely, I expect that the following steps will be carried
out successfully:

1. Construct a cup product
U : HP(Y, Q%/A(logY) ® Oy) @ HY(Y, Q%/A(logY) ® Oy)
— HPTI(Y, Q% A (logY) ® Oy)
for every integer a,b.

2. Find a trace morphism
Tr : H*(Y, Q% /a(logY) ® Oy) — C
where n is the relative dimension of f.

3. Define a pairing
Q s HI(Y, 2% a(log V) ® Oy) @ H (Y, 0% a (log V) & Oy) — C
by Q(z,y) = £ Tr(z Uy), where the sign should be chosen appropriately.

4. Define a morphism
L HY(Y, Q% a (log Y) © Oy) — HI2 (Y, 0% 5 (log V) © Oy )

by taking a cup product with the ample class. and prove the hard Lefschetz theorem
for [.

5. Construct a polarization S from the pairing ) and the morphism [ by using the
Lefschetz decomposition.

In Step 1, we can easily find a candidate of the cup product: the exterior product on
the complex Q% /A (logY') induces a cup product on the relative log de Rham cohomology
groups. However, we have to relate it to the weight filtration W in order to prove the
desired properties for () in Step 3 and for S in Step 5. Therefore, we have to lift the
exterior product to the cohomological mixed Hodge complex which gives the weight
and Hodge filtrations on H?(Y, Q% / AllogY) ® Oy). Unfortunately, it seems impossible
to lift the exterior product to Steenbrink’s cohomological mixed Hodge complex Ac¢ in
[17] (see Definition 2.9 below). Navvaro Aznar [13] constructed another cohomological
mixed Hodge complex which is quasi-isomorphic to the complex 2% / AlogY)® Oy and
which admits a lifting of the exterior product of the complex Q% AllogY) ® Oy.
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However, I prefer to another way of using the complex K¢ defined in [6], which
is similar to El Zein’s cohomological mixed Hodge complex in [4] (see Definition 2.15
below). This approach seems much simpler than Navarro Azanr’s method. Since the
complex K¢ is constructed from the simplicial data, we can construct a product

D Ke® Ke — K¢

by using Alexander-Whitney formula. It is easy to see that this product is compatible
with the exterior product on the relative log de Rham complex.

In order to define a trace morphism, I define a morphism at the level of Ei-terms
of the weight spectral sequence in terms of integration on strata Y. Then I prove that
this morphism can “descend” to H*"(Y, Qx,a(logY) ® Oy). To check the condition for
“descent” above, I have to compute the morphism of F;-terms in the very precise form,
which is almost the same formula as in Nakkajima [12].

As for the pairing ) in Step 3, it is the key point for the whole procedure above
that the induced pairing from () on

Gr,y HY(Y, Q% /a(logY) ® Oy) ® Gr' H*"79(Y, Q% s (log V) ® Oy)

coincides with the one considered in [15] and in [8]. This fact enables us to apply the
results in [15] and [8]. In order to check the coincidence above, I construct a comparison
morphism from the Steenbrink’s cohomological mixed Hodge complex A¢ to the complex
K¢, which enables us to relate the product in Step 1 to the graded pieces of the weight
filtration of the cohomological mixed Hodge complex A¢. Via this comparison morphism
I can prove the coincidence mentioned above. The construction of S from the data @
and [ is similar to the standard procedure as in the case of classical Hodge theory.
In this article, I only give sketches of the proofs. See [7] for the detail.

§2. Preliminaries

§2.1. Notation

First, we fix the notation which we will use in this article.

Notation 2.1. Under the situation in Setting 1.1, the irreducible components
of Y are denoted by {Y)}areca, where A is a finite set. We fix an total order < on A.
Moreover, we often use symbols A, p, ... for subsets of A. We set

(2.1) Ya=[)"
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for a subset A of A. For the case of A = {\g, A1, -+, A\i} we sometimes use the symbol
Yaors-a, for Ya. We denote by Y} the disjoint union of Yy for all subsets A with

(k 4+ 1)-elements, that is,
= [ %

[Al=k+1

for a non-negative integer k. By the usual way, the data {Yj;}nez., form a semi-
simplicial complex manifold, which is denoted by Y,. (For the notion of semi-simplicial
object, see e.g. Peters-Steenbrink [14, Definition 5.1].) The canonical morphism from
Y. to Y is denoted by ag.

