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1 Introduction

For each integral domain R
,

we denote by R[\mathrm{x}]=R[x_{1}, . . . , x_{n}] the polynomial ring in

n variables over R
,

where n\in \mathrm{N} ,
and \mathrm{x}=\{x_{1}, . . . , x_{n}\} is a set of variables. For an

R‐subalgebra A of R[\mathrm{x}] ,
we consider the automorphism group \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/A) of the ring

R[\mathrm{x}] over A . We say that  $\phi$\in Aut(R[x]/R) is affine if \deg $\phi$(x_{i})=1 for i=1
,

. . .

, n,

and elementary if  $\phi$ belongs to \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/A_{i}) for some i
,

where A_{i} :=R[\mathrm{x}\backslash \{x_{i}\}] . Here,

\deg f denotes the total degree of f for each f\in R[\mathrm{x}] . Note that, if  $\phi$ is affine, then

we have ( $\phi$(x_{1}), \ldots,  $\phi$(x_{n}))= (xl, . . .

, x_{n} ) A+(b_{1}, \ldots, b_{n}) for some A\in GL(R) and

b_{1} ,
. . .

, b_{n}\in R . If  $\phi$ is elementary, then there exist  i\in\{1, . . . , n\},  $\alpha$\in R^{\times} and f\in A_{i}
such that  $\phi$(x_{i})= $\alpha$ x_{i}+f and  $\phi$(x_{j})=x_{j} for j\neq i . We denote by \mathrm{A}\mathrm{f}\mathrm{f}(R, \mathrm{x}) , \mathrm{E}(R, \mathrm{x}) ,

and \mathrm{T}(R, \mathrm{x}) ,
the subgroups of Aut(R[x]/R) generated by all the affine automorphisms,

all the elementary automorphisms, and \mathrm{A}\mathrm{f}\mathrm{f}(R, \mathrm{x})\mathrm{U}\mathrm{E}(R, \mathrm{x}) , respectively. An element of

Aut(R[x]/R) is sometimes said to be tame if it belongs to \mathrm{T}(R, \mathrm{x}) ,
and wild otherwise.

The following is a fundamental problem in polynomial ring theory.

Tame Generators Problem. When is \mathrm{T}(R, \mathrm{x}) equal to \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R) ?

The equality holds true if n=1
,

in which case every element of Aut (R[\mathrm{x}]/R) is affine

and elementary.
When n=2

,
the following result is well‐known.

Theorem 1.1. Assume that n=2
,

and R is an integral domain. Then, \mathrm{T}(R, \mathrm{x}) is equal
to \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R) if and only if R is a field.
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Here, the �if� part of the above theorem is due to Jung [8] in the case where R is of

characteristic zero, and to van der Kulk [9] in the general case. The �only if� part of the

above theorem is rather easy (cf. [3, Proposition 5.1.9]).
Throughout this report, we denote by k an arbitrary field of characteristic zero. When

n=3
,

Shestakov‐Umirbaev [21] gave a criterion to decide whether a given element of

\mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) belongs to \mathrm{T}(k, \mathrm{x}) . As a consequence, they showed the following theorem

([21, Corollary 10]).

Theorem 1.2 (Shestakov‐Umirbaev). \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k[x_{3}])\cap \mathrm{T}(k, \mathrm{x})=\mathrm{T}(k[x_{3}], \{x_{1}, x2\}) .

Since some automorphisms, including the famous automorphism of Nagata [16], belong
to Aut(k[x]/k[x]), but do not belong to \mathrm{T}(k[x_{3}], \{x_{1}, x2\}) ,

it was concluded that \mathrm{T}(k, \mathrm{x})
is not equal to \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) . At present, the Tame Generators Problem is not solved in

the cases where n\geq 4 ,
and where n=3 and the field of fractions of R is of positive

characteristic.

Recently, the author [10], [11] reconstructed and generalized the theory of Shestakov‐

Umirbaev. This improvement makes it possible to decide more easily and efficiently
whether a given element of Aut(k[x]/k) belongs to \mathrm{T}(k, \mathrm{x}) when n=3.

The purposes of this report is to announce some recent results obtained as conse‐

quences of the Shestakov‐Umirbaev theory and its generalization. For details, we refer

to our preprints [12], [13] and [14]. This series of papers (with a total of nearly hundred

pages) presents various applications of these theories.

In Sections 2, 4, 5 and 6 of this report, we explain the main results of [12]. These

results are derived from Theorem 1.2. To illustrate the usefulness of Theorem 1.2, in

Section 3, we show the wildness of some concrete automorphisms by means of a criterion

derived from this theorem. Sections 7 and 8, and 9 summarize the main results of [13]
and [14]. These papers contain strong results obtained as highly technical applications of

the generalized Shestakov‐Umirbaev theory.

2 Affine reductions and elementary reductions

Let  $\Gamma$ be a finitely generated ordered additive group, and \mathrm{w}= (wl, . . .

, w_{n} ) an n‐tuple
of elements of  $\Gamma$ with \mathrm{w}\neq(0, \ldots, 0) and w_{i}\geq 0 for i=1

,
. . .

,
n . For each nonzero

polynomial

f=\displaystyle \sum_{i_{1},\ldots,i_{n}}$\lambda$_{i_{1},\ldots,i_{n}}x_{1}^{i_{1}}\cdots x_{n}^{i_{n}}\in R[\mathrm{x}],
we define the \mathrm{w}‐degree \deg_{\mathrm{w}}f of f to be the maximum among \displaystyle \sum_{l=1}^{n}i_{l}w_{l} for i_{1} ,

. . .

