Wildness of polynomial automorphisms:
Applications of the Shestakov-Umirbaev theory and its

generalization

Shigeru Kuroda

1 Introduction

For each integral domain R, we denote by R[x| = R|xy,...,z,| the polynomial ring in
n variables over R, where n € N, and x = {z1,...,2,} is a set of variables. For an
R-subalgebra A of R[x], we consider the automorphism group Aut(R[x|/A) of the ring
R[x] over A. We say that ¢ € Aut(R[x]/R) is affine if deg¢(z;) = 1 for i = 1,...,n,
and elementary if ¢ belongs to Aut(R[x|/A;) for some i, where A; := R[x \ {z;}]. Here,
deg f denotes the total degree of f for each f € R[x|. Note that, if ¢ is affine, then
we have (¢(x1),...,0(x,)) = (z1,...,2,)A + (b1,...,b,) for some A € GL,(R) and
bi,...,b, € R. If ¢ is elementary, then there exist i € {1,...,n}, « € R* and f € A;
such that ¢(z;) = ax; + f and ¢(z;) = z; for j # i. We denote by Aff(R,x), E(R,x),
and T(R,x), the subgroups of Aut(R[x|/R) generated by all the affine automorphisms,
all the elementary automorphisms, and Aff(R,x) U E(R,x), respectively. An element of
Aut(R[x]/R) is sometimes said to be tame if it belongs to T(R,x), and wild otherwise.

The following is a fundamental problem in polynomial ring theory.
Tame Generators Problem. When is T(R, x) equal to Aut(R[x|/R)?

The equality holds true if n = 1, in which case every element of Aut(R[x]/R) is affine
and elementary.

When n = 2, the following result is well-known.

Theorem 1.1. Assume that n = 2, and R is an integral domain. Then, T(R,x) is equal
to Aut(R[x]|/R) if and only if R is a field.
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Here, the “if” part of the above theorem is due to Jung [8] in the case where R is of
characteristic zero, and to van der Kulk [9] in the general case. The “only if” part of the
above theorem is rather easy (cf. [3, Proposition 5.1.9]).

Throughout this report, we denote by k an arbitrary field of characteristic zero. When
n = 3, Shestakov-Umirbaev [21] gave a criterion to decide whether a given element of
Aut(k[x]/k) belongs to T(k,x). As a consequence, they showed the following theorem
([21, Corollary 10]).

Theorem 1.2 (Shestakov-Umirbaev). Aut(k[x]|/klzs]) NT(k,x) = T(klxs], {x1,22}).

Since some automorphisms, including the famous automorphism of Nagata [16], belong
to Aut(k[x]/k[x3]), but do not belong to T(k[xs],{z1,z2}), it was concluded that T(k,x)
is not equal to Aut(k[x]/k). At present, the Tame Generators Problem is not solved in
the cases where n > 4, and where n = 3 and the field of fractions of R is of positive
characteristic.

Recently, the author [10], [11] reconstructed and generalized the theory of Shestakov-
Umirbaev. This improvement makes it possible to decide more easily and efficiently
whether a given element of Aut(k[x]/k) belongs to T(k,x) when n = 3.

The purposes of this report is to announce some recent results obtained as conse-
quences of the Shestakov-Umirbaev theory and its generalization. For details, we refer
to our preprints [12], [13] and [14]. This series of papers (with a total of nearly hundred
pages) presents various applications of these theories.

In Sections 2, 4, 5 and 6 of this report, we explain the main results of [12]. These
results are derived from Theorem 1.2. To illustrate the usefulness of Theorem 1.2, in
Section 3, we show the wildness of some concrete automorphisms by means of a criterion
derived from this theorem. Sections 7 and 8, and 9 summarize the main results of [13]
and [14]. These papers contain strong results obtained as highly technical applications of

the generalized Shestakov-Umirbaev theory.

2 Affine reductions and elementary reductions

Let T" be a finitely generated ordered additive group, and w = (wq,...,w,) an n-tuple
of elements of I with w # (0,...,0) and w; > 0 for i = 1,...,n. For each nonzero
polynomial
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ot ain for 4y, ... i, such that Yoy hiwy = degy, f. When f =0, we set f¥ =0
and deg,, f = —oo, i.e., a symbol which is less than any element of I". Then, for each
¢ € Aut(R[x]|/R), it holds that

deg,, ¢ := Zdegw o(z;) > Zwi = |wl. (2.1)
i=1 i=1

If n = 2, then deg,, ¢ = |w| implies that ¢ belongs to T(R,x) (see [12, Section 2] for
detail).

Now, we consider two kinds of reductions for ¢ € Aut(R[x]|/R). We say that ¢ admits
an affine reduction for the weight w if there exists o € Aff(R, x) such that deg,, ¢ o a <
deg,, . We say that ¢ admits an elementary reduction for the weight w if there exists
¢ € Aut(R[x]/A;) for some i such that deg,, ¢ o € < deg,, ¢.