Remark.  Note that the notation above is slightly different from the one in Steen-
brink [17]. In [17], Y% above is denoted by Y (*+1),

Remark.  We often omit the symbol (ag). for direct images of sheaves.

Notation 2.2. For a non-empty subset

p={pspe et (p < pe <o < k)

of A, we set

fori=1,2,--+  k, where 1/; means to omit the element B, Then Y, is a smooth divisor
onY, fori=1,2,--- k.

Notation 2.3.  For an abelian sheaf F* on the semi-simplicial complex manifold
Y., the data {(ag).F k}kezzo form a co-semi-simplicial abelian sheaf on Y, from which
we obtain a complex of abelian sheaves on Y by using the Cech type morphism as
usual. We denote it by C(F*®). By the similar procedure, we obtain the associated
single complex on Y for a complex of abelian sheaves F** on Y,, which is denoted by

C(F**).
Example 2.4.  The data {Oy, }rez., are an abelian sheaf on Y,, which we de-
note by Oy,. The complex C(Oy,) is nothing but the complex

é é
O—>OYO—>OY14> ...... —>0Yk4>

where ¢ denotes the usual Cech type morphism. It is well-known (or easy to check) that
this complex is quasi-isomorphic to the sheaf Oy, that is, the sequence

(2.2)04>@Y_>@Y0L>@Y1L> ...... 2 Oy, —2 s

is exact.
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Example 2.5. The data {Q%(logY) ® Oy, }xez., form a complex of abelian
sheaves 2% (logY) ® Oy, on Y,. The complex C(2% (logY) ® Oy, ) is given by

C(Q%(logY) ® Oy,)" = P Oy *(logY) ® Oy,
k>0

for every integer n. The differential d of the complex C(Q% (logY) ® Oy,) is given by
5+ (—1)kd

on the direct summand Q}_k(log Y) ® Oy, , where § denotes the Cech type morphism
and d the differential of log differential forms. By the exact sequence (2.2), the canonical
morphism Q% (logY) ® Oy — C(Q% (logY) ® Oy,) is a quasi-isomorphism. Similarly,
we have a quasi-isomorphism Q5,1 (logY) ® Oy — C(Q% /5 (logY) ® Oy,).

§2.2. Residue morphism

Definition 2.6. For a subset
o= Apspay st (< po <o <)
of A, the morphism
Res% Q% (logY) — Qf‘;{k(log Y)® Oy,
is defined locally by the formula
Res%((dlog Tpy Adlogzy, A--- Adlogzy, Aw) =uwly,,

where x,,,%,,, - ,%,, are local defining functions of the divisors Y, ,Y,,,- - ,Y,,,
respectively. We can easily check the morphism Res% is well-defined, i.e., independent
from the choice of the functions x,,,,,, - ,%,,. A morphism of complexes

Res’ : Q% (logY) — Q% (log V) ® Oy, [~k
is obtained by the morphism above. This morphism induces morphisms

Resy : Q% (log V) ® Oy — Q% (logV) ® Oy, [~
Res% 1 Q% (logY) ® Oy, — Q% (logY) ® OYAU&[_IC]

for a subset A of A. These morphisms are called the residue morphisms.

The following proposition plays an important role in the next section.
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Proposition 2.7.  For a subset p of A with |H| =k, we have the equality

k
Res% (dlogt Aw) = (—1)* dlogt A Res% (w) + z:(—l)i_1 Res%g @)y,
i=1

for any local section w of Q% (logY'), where B, is a subset of p defined in Notation 2.2.

Proof. See [6]. O
Definition 2.8. We have

Resh = @ Res%( 0% (logY) — Q% (logY) ® Oy, [k — 1]
|p|=k+1

Rest = @ Res%, Q% (logY) ® Oy — Q% (logY) ® Oy, [k — 1]
|p|=k+1

for a non-negative integer k.