Assume that n = 2 and w; > 0 for i = 1,2. Then, we have |w| = w; + wy > 0
by the assumption that (wy,we) # (0,0). Hence, for each ¢ € Aut(R[x]|/R), it follows
from (2.1) that deg,, ¢(z1) > 0 or deg,, ¢(z2) > 0. Let V(R) be the set of a/b € K for
a,b € R\ {0} such that aR + bR = R, where K is the field of fractions of R. Note that
R\ {0} is contained in V(R), and V(R) is contained in K*. If R is a PID, then we
have V(R) = K*. By definition, ¢ admits an affine reduction if and only if there exist
a,b,c,d,s,t € Rwith ad — bc € R* such that

degy, (ag(x1) + bp(z2) + 5) + deg,, (cod(x1) + dé(x2) +t) < degy, ¢(z1) + deg,, d(z2).

Since deg,, #(x1) > 0 or deg, ¢(x2) > 0, this is equivalent to that ad(z1)™ + bop(xs)™ = 0
or co(z1)™ +dp(x2)™ = 0, and is equivalent to that ¢(x;)™ = up(zy)™ for some u € V(R).
In particular, we have deg,, ¢(z1) = deg,, #(z2) whenever ¢ admits an affine reduction for
the weight w.

Note that ¢ admits an elementary reduction if and only if there exists f € R[¢(z;)]
such that deg,, (¢(x;)—f) < deg,, ¢(z;) for some (i, 7) € {(1,2),(2,1)}. Since ¢p(x;)—f # 0
and w; > 0 for [ = 1,2, we have deg, (¢(x;) — f) > 0, and hence deg,, ¢(z;) > 0. It follows
that deg,, f > 0, and so deg,, #(z;) > 0. Thus, f% must be of the form c(¢(z;)¥) for
some ¢ € R\ {0} and [ € N. Therefore, it holds that deg, (¢(x;) — f) < degy, ¢(z;) for
some f € k[¢(x;)] if and only if ¢(z;)™ = c(d(z;)™)! for some ¢ € R\ {0} and [ € N.

The following is a basic result on tameness of elements of Aut(R[x]/R) for n = 2. In

the case of w = (1, 1), the result is commonly known (cf. [7, Proposition 1]).

Proposition 2.1 ([12, Proposition 3.2]). Assume that n =2, and w := (wy,wy) € T'? is
such that w # (0,0) and w; > 0 fori=1,2. If deg,, ¢ > |w| holds for ¢ € T(R,x), then
¢ admits an affine reduction or elementary reduction for the weight w.
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Next, we recall the notion of coordinate. We call f € R[x] a coordinate of R[x] over
R if f is equal to ¢(x;) for some ¢ € Aut(R[x]/R), which is said to be tame if ¢ can be
taken from T(R,x), and wild otherwise. Let S be an integral domain containing R as a
subring. Then, we may regard Aut(R[x]|/R) as a subgroup of Aut(S[x]/S) by identifying
¢ € Aut(R[x|/R) with the automorphism idg ® ¢ of S ®g R[x| ~ S[x] over S. Hence,
every coordinate of R[x] over R is a coordinate of S[x] over S. On the other hand, not
every coordinate of S[x] over S is a coordinate of R[x] over R. When n = 2, we say that

a coordinate f of S[x] over S is reduced over R if

deg,, 7(f)+ deg,, 7(f) > deg,, f + deg,, f

holds for every 7 € T(R, x).
For f € R[x], we consider the subgroup

H(f) := Aut(R[x]/R[f]) N T(R,x)
of Aut(R[x]/R).

The following theorem is a consequence of Proposition 2.1.

Theorem 2.2 ([12, Theorem 4.3]). Assume that n = 2. Let R C S be an extension of
integral domains, and f € R[x| a coordinate of S[x] over S which is reduced over R.

(i) If deg,, f = deg,, f, then H(f) is contained in Aff(R,x).

(ii) If deg,, f < deg,, [ for (i,5) € {(1,2),(2,1)}, then H(f) is contained in J(R;x;, z;).
If deg,. f =0, then H(f) = Aut(R[x]/R[z;]).

Here, for a permutation z;,,...,x;, of x1,...,x,, we denote by J(R;x;,,...,x; ) the
set of ¢ € Aut(R[x]/R) such that ¢(z;,) belongs to R[z;,,...,x;] for [ =1,...,n. Note
that J(R;x;,...,x;,) forms a subgroup of T(R,x) consists of the automorphisms ¢ of
the form ¢(x;,) = ayz;, + by for [ =1,...,n, where ¢, € R* and h; € R[z;,,...,z;_,].

Results explained in Sections 4, 5 and 6 are derived from Theorems 1.2 and 2.2.

3 An easy criterion for wildness

The following corollary is an immediate consequence of Theorem 1.2, and Proposition 2.1
applied with R = k[z3].

Corollary 3.1. Assume that n = 3. Then, ¢ € Aut(k[x]/k[z3]) does not belong to
T(k,x) if there exist wy,wy € I' with (wy,ws) # (0,0) and w; > 0 for i = 1,2 such that
the following conditions hold for w := (wq,ws, 0):

(1) degy, ¢ > [wl.

(ii) There exists (i,7) € {(1,2),(2,1)} such that deg,, ¢(x;) < degy, d(x;), and P(x;)V is
not equal to c(¢(x;)™) for any c € k[x3] and | € N.

4



WILDNESS OF POLYNOMIAL AUTOMORPHISMS

PROOF. Suppose to the contrary that ¢ belongs to T(k,x). Then, ¢ belongs to
T(k[xs], {x1, x2}) by Theorem 1.2, since ¢ is an element of Aut(k[x]/k[x3]) by assumption.
Regard k[x] as the polynomial ring in 2 and x5 over k[z3], where we consider the weight
w' = (wq,wy). Then, deg,, m = iyw; + iqws = deg,, m holds for each monomial m =
2222, Hence, we get deg,, f = deg,, f and f* = f% for each f € k[x]. It follows
that deg,, ¢ = deg, ¢, and is greater than |w| = |w’| by (i). By Proposition 2.1, we
know that ¢ admits an affine reduction or elementary reduction for the weight w’ as an
automorphism of the polynomial ring in z; and x5 over k[z3]. On the other hand, since
deg,, #(x;) = deg,, #(x;) and ¢(z;)™ = ¢(z;)™ for [ = 1,2, the condition (ii) implies that
¢ does not admit an affine reduction or elementary reduction for the weight w’. This is

a contradiction. Therefore, ¢ does not belong to T(k,x). O
For example, consider Nagata’s automorphism [16] given by
d(1) = w1 — 2(x123 + 23)25 — (2123 + 23)°23,  G(22) = 29 + (2123 + 73)73

and ¢(z3) = x3. Let T be the additive group Z? equipped with the lexicographic order

with e; > ey, where e; := (1,0) and ey := (0,1). Then, for w = (e, e3,0), we have

deg,, &(r1) = 2eq, deg, d(xz) =e1, é(x1)" = —x%x%, d(z)™ = xlxg.

One easily checks that (i) and (ii) in Corollary 3.1 are satisfied. Thus, ¢ does not belong
to T(k,x).
Ohta [17, Theorem 3| gave two kinds of automorphisms, one of which is defined by

o1(x1) = (g1(ws, L + 2133) — 22) 25>, di(a2) = fr + 1wy, di(ws) = a3,

where f; is a certain element of k[zy, 23], and g;(z,y) is a polynomial in = and y over k
of the form 3z%y® + (terms of lower degree in y). Here, 1, 2o and z3 are denoted by z, y

and x, respectively, in the original text. For the same I' and w as above, we have
deg,, ¢1(z1) = bey + 1dey, deg,, d1(22) = e1 + 3es, ¢1(x1)Y = 3ajzs", ¢1(2)™ = 2123,

It is easy to check that (i) and (ii) in Corollary 3.1 are satisfied. Hence, we conclude
that ¢; does not belong to T(k,x). As this example shows, we can sometimes decide
the wildness of ¢ € Aut(k[x]/k) from only partial information on ¢(z1), ¢(z2) and ¢(x3).
Tameness of another automorphism of Ohta is determined at the end of the next section.

4 Triangular derivation

Let D be a locally nilpotent derivation of R[x| over R, i.e., an element of Derg R[x] such
that D'(f) = 0 holds for some [ € N for each f € R[x]. When R contains Q, an element
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exp D of Aut(R[x]/R) is defined by
D'(f)

i

(expD)(f) =

i>0

for each f € R[x|. We say that D € Derg R[x] is triangular if D(x;) belongs to

Rlxy,...,x;_q] for eachi. If D is triangular, then D is locally nilpotent, and (exp D)(x;) =

x; + f; for each i, where f; € R[xy,...,z;_1]. Hence, exp D belongs to J(R,z1,...,z,),

and so belongs to T(R,x). For D € Derg R[x| and h € R[x], it is well-known that hD

is a locally nilpotent derivation of R[x] if and only if D is a locally nilpotent derivation

of R[x], and h belongs to ker D (cf. [3, Corollary 1.3.34]). Even if D is triangular, hD is

not always triangular, and so exp hD may not belong to T(k,x) for h € ker D \ k. For
instance, Nagata’s automorphism is wild, and is of the form exp hD, where

0
h =x23+ x%, D= —-21ro— + 13—

811? 1 811? 2 '
This derivation is triangular if z; and x3 are interchanged.

Thus, the following problem arises.

Problem. Assume that n = 3. Let D be a triangular derivation of k[x], and & an element
of ker D \ k. When does exp hD belong to T(k,x)?

We completely settle this problem as a consequence of a more general result as follows.

Let R be a Q-domain, and D a triangular derivation of R|x1,xs] such that

!
D(zy)=a D(zy) = Zbix’i,
i=0
where [ > 0, and a, by, ...,b; € R with a # 0 and b; # 0. Set
I={i>0|b;¢aR}, I'={1,....1}\1,

and define 7 € Aut(R[z1, z2]/R) by

T(x1) =21, T(T2) =22 + Z

iel’

bi

i+1
G+ Da't

With this notation, we have the following theorem.

Theorem 4.1 ([12, Theorem 6.1]). Let D be as above, and h an element of ker D \ R.
Then, exp hD belongs to T(R, {x1,z2}) if and only if one of the following conditions holds:
(i) I =0.

(ii) I = {0}, and by/a belongs to V(R) or degt(h) = 1.

In particular, when V(R) = K*, it follows that exp hD belongs to T(R, {x1,z2}) if and
only if I =0 or I = {0}, where K is the field of fractions of R.
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Applying Theorem 4.1 with R = k[z3], we get the following theorem with the aid of
Theorem 1.2.

Theorem 4.2 ([12, Theorem 6.2]). Assume that n = 3. Let D be a triangular derivation
of kx| with D(x1) = 0 and D(x3) # 0, and h an element of ker D \ k[z1]. Then, exp hD
belongs to T(k,x) if and only if OD(x3)/0xy belongs to D(x9)k[xq, xs).