§2.3. Steenbrink’s cohomological mixed Hodge complex

In this subsection, we recall the construction of a cohomological mixed Hodge
complex given by Steenbrink in [17], which is quasi-isomorphic to the relative log de
Rham complex Q%5 (logY) ® Oy

Definition 2.9. Under the situation in Setting 1.1, we set

(2.3) Az =Py (logY) /W,y (log Y)
r>0

for every non-negative integer n, where W denotes the increasing filtration by the order
of poles along Y (see e.g. Deligne [2]). The differential d on Q% (logY’) induces a

morphism
d: Q% (logY) /W, Q% (log V) — Q% (log Y) /W, Q% 2 (log Y) C AZT!
for every n,r. On the other hand, we obtain a morphism
dlogtA : Q% (log Y)/W,.Q% ™ (logY) — Q% 2(log Y) /W, 11Q% 2 (logY) C AT
by taking wedge product with dlog¢. Then the morphisms
—d +dlogtA : Q% (log V) /W, Q% (logY) — AR

define a morphism Af — Ag“ for every integer n. Thus we obtain a complex Ac.
An increasing filtration W on Ac is defined by

Wi Ag = @ Wintar 1% (log Y) /W, Q5 (log Y)
r>0
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for every integer m. A decreasing filtration F' on Ac is defined by

FPAR= P % (logY)/ W, Q5% (logY)

0<r<n—p

for every p.

Remark.  The sign on the differential d above is slightly different from the original
one in [17] (see [19]). From this change, the sign of the morphisms in what follows are
slightly changed in the original ones in [17].

Definition 2.10. We can easily see that the morphism
dlogtA : Q% (logY) — Q% (log V) /WoQx (log Y) € AR

factors through the surjection Q% (logY’) — Q% 1 (logY) ® Oy. Thus a morphism of
complexes

(2.4) Q%/alogY) ® Oy — Ac
is obtained.
Theorem 2.11 ([17]).  Under the situation above, we have the following:
1. The morphism (2.4) induces an isomorphism
(2.5) HY(Y, Q%/a(logY) ® Oy) =~ HY(Y, Ac)
for every q.

2. The triple (Ac, W, F) is (the C-structure of ) a cohomological mized Hodge complex
onY.

Remark.  The Ej-terms of the weight spectral sequence for (Ac, W) are given by

(2.6) EPi(Ac, W)= @ HPTUN(Yoen QY L)

r>max(0,p)

for every p,q.
Definition 2.12. The canonical morphism
Qu  (log V) /W, Q% (log V) — Q% (log V) /W, 1 Q% (log V) in AL

for every r defines a morphism of complexes v : Ac — Ac.
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Lemma 2.13.  Under the identification (2.5), the morphism v induces the mon-
odromy logarithm N on HI(Y,Q% 5 (logY) ® Oy).

Proof. See [17]. O

§2.4. Simplicial method

In this subsection, we recall the mixed Hodge structures on the relative log de Rham
cohomology groups constructed in [6]. This approach is very similar to the construction
by El Zein in [4].

Definition 2.14. We denote by Clu] the polynomial ring over C of the one

indeterminate u. Fix a non-negative integer k. A morphism
Clu] ® % (logY) @ Oy, — Clu] ® Q% (log V) @ Oy,

is defined by sending a local section P(u) ® w of Clu] ® Q% (logY) ® Oy, to the local
section

dP
P(u) ® dw + Tu @ dlogt Aw

of Clu] ® Q5 (logY) ® Oy,,, where P(u) is an element of C[u] and w a local section
of 0% (logY) ® Oy,. We denote it by d again by abuse of the language. We can easily
check the equality d? = 0, that is, we obtain a complex Clu] ® Q% (logY) ® Oy, on Yj
for every non-negative integer k.

We set ul"l = u” /7! and identify

Clu] ® Q% (logY) ® Oy, = P ul’ @ 0% (log V) @ Oy,
r>0
trivially. Then we define an increasing filtration W and a decreasing filtration F' on

Clu] ® 2% (logY) ® Oy, by

Wi (Clu] @ Q% (logY) @ Oy,) = P ul @ W, 2,0%(logY) @ Oy,
r>0

FP(Clu] @ 9% (log V) @ Oy,) = @ ul” @ 703 (log V) © Oy,
r>0

for every m,p. Moreover we can check that the data
{(Clu] ® % (logY) @ Oy,,, W, F) }rez,

form a (filtered) complex on a semi-simplicial complex manifold Y,, which we denote
by (Clu] © Q% (log Y) @ Oy, , W, F).
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Definition 2.15.  As explained in Notation 2.3, we obtain a complex of sheaves
C(Clu] ® Q% (logY) ® Oy,)
on Y, which we denote by K¢ in this article. As for the filtration F', the data
[FP(Clu] © Q% (Iog ¥) @ Oy, ) bress,
form a complex on Y,. By setting
FPKe = C({FP(Clu] @ Q% (log V) © Oy,) trezso),
for every p, we obtain a decreasing filtration F on K¢. On the other hand, the data
Witk (Clu] ® Q% (logY) ® Oy, ) b ez,
form a complex on Y,. Then we obtain an increasing filtration W on K¢ by
Wi = C({Win4(Clu) ® 2% (log Y) & Oy, }rezo)
for every integer m.

Remark.  We note that the filtrations W and F are not finite filtrations. So
we have to be careful to apply usual results on finite filtrations. In particular, we do
not claim the triple (K¢, W, F) is (the C-structure of) a cohomological mixed Hodge

complex on Y.

Although the filtration W and F' are not finite filtration as mentioned above, we

obtain the following results in [6].

Theorem 2.16 ([6]).  Under the above situation, we obtain the followings.
1. The filtrations W and F' induces finite filtration on H4(Y, K¢) for every integer q.

2. The data (HY(Y, K¢),Wlq|, F) is (the C-structure of ) a mized Hodge structure for
every q.

3. There exists an isomorphism
(2.7) HY(Y, K¢) = HY(Y, Q% a (log Y) © Oy),
for every q.
4. The spectral sequence associated to the filtration F' on K¢ degenerates at FEq-terms.

5. The spectral sequence associated to the filtration W on K¢ degenerates at Es-terms.
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Remark. In order to illustrate the complexity of the Ej-terms EV'? (K¢, W) of
the weight spectral sequence for K¢, I present a result of the computation in [6]. The
Fi-terms are given by

9 - >\ by
(2.8)  EPY(Ke, W) ~ @ @ @ ul"l @ H2Pat2 2|_|+QT(YAUH’ QYAUg)
r>0 ACA HCA
AZD |pl=—p+|Al-1-2r
for every integers p, q.

Definition 2.17. The morphism of complexes

d
T ®id : Clu] ® % (logY) ® Oy, — Clu] ® 2% (logY') ® Oy,

induces a morphism of complexes K¢ — K¢, which we denote by d/du for simplicity.

Lemma 2.18.  The morphism d/du induces the monodromy logarithm N on
HYU(Y, Q% A (logY) ® Oy) under the identification (2.7).

Proof.  See [7]. O

§3. Comparison morphism

In this section, we construct a morphism from Steenbrink’s cohomological mixed
Hodge complex Ac¢ to the complex K.

Definition 3.1. The residue morphism
Res? : Q¥ (logY) — Q’}(_k(log Y) ® Oy,

satisfies the condition Res’ (W,Q% (logY)) = 0 if » < k. Therefore the morphism
Res’)c( induces a morphism

O Qe log V) /W, Q% (log Y)
— QY FlogY) ® Oy, ~ulF @ 0% *(logY) ® Oy, € KP

for every integer r with 0 < r < k. Then we have a morphism

Y= Z Opr Ag — K¢
0<r<k

for every n. Proposition 2.7 implies that this ¢ is compatible with the differentials on
both sides. Thus we obtain a morphism of complexes ¢ : Ac — Kc.
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Lemma 3.2.  The morphism ¢ above preserves the filtrations W and F'.