Note that 0D(z3)/0z2 belongs to D(x2)k[x1, zs] if and only if the coefficient of x% in
D(x3) is divisible by D(z5) in k[x1] for each i > 1, where we regard D(z3) as a polynomial
in 25 over k[z].

If D(z1) = 0 and h belongs to k[zi], then hD is triangular, and so exp hD is tame.
If D(z1) = D(z2) = 0, or if D(x;) # 0, then it is easy to check that exp hD is tame for
every h € ker D (see [12, Section 6] for detail). Therefore, we have completely answer the
problem above.

Now, for f € k[z1] \ {0} and ¢g € k[z1,2,], we define a triangular derivation T}, of
k(x| by

dg
oy
Then, we have Ty ,(fxs+g) = 0, so h1y, is a locally nilpotent derivation of k[x] for each
h € klxy, fxs + g]. By Theorem 4.2, it follows that q)’}’g := exp h1y, belongs to T(k,x)
if and only if 9T} ,(x3)/0xy = —0%g/0x3 belongs to Ty, (x2)k[z1, x2] = fklx1, 2o for each
h € klx1, fzz + g] \ k[z1]. Thus, we get a family

Trg(x1) =0, Trglaz) =f, Trglws) =

{®h, ] (f.9) €A, h€klwy, fos+g] \ klzi]}

of wild automorphisms of k[x], where A is the set of (f,g) € (k[x1] \ {0}) X xok|xy, 4]
such that 9%g/0x3 does not belong to fk[zy,xs)].
Let us consider the second automorphism of Ohta [17, Theorem 3] defined by

Ga(1) = 21, Pa(T2) = Ta + T1[f2, P2(w3) = 73 — Z Zai,j((% +a1fo) - 93]2)553_17

i>0 j>1

where

o i,
fo = xx3+ E E @ ;T1 Ty

i>0 j>1
with a; ; € k for each 4, j. Here, z1, x5 and x3 are denoted by z, y and z, respectively, in

the original text.

Proposition 4.3. ¢, belongs to T(k,x) if and only if ap; = 0 for every j > 2.
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PROOF. Set D = T,, , and ¢ = @g};’g = exp foD, where g := fo — x1x3. Then, we

claim that ¢ = ¢9. In fact, we have ¢(x1) = x1 and ¢(xs) = x5 + x4 fo, since D(z;) = 0,
faD(xs) = x1fo and (foD)?*(x5) = 0. Since D(fs) = 0, we have ¢(f2) = fo, and hence

r1¢(x3) + Z Z&i,jfﬁﬁ(fl?z +z1fo) = O(f2) = fo = 2123 + Z Zai,j:vixé-
>0 j>1 >0 j>1
This gives that ¢(z3) = ¢o(z3). Hence, ¢ is equal to ¢o. Since fo is an element of
klzy, fo] \ k[z1], it holds that ¢ = ®/2 = belongs to T(k,x) if and only if 0?g/dz3 =

Dis0 2100 — Da; ;24232 belongs to x1k[x1, 22] as mentioned. This condition is equiv-

alent to the condition that ay; = 0 for every j > 2. U

5 Tameness and triangularizability

Yo Do 7 is triangular for some 7 €

We say that D € Dery k[x] is triangularizable if 7~
Aut(k[x]/k). When this is the case, D is locally nilpotent. Moreover, exp D belongs to
T(k,x) if so does 7, since exp(t™* o Do7) = 771 o (expD) o 7. If 7 does not belong
to T(k,x), however, exp D does not belong to T(k,x) in general. Actually, as will be
remarked after Theorem 8.1, exp D can be wild even if 7' o D o 7 = 9/0x; for some .
On the other hand, it is also not clear whether D is always triangularizable if exp D belongs
to T(k,x). When n = 2, every locally nilpotent derivation of k[x] is triangularizable due
to Rentschler [19]. When n > 4, there exists a locally nilpotent derivation D of k[x] which
is not triangularizable, but exp D belongs to T(k, x), by the results of Bass [1], Popov [1§]
and Smith [20] (see also [6, Sections 3.9]). So Freudenburg [6, Section 5.3] raised the

following question.

Question (Freudenburg). Assume that n = 3. Is a locally nilpotent derivation D of k[x]

always triangularizable if D is tame, i.e., exp D belongs to T(k,x)?
We give a partial affirmative answer to this question as follows.

Theorem 5.1 ([12, Theorem 1.2]). Assume that n = 3, and D is a locally nilpotent
derivation of kx| such that ker D contains a tame coordinate of kx| over k. Then, exp D

belongs to T(k,x) if and only if 7~ o D o7 is triangular for some T € T(k,x).

We note that there exists a locally nilpotent derivation of k[x] for n = 3 such that
ker D contains no coordinate of k[x] over k (cf. [4] and [5]). Such a locally nilpotent
derivation is never conjugate to a triangular derivation multiplied by an element of ker D.
In fact, every triangular derivation of k[x] kills a tame coordinate of k[x| over k if n > 2.
In Section 9, we will discuss tameness of exp D for such special D.