Proof. Since we have
Resh (W, Q% (log Y)) € Wi 192% F(log V) @ Oy,
the morphism ¢y, , satisfies

Prr (Wing2r 1 Q5 (log Y) /W, Q5 (log )
C ’U/[k_r] (%9 Wm+2T_kQ}_k(lOg Y) & Oyk
=ulF g Wm_g(k_erQ}_k (logY) ® Oy,

by which we can easily see the conclusion for the filtration W. For the filtration F', we
can easily see the conclusion. O

The following is proved in [7].

Proposition 3.3.  The morphism ¢ : Ac — K¢ induces an isomorphism of
mized Hodge structures

HY(Y, ) : HY(Y, Ac) — HI(Y, K¢)

for every integer q.

Proof. The above lemma implies that the morphism HY(Y, ) is a morphism of
mixed Hodge structures. We can prove that the morphism H?(Y ) is compatible with
the isomorphisms (2.4) in Theorem 2.11 and (2.7) in Theorem 2.16. Thus we obtain the
conclusion. See [7] for the detail. O

§4. Product

In this section, we give the definition of a product on the complex K¢. This
procedure is known as Alexander-Whitney formula.

Definition 4.1.  For non-negative integers k, K with £ < K, morphisms
hi it - Y — Yy

are defined as follows: the morphism hj x on the connected component Yy, x,...a. iS
the closed immersion Yy x,..ax — Yxox;---a, and the morphism 5 g on Yy », ..ax
is the closed immersion Yxox,-Ax — YAg_iAx—pi1-Ax- (Lhe symbols h and ¢ are
abbreviation of “head” and “tail”.)
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Definition 4.2.  For non-negative integers k, [, p, g, a morphism

oL (Clu] ® Q% (log V) ® Oy, )®(Clu] ® Q% (log V) ® Oy,)
— (C[U] (%9 QZ;(+q(log Y) ® OYk—H - Ké+l+p+q

is defined by

L (P(u) @ w) @ (Qu) ®n)) = P(u)Q(u) @ h jpw Ak m

El

for P(u), Q(u) € Clu], and for local sections w of Q% (log Y)® Oy, , n of Q% (log Y) ® Oy,
Then we define a morphism

o= P (el (Keo Ke)” — K¢
k+l+p+g=n

for every integer n. Direct but tedious computation shows that ® defines a morphism
of complexes.

Definition 4.3. The morphisms ® induces a morphism of cohomology groups
Hp’q(Y7 (I)) : Hp(Ya K(C) ® Hq(Y7 K(C) - Hp+q(Y7 K(C)
for every p, q.

Proposition 4.4. Via the isomorphism (2.7) in Theorem 2.16, the morphism
HP9(Y, ®) coincides with the cup product

U HP(Y, Q% A (logY) ® Oy)@HY (Y, Q% /s (log Y) ® Oy)

(4.1)
— HPTY(Y, Q%/a(logY) ® Oy)

for every p, q, where the cup product U is the morphism induced from the exterior product
on the complex Q% 5 (logY) ® Oy .
Lemma 4.5.  The morphism ® satisfies the conditions

(W,Kc ® WyKc) C WorpKe
®(FKe ® FPKe) € F*™° K¢

for every a,b. Therefore the morphism HP4(Y, ®) satisfies the conditions

Hp’q(Y, (I))(WaHp(Y, Kc) X Wqu(Y, K@)) C Wa+pr+q(Y, K@)
Hp’q(Y, (I))(FGHP(Y, K@) X Fqu(Y, K@)) C Fa+pr+q(Y, K(C)

for every a,b,p,q.
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Proof. Easy by definition. O

8§ 5. Trace morphism

We denote by n the relative dimension of the morphism f. Then every connected
component of Y, has dimension n — k.

Lemma 5.1. We have

W_ H*"(Y, Ac) =0,
WoH?" (Y, Ac) = H*"(Y, Ac) ~ C

for the weight filtration W on H?™(Y, Ac).