Theorem 5.1 is obtained by Theorem 1.2 and the following theorem.
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Theorem 5.2 ([12, Theorem 5.1)). Let R be a Q-domain, and D a locally nilpotent
derivation of R[x1,x5] over R such that exp D belongs to T(R,{x1,22}). Then, there
erists T € T(R,x) such that D' := 7= o Do is triangular, or deg D'(x;) <1 fori=1,2.
If V(R) = K*, then there exists T € T(R,x) such that D" is triangular, where K is the
field of fractions of R.

It is interesting to ask the following question.

Question. Let R be a Q-domain, and D a locally nilpotent derivation of R[x] over
R. Does exp D belong to T(R,x) whenever exp hD belongs to T(R,x) for some h €
ker D\ {0}?

As a corollary to Theorem 5.2, we get the following result.

Corollary 5.3 ([12, Corollary 5.2]). Let R be a Q-domain, and D a locally nilpotent
derivation of R[x] over R forn = 2. Ifexp hD belongs to T(R,x) for some h € ker D\{0},
then exp D belongs to T(R,x).

6 Invariant coordinates

In Theorem 2.2, we described a rough structure of the subgroup H(f) of Aut(R[x]/R)
for a coordinate f € R[x| of S[x] over S which is reduced over R. In this section, we
assume that the field K of fractions of R is of characteristic zero, and determine the
precise structure of H(f) and classify f such that H(f) has at least two elements.

By the following lemma, we may assume that S = K.

Lemma 6.1 ([12, Lemma 7.1]). Assume that K is of characteristic zero. If f € R[x1, 2]

is a coordinate of S|xy,xs] over S, then f is a coordinate of K|z, xo] over K.

Now, we define four types of elements of R[x| which are coordinates of K [x] over K as
follows: For a € R\ {0}, g € R[z;] with degg > 2, and u(z) € K[z!]\ K and 1 # ¢ € R*

with ¢! = 1 for some [ > 2, we define

fi=ars+g,  fo=ari+u((¢—Daz+g),

where we assume that g, ¢ and u(z) are such that u(({ — 1)z2 + g) belongs to R[x]. For
T € Aff(K,x) such that 7(z,) = azy + fas + v for a, 8,7 € K with o, # 0, and for
v € K[z] with degv =2, or v € K[z}] \ K for some [ > 2, we define

f3=7(71), fo=7(r2 +v),

where we assume that 7 and v are such that 7(zs + v) belongs to R[x].
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For fi,..., fi as above, we define subsets Hy,..., Hy of Aut(R[x]|/R) as follows:
o Hy = J(R;x1,22) N Aut(R[x]/R[f1]).
e H, is the set of ¢ € Aut(R[x]/R[z;]) such that ¢(zs) = Exs + (£ — 1)(¢ — 1)~ g. Here,
£ € Ris such that (£—1)(¢—1)"'g belongs to R[z;], and €™ = 1, where m is the maximal
integer for which u(z) belongs to R[2™].
o Hy = Aff(R,x) N7 o Aut(K[x]/K|[x1]) o 771
e Hy = Aff(R,x) N7 o Aut(K[x|/K[xa 4+ v]) o771

In the notation above, we have the following result.

Theorem 6.2 ([12, Theorem 7.2]). Assume that n =2 and K is of characteristic zero.
(i) Let f € R[x]| be a coordinate of K[x] over K which is reduced over R. If deg, f >
deg,, f > 1 and H(f) # {idgq}. then f has the form of f; for some i € {1,2,3,4}.

(ii) If f; is reduced over R fori € {1,2,3,4}, then we have H(f;) = H;.

In the case where R = k[z3], the above theorem and Theorem 1.2 imply the following

corollary.

Corollary 6.3 ([12, Corollary 7.5]). Assume that n = 3. Let f € k[x] be a coordinate of
k(xs)xy, xo] over k(xs). If H := Aut(k[x]/k[zs, f]) N T(k,x) has at least two elements,
then one of the following holds for some T € T(k[z3],{x1,x2}):

(i) 7(f) = axy + b for some a,b € k[zs] with a # 0, and H = Aut(k[x]/k[z1,z3]).

(ii) 7(f) = awy + g for some a € klxs] and g € klr|,x3] with deg, g > 2 for which
the leading coefficient of g, as a polynomial in x1 over k[xs], does not belong to ak|xs).
Moreover, we have H = J(k[x3]; x1,x2) N Aut(k[x]/k[axs + g, z3)).

If K is of positive characteristic, the statements of Lemma 6.1 and Theorem 6.2 do
not hold in general (cf. [12, Section 7]).

7 Generalized Shestakov-Umirbaev theory

In the following sections, we explain the main results of [13] and [14]. These papers are
devoted to applications of the generalized Shestakov-Umirbaev theory [10], [11]. In this
section, we mention some consequences of this theory used in [13] and [14]. In what
follows, we assume that n = 3 unless otherwise stated, and a wild automorphism always
means an element of Aut(k[x|/k) not belonging to T(k, x).

For w = (wy,ws, w3) € T3, we define rank w to be the rank of the Z-submodule of T’

generated by wi, wy and ws. For ¢ € Aut(k[x]/k), consider the following conditions:

(1) ¢p(x1)™, ¢(z2)™ and ¢(x3)™ are algebraically dependent over k, and are pairwise alge-

braically independent over k;

10
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(2) ¢(z;)™ does not belong to k[{¢(x;)V | 7 #i}] for i =1,2,3.
The generalized Shestakov-Umirbaev theory implies the following sufficient condition
for wildness, where I'sg:={a €T | a > 0}.

Proposition 7.1 ([13, Section 1]). If ¢ € Aut(k[x]/k) is such that (1) and (2) hold for

some w € (I'sg)® with rankw = 3, then ¢ is wild.

We call P € k[x] a W-test polynomial if, for each ¢ € Aut(k[x]/k), it holds that ¢
is wild whenever there exist a totally ordered additive group I' and w € (I'sg)® with

rank w = 3 as follows:
(a) deg,, ¢(P) < deg,, ¢(x;,) for some iy € {1,2,3};
(b) deg,, ¢(x;,) and deg,, ¢(x;,) are linearly independent over Z for some iy, i3 € {1,2,3}.

It is sometimes useful to use a W-test polynomial for showing that an automorphism

is wild. The following proposition follows from Proposition 7.1.

Proposition 7.2 ([14, Proposition 6.1]). Let P be an element of k[x]| not belonging to
klx \ {x;}] fori = 1,2,3. Then, P is a W-test polynomial if the following conditions
hold for every totally ordered additive group T' and w € (I'sg)® such that P% is not a
monomial:
(i) PV is not divisible by x; — g for any g € k[x \ {z;}| \ k fori=1,2,3;
(ii) P% is not divisible by z]" — czjj for any c € k>, s;,s; € N and 1,7 € {1,2,3} with
14 7.

By this proposition, we can check that P = xix3 — 2221 aixé_l and z9 — Px3 are
Wh-test polynomials if ¢ > 2, where aq,...,a;_1 € k and a; € k*. This result is used to
prove Theorems 9.1 and 9.3.

8 Absolutely wild and totally wild coordinates

We say that a coordinate f of k[x] over k is absolutely wild if D(f) = 0 implies that exp D
is wild for every nonzero locally nilpotent D of k[x|, and totally wild if ¢(f) = f implies
that ¢ is wild for every idg) # ¢ € Aut(k[x]/k). Since D(f) = 0 implies (exp D)(f) = f,
“totally wild” implies “absolutely wild”. We claim that “absolutely wild” implies “wild”.
In fact, if f is a tame coordinate, then there exists o € T(k,x) such that o(z,) = f, for
which we have D(f) = 0, and exp D belongs to T(k,x), where D := g o (0/0x3) o o'
In [13], we construct totally wild coordinates, and absolutely wild coordinates which are
not totally wild as follows.
For 6(z) € k[z] \ k, we define a locally nilpotent derivation Dy of k[x] by

D.g(ﬂ?l) = —9/(332), De(xg) = I3, De(xg) = O,

11
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where ¢'(z) is the derivative of 0(z). Then, fy := z123 + 0(x2) belongs to ker Dy. Hence,
foDy is a locally nilpotent derivation of k[x|. Set oy = exp fyDy, and y; = og(x1). We
consider the subgroup

Gy := Aut(k[x]/k[y1]) N T(k,x)

of Aut(k[x|/k). Note that Gy = {idyx} if and only if y; is a totally wild coordinate. If Gy
is a finite group, then g, is an absolutely wild coordinate. Actually, exp D has an infinite
order for every locally nilpotent derivation D # 0, since (exp D)" = expID # idyy.

Let a and b be the coefficients of 2% and 2?~! in (), respectively, where d := deg 0(2).
We set ¢ = —b/(ad) and write 0(z) = Zf:o u;(z — ¢)', where u; € k for each i. Then, we
have ug = a, ug_1 = 0 and uy = 0(c). Let e € N be the the positive generator of the ideal
of Z generated by 2i — 1 for 1 <i < d with u; # 0, and define

Ty={C e k™ | =1}.

For each ¢ € Tp, we define an element ¢, of J(k; w3, 22, 21) by ¢¢(x3) = (x3, and

$c(w2 — ) = (22 — ) +¢(C = Db(c)as,  dc(a1) =21+ gc,

where
g = (CO(xa) — O(dc(22)) + (1 = €)B(c)) (Ca) ™"
Here, we note that g; always belongs to k[x]| for ¢ € T.

In the notation above, we have the following theorem.

Theorem 8.1 ([13, Theorem 6.1]). For each ¢ € Ty, the automorphism ¢, belongs to Gy.
The map v : Ty > ¢ — ¢¢ € Gy is an injective homomorphism of groups. If d > 9 and

d # 10,12, then v is an isomorphism.

By this theorem, we know that there exist a number of totally wild coordinates, and
absolutely wild coordinates which are not totally wild as follows. If d > 9 and d # 10, 12,
then Gy is isomorphic to Tjp. Since Ty is a finite group, it follows that Gy is a finite group.
Hence, y; is an absolutely wild coordinate as mentioned. Furthermore, y; is a totally
wild coordinate if and only if Tp = {1}. Since some 6(z)’s satisfy Tp = {1} and others
do not, it follows that there exist various totally wild coordinates, and absolutely wild
coordinates which are not totally wild.