Proof. The formula (2.6) implies the equalities

EPP P (A, W) =0 forp#0
E; V" (Ac, W) ~ H™2(Y,C)
EY*"(Ac, W) ~ H2"(Y,, C)
BN (A, W) =0

(5.1)

by using the equality dimYj = n — k above. Thus we obtain E2?" ?(Ac, W) = 0 for
p # 0. Moreover, we can compute the cokernel of the morphism

dy : E{ V2 (Ae, W) — EY?"(Ac, W)

in terms of Gysin morphisms via the identification in (5.1) as in [12], and obtain
Eg’2n(A(c, W) ~ C. Thus we have the conclusion by FEs-degeneration of the weight
spectral sequence. O

Corollary 5.2.  We have

W_ H*(Y,K¢) =0
WoH?"(Y, K¢) = H*"(Y, K¢) ~ C
for the weight filtration W on H?"(Y, K¢). Moreover, we have an exact sequence

(5:2) EyY (Ko, W) —2 s BV (Ko, W) —— H2(Y,K¢) —— 0

for the cohomology group H>"(Y, K¢).
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Proof.  Since two mixed Hodge structures H2"(Y, Ac) and H?"(Y, K¢) are isomor-
phic by Proposition 3.3, we obtain the first half of the conclusions. The formula (2.8)
tells us E'l1 ’zn(K@, W) = 0 by considering the dimension of Y). Thus we obtain the
latter half. O

The morphisms
id®(dlogtA) : Clu] ® Q% (logY) ® Oy,, — Clu] ® Q% (logY) ® Oy, [1]

for non-negative integers k induce a morphism of complexes K¢ — Kc¢[1], which we
denote by dlogtA. We can easily check the condition (dlog¢tA)(W,, K¢) C Wit1 Kc[l]
for every integer m. Therefore we have a morphism of complexes

GrlV Ko — Grl¥ Ke[l]
for every m, which we denote by dlog A again. Thus a morphism
H2"(Y,dlogtA) : EY?" (Ko, W) = H?(Y, GrlY K¢) — H*™ (Y, GrlY K¢)
is obtained.
Lemma 5.3. We have an isomorphism

H2 (Y, Gr” Ke) ~ @ H (14, 08,).
k>0

Proof.  See [7]. O

Via the isomorphism in the lemma above, we obtain a morphism

@ e(k + 1)(2%\/—_1)k_n/ - (Y, GrlY K¢) — C,

E>0 Yi
where we set e(a) = (—1)%@=D/2 for every integer a.

Definition 5.4. By setting

6 = (@ ek + 1)(@ry/=T)F / ) H2" (Y, dlog 1),

k>0 Yi
the morphism © : E?’Qn(K(C, W) — C is defined.

The following is a key result in this article:
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Theorem 5.5. There exists a morphism
Tr: H*"(Y, K¢) — C

which fits in the commutative diagram

B (Ke,W) —2— C

l H

H*(Y,K¢) —— C,
Tr
where the left vertical arrow denotes the surjection in the exact sequence (5.2).

Proof. We can prove the condition © - d; = 0 by computing the morphism dy in
terms of Gysin morphisms as in [12]. This implies the conclusion by the exact sequence
(5.2). O

§6. Polarization

In this final section, we use the identifications
HY(Y, Q% A (logY) ® Oy) ~ HY(Y, K¢) ~ HY(Y, Ac)

(2.5) and (2.7) freely for every integer gq. Because HY(Y, K¢) ~ H(Y, Ac) is an isomor-
phism of mixed Hodge structures by Proposition 3.3, the filtrations W, F' on HI(Y, K¢)
and HY(Y, Ac) induce the same filtrations on H?(Y, Q% / A(logY)®Oy). Thus we obtain
filtrations W and F on HY(Y, Q% 5 (logY’) ® Oy) such that the triple

(Hq(Y7 Q;{/A(log Y) ® OY)? W[Q]v F)

is (the C-structure of) a mixed Hodge structure. The monodromy logarithm N is
induced by the morphism v via the identification (2.5) and by the morphism d/du via
(2.7). We can easily see that the morphism N is a morphism of mixed Hodge structures
of type (—1,—1).
As a consequence of Section 4 the cup product (4.1) satisfies the properties
WHP(Y, Q% /A (logY) @ Oy) U W HI(Y, Q% 4 (logY) ® Oy)
C Was s HP (Y, Q% /a (log V) © Oy)
FOHP(Y, Q% /A (logY) ® Oy) U FPHY(Y, Q% /A (log V) © Oy)
C FYPHPT(Y, Q% a(logY) ® Oy)