Note that

Aut(k[x]/k[y1]) = o9 o Aut(k[x]/k[z1]) 0 0, !,

so every element of og o Aut(k[x]/k[z1]) o o, ' not belonging to Gy is wild. Hence, if d > 9
and d # 10, 12, then exp D is wild even for the locally nilpotent derivation



WILDNESS OF POLYNOMIAL AUTOMORPHISMS

since exp D = 0y o (expd/0z3) o 0, ', and exp D has an infinite order. If y; is a totally

wild coordinate, then oy o 700, is wild even for 7 € Aut(k[x]/k) defined by
T(ﬂ?l) =Ty, 7'(372) = X9, T(xg) = — 3.

As these examples show, the existence of absolutely wild or totally wild coordinates means

the existence of a very large class of wild automorphisms of k[x].

9 Local slice constructions

The rank rank D of D € Dery, k[x] is by definition the minimal number r > 0 for which
D(o(z;)) # 0 holds for i = 1,...,r for some o € Aut(k[x]/k) (cf. [5]). As mentioned after
Theorem 5.1, every triangular derivation of k[x| is of rank less than n when n > 2. If
n = 2, every locally nilpotent derivation of k[x] is of rank at most one by Rentschler [19].
Freudenburg [4], [5] first gave locally nilpotent derivations of k[x] of rank n for n > 3
using his method of local slice constructions. It is not easy to construct such a locally
nilpotent derivation D, for which it is previously not known whether exp D is tame.

In this section, we summarize the main results of [14], where we give a large family of
locally nilpotent derivations of k[x] by means of local slice construction, and determine
tameness of exphD for each D and h € ker D \ {0}. The family includes the locally
nilpotent derivations of Freudenburg, and many other locally nilpotent derivations of
rank three. The result is that exp hD is always wild unless A D is triangularizable by a
tame automorphism, i.e., 77! o (hD) o 7 is triangular for some 7 € T(k, x). This gives a
partial affirmative answer to the question of Freudenburg (Section 5).

Now, for i = 0,1, let t; be a positive integer, and a;'. an element of k£ for j =1,...,¢;

with o = 1. We define a sequence (b;)32, of integers by
bo = bl =0 and bi—i—l = t,bl - bi—l +€1 for i 2 1,

where t; := ty if ¢ is an even number, and ¢; := t; otherwise, and where & :=11ifi = 0,1
(mod 4), and & := —1 otherwise. For each i > 1, we define n;(y, z) € kly, 2] by

ti
iy, 2) = 20 4y gy it i=0,1 (mod 4)
j=1
ti
ni(y,2) =y + Z T otherwise,
j=1

where o := o if i is an even number, and o} := o otherwise for each j. Set

to t1
T = X1T2%3 — E adzh — E ajad,
i=1 j=1

13
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and define a sequence (f;)%2, of rational functions by fy = x5, fi = 71 and fiy1 = f; g

for each ¢ > 1 by induction on i, where ¢; = n;(f;, ). Note that

t1 to to
— 1.9 _ 0,.i _ 0,.4—1
Q=71+ E ;T = T1T203 — E ;T fo =103 — E Q; Ty (9.1)
=1 i=1 i=1
t j .
and 7 = zofy — j1:1 a}x{. If to = 2, then we have fy = z173 — 7o — ). In this case, we

can define 7, € T(k,x) by

7'2(351) = fo, 7'2(932) = X1, 7'2(933) = I3.

We can also construct the sequence ( ;)2 from the same data ¢, ¢y, (04?)?):_11 and (04]1-);1:_11
by interchanging the role of o and ¢1, and (a2)%5' and (a})i)". To distinguish it from

the original one, we denote it by (f/)2,. If ¢, = 2, then we can define 7, € T(k,x) by
To(x1) = f5, Th(x2) = x1 and 7)(z3) = x3 as above.

When f; and fi;; belong to k[x]|, we consider the derivation D; := A, 5., of
k[x]. Here, for gi,9. € k[x], we define a derivation A, 4y of k[x] by A, 4)(93) =
det(0g;/0x;); ; for each g3 € k[x]. For example, we have

to
Dy(x1) =0, Di(z2) =—z; and Di(z3) = — Z(z —1)adzs? (9.2)
=2
by (9.1). Hence, Dy is triangular. When f/ and f/,, belong to k[x], we define D) =
A, £, similarly.

Set a; = t;b; + & for each ¢ > 0, and let I be the set of ¢ € N such that a; > 0 for

3 =1,...,i. Then, we have ag =0, a; = 1 and a;y; = t;;1a; — a;_y for i« > 1. From this,

we get

{1} ifty=1
{1,2} if (to,t1) = (2,1)
{1,2,3,4} if (to,t1) = (3,1)
N otherwise.

In the notation above, we have the following result.

Theorem 9.1 ([13, Theorem 2.1]). The following assertions hold for each i € I:

(i) fi and fiy1 belong to k[x|, and D; is a locally nilpotent derivation of k[x| such that
D;(r) = = fifix1. Furthermore, we have the following:

(1) If i is the mazimum of I, then D; is not irreducible and ker D; # k[f;, fii1]-

(2) If i is not the mazimum of I, then D; is irreducible and ker D; = k[f;, fir1]-

(ii) Assume that ty = 2. Then, we have T, ' o Djory = D). Hence, D, is triangularizable

by a tame automorphism. Moreover, the following assertions hold:

14
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(a) Ift, = 2, then we have T~ o D;oT = Dy, where T := (1o074)"/? if i is an even number,
and T := (15 0 73) V2 o 1, otherwise.

(b) If t1 > 3 and i > 3, then exp hD; is wild for every h € ker D; \ {0}.

(iii) Ifto > 3 and i > 2, then exp hD; is wild for every h € ker D; \ {0}.

Here, D € Dery k[x] is said to be irreducible if D(k[x]) is contained in no proper
principal ideal of k[x].

Recall that pl D := D(k[x]) Nker D forms an ideal of ker D for each D € Dery, k[x],
and is called the plinth ideal of D. Assume that D is locally nilpotent. Then, we have
pl D # {0} unless D = 0. Owing to Miyanishi [15], it holds that pl D = ker D if and only
if D is irreducible and of rank one when n = 3. By Daigle-Kaliman [2, Theorem 1], pl D
is always a principal ideal of ker D when n = 3.

We use the following lemma to determine the rank of a locally nilpotent derivation.

Lemma 9.2 ([14, Lemma 2.5]). Let D # 0 be an irreducible locally nilpotent derivation
of k[x]. If ker D contains a coordinate p of k[x| over k, then there exists s € k[x| such
that D(s) belongs to k[p] \ {0}.

Since pl D is a principal ideal of ker D, Lemma 9.2 implies that pl D is generated by
an element of k[p| \ {0} if D is irreducible, and ker D contains a coordinate p of k[x| over
k. On the other hand, if t, = 2, ¢; > 3 and i > 3, or if ¢y > 3, (to,t1) # (3,1) and
i > 2, then we have pl D; = f;fii1ker D; (cf. [14, Proposition 1.2]). Since f; and f;14
are algebraically independent over k, we see that f;f;11 does not belong to k[p] for any
coordinate p of k[x] over k. Thus, we conclude that D; is of rank three. In [14], we also
determined the rank of D; for the other cases.

Next, take ¢ € N with ¢ > 2, and assume that t; > 3 if i = 2, and t; > 3 and
(to, t1) # (3,1) if i > 3. Let A(y) € k[y] \ {0} and u(y, z) = 32255, 15(y)2’ € 2zkly, 2]\ {0}
be such that ged(A(y), pj(y)) = 1 for some j > 1, where p;(y) € k[y] for each j > 1. We

set
Te if =2

ri = AN fi)T — u(fi, fio1), where 7= { r if i>3.

Then, we define
Forr =0 (fooriM(F) ) AR ™ £,

where

and 7;(y, z) = n:(y, z) for i > 3.
With this notation and assumptions, we have the following result.
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Theorem 9.3 ([13, Theorem 3.1)). (i) fiy1 belongs to k[x], and D; = A, fa) s an
irreducible locally nilpotent derivation of k[x] such that ker D; = k[f;, f,+1]. Moreover, we
have Di(r;) = —=M(f;) fixr if i = 2, and D;(r;) = =\(f) fifier if i > 3.

(i) Assume that \(y) belongs to k*, u(y, z) belongs to zk[z], and i = 2. Then, exp hD,
is tame if and only if h belongs to k[fg] for h € ker Dy. In the other case, exp hD; is wild
for each h € ker D; \ {0}.

In the same situation, the following proposition holds.

Proposition 9.4 ([14, Proposition 1.5]). (i) If i > 3, then we have rank D; = 3.

(ii) If A(y) belongs to k>, then rank Dy = 2, and f3 is a coordinate of k[x] over k.

(iii) Assume that A(y) does not belong to k. If to > 4, or p;(y) does not belong to
My)k[y] for some j > 2, then we have rank Dy =3. Ifty = 3, and wi(y) belongs to

\/Wk‘[y] for every j > 2, then we have pl Dy = f3 ker Ds.

The locally nilpotent derivations of Freudenburg [4] are obtained as follows. Assume
that t; = 3 and a{ = ozg = 0 for j = 0,1. Then, we have I = N by (9.3). By
Theorem 9.1 (i), it follows that f; and f;; belong to k[x], and D; is an irreducible locally
nilpotent derivation of k[x] with ker D; = k[f;, fir1] for each i > 1. It is easy to check
that a1 = 1, as = 2, fo = T3 — x% and a;11 = 3a; — a;—1 for every ¢« > 2. Moreover,
we have 1 = zofy — 73, fo = 19, fi = 71 and fiy = £ (r% + f7) for every i > 2.
From this, we see that (:7! o D; 01)2, is the same as the sequence of locally nilpotent
derivations of “Fibonacci type” given by Freudenburg [4], where ¢ € Aut(k[x]/k) is such
that o(z2) = —x9 and o(z;) = z; for i = 1,3. According to Theorem 9.1 (ii), exp hD;
is wild for each h € ker D; \ {0} for every i > 2. Next, for [,m € N, set \(y) = ¢!
and u(y,z) = —z™. Then, it follows from Theorem 9.3 that f3 belongs to k[x], D, is an
irreducible locally nilpotent derivation of k[x] such that ker Dy = k[fs, f3], and exp hD, is
wild for each h € ker Dy\ {0}. In this case, we have ry = fiay+a7. Since y(y, 2) = y+22,

and ay =ty — 1 = 2, we get

<f2= (f2)> (f2)* = (ferﬁ) Y= S = (s 2 e e+ 2T,

and so f3 = gy —2fla " ry+ 221 We note that, if m = 20+1, then D, is the same as
the homogeneous locally nilpotent derivation of “type (2,4l+1)” given by Freudenburg [4].
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