18 TARO FuJisawaA

for every a, b, p,q.
On the other hand, the morphism

Tr : H*"(Y, Q%/alogY)®Oy) — C
is defined in Section 5.
Definition 6.1. The pairing
Q - HY(Y,Q%/a(log V) ® Oy) ® H*" (Y, Q% A (log Y) ® Oy) — C

is defined by the formula Q(z,y) = €(q) Tr(z Uy) for x € HI(Y, Q;(/A(log Y)® Oy) and
for y € H2" (Y, 0% /alogY) ® Oy).

Lemma 6.2. We have
QW H(Y, 2%/ a(log V) @ Oy ), WoHZ" (Y, 0% (Iog V) @ Oy)) = 0

ifa+b< —1.

Proof. Because we have
WoHY(Y, 0% A (logY) ® Oy ) UW,H?"9(Y, Q% /5 (log Y) © Oy)
C WaysH?" (Y, Q% /a(l0gY) © Oy)
c W_ H*"(Y, Q%/a(logY) ® Oy) =0
if a + b < —1, we obtain the conclusion. O
Definition 6.3. By the above lemma, the pairing () induces a pairing
Gr,y HY(Y, Q% /a(logY) ® Oy) ® Gr'¥  H*" (Y, Q% /5 (log V) ©® Oy) — C
for every integer m, which is denoted by the same letter Q.

Definition 6.4. The morphism dlog : 0% — QY is given by sending g € O% to
the 1-form dlog g = dg/g. This defines a morphism of complexes O% — Q% / AllogY)®
Oy [1] denoted by dlog again. Thus the morphism

H'(X, dlog) : H'(X,0%) — H*(Y,Q%/s(logY) ® Oy)
is obtained.

Since the morphism f is projective, there exists a relatively ample line bundle £ on
X. The isomorphism class of £ is denoted by [L£], which is an element of H}(X, O%).
Then the image of [£] by the morphism H!(X,dlog) is denoted by [w], which is an
element of H2(Y, Q% /allogY) ® Oy).



POLARIZATIONS ON LIMITING MIXED HODGE STRUCTURES 19

Definition 6.5. The morphism
L HP(Y, Q5% a(logY) © Oy) — HPP2(Y, 0% 4 (logY) @ Oy)

is defined by taking cup product with —[w], that is, I(z) = —[w] Uz for an element x of
HP(Y, Q% / AllogY)® Oy ). It is easy to see that the morphism [ is a morphism of mixed
Hodge structures of type (1,1).

Remark.  We remark that the usual Chern class, which is defined by using the
exact sequence involving the exponential map, is different from the above by the sign
(see Deligne [3]). This is the reason why we take —[w] instead of [w].

Definition 6.6. We set
LW = GV H (Y, Q%/a(logY) ® Oy)

for every integer i, j, which is (the C-structure of) a Hodge structure of weight n+ j —i.
The monodromy logarithm N induces a morphism L%/ — L2 which is denoted
by 11, and the morphism [ in Definition 6.5 induces a morphism Iy : L%/ — L»712 for
every i, 7. Moreover we set L = @z j L%3. By setting

(=) H-iQ(z,y)  ifwe L "I, ye L,

0 otherwise,

Y(z,y) =

a bilinear form
Yv: L L — C

is defined.
Now we state the main result of this article:

Theorem 6.7. The quadruple (L, 1y ,12,1) is a polarized bigraded Hodge-Lefschetz
module in the sense of Guillén-Navarro Aznar [8].

Proof. By using the comparison morphism ¢ : Ac — K¢ and by the careful
computation on the sign in question, we can prove that these data (L, 1,12, ) coincide
with the data induced from the FE-terms of the weight spectral sequence associated
to (Ac, W), which are treated in [15] and in [8]. Thus Theorem 4.5 in [8] implies the
conclusion. O

Remark.  Once the above theorem is established, we can obtain a polarization by
the standard procedure. We remark that the primitive part of the morphism [ commutes
with taking Gr'""' because [ is a morphism of mixed Hodge structures of type (1,1).
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