, i_{n}

with $\lambda$_{i_{1},\ldots,i_{n}}\neq 0 ,
where $\lambda$_{i_{1},\ldots,i_{n}}\in R for each i_{1} ,

. . .

, i_{l} . We define f^{\mathrm{w}} to be the sum of
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$\lambda$_{i_{1},\ldots,i_{n}}x_{1}^{i_{1}}\cdots x_{n}^{i_{n}} for i_{1} ,
. . .

, i_{n} such that \displaystyle \sum_{l=1}^{n}i_{l}w_{l}=\deg_{\mathrm{w}}f . When f=0 ,
we set f^{\mathrm{w}}=0

and \deg_{\mathrm{w}}f=-\infty , i.e., a symbol which is less than any element of  $\Gamma$ . Then, for each

 $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R) ,
it holds that

\displaystyle \deg_{\mathrm{w}} $\phi$:=\sum_{i=1}^{n}\deg_{\mathrm{w}} $\phi$(x_{i})\geq\sum_{i=1}^{n}w_{i} :=|\mathrm{w}| . (2.1)

If n=2
,

then \deg_{\mathrm{w}} $\phi$=|\mathrm{w}| implies that  $\phi$ belongs to \mathrm{T}(R, \mathrm{x}) (see [12, Section 2] for

detail).
Now, we consider two kinds of reductions for  $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R) . We say that  $\phi$ admits

an affine reduction for the weight \mathrm{w} if there exists  $\alpha$\in \mathrm{A}\mathrm{f}\mathrm{f}(R, \mathrm{x}) such that \deg_{\mathrm{w}} $\phi$ 0 $\alpha$<

\deg_{\mathrm{w}} $\phi$ . We say that  $\phi$ admits an elementary reduction for the weight \mathrm{w} if there exists

 $\epsilon$\in \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/A_{i}) for some i such that \deg_{\mathrm{w}} $\phi$\circ $\epsilon$<\deg_{\mathrm{w}} $\phi$.
Assume that n=2 and w_{i}\geq 0 for i=1

,
2. Then, we have |\mathrm{w}|=w_{1}+w_{2}>0

by the assumption that (w_{1}, w_{2})\neq(0,0) . Hence, for each  $\phi$\in Aut(R[x]/R), it follows

from (2.1) that \deg_{\mathrm{w}} $\phi$(x_{1})>0 or \deg_{\mathrm{w}} $\phi$(x_{2})>0 . Let V(R) be the set of a/b\in K for

a, b\in R\backslash \{0\} such that aR+bR=R ,
where K is the field of fractions of R . Note that

R\backslash \{0\} is contained in V(R) ,
and V(R) is contained in K^{\times} . If R is a PID, then we

have V(R)=K^{\times} . By definition,  $\phi$ admits an affine reduction if and only if there exist

 a, b, c, d, s, t\in R with ad-bc\in R^{\times} such that

\deg_{\mathrm{w}}(a $\phi$(x_{1})+b $\phi$(x_{2})+s)+\deg_{\mathrm{w}}(c $\phi$(x_{1})+d $\phi$(x_{2})+t)<\deg_{\mathrm{w}} $\phi$(x_{1})+\deg_{\mathrm{w}} $\phi$(x_{2}) .

Since \deg_{\mathrm{w}} $\phi$(x_{1})>0 or \deg_{\mathrm{w}} $\phi$(x_{2})>0 ,
this is equivalent to that a $\phi$(x_{1})^{\mathrm{w}}+b $\phi$(x_{2})^{\mathrm{w}}=0

or c $\phi$(x_{1})^{\mathrm{w}}+d $\phi$(x_{2})^{\mathrm{w}}=0 ,
and is equivalent to that  $\phi$(x_{1})^{\mathrm{w}}=u $\phi$(x_{2})^{\mathrm{w}} for some u\in V(R) .

In particular, we have \deg_{\mathrm{w}} $\phi$(x_{1})=\deg_{\mathrm{w}} $\phi$(X) whenever  $\phi$ admits an affine reduction for

the weight \mathrm{w}.

Note that  $\phi$ admits an elementary reduction if and only if there exists  f\in R[ $\phi$(X)]
such that \deg_{\mathrm{w}}( $\phi$(x_{i})-f)<\deg_{\mathrm{w}} $\phi$(X) for some (i, j)\in\{(1,2) , (2, 1 Since  $\phi$(x_{i})-f\neq 0
and w_{l}\geq 0 for l=1

, 2, we have \deg_{\mathrm{w}}( $\phi$(x_{i})-f)\geq 0 ,
and hence \deg_{\mathrm{w}} $\phi$(x_{i})>0 . It follows

that \deg_{\mathrm{w}}f>0 ,
and so \deg_{\mathrm{w}} $\phi$(x_{j})>0 . Thus, f^{\mathrm{w}} must be of the form c( $\phi$(x_{j})^{\mathrm{w}})^{l} for

some c\in R\backslash \{0\} and  l\in N. Therefore, it holds that \deg_{\mathrm{w}}( $\phi$(x_{i})-f)<\deg_{\mathrm{w}} $\phi$(x_{i}) for

some f\in k[ $\phi$(x_{j})] if and only if  $\phi$(x_{i})^{\mathrm{w}}=c( $\phi$(x_{j})^{\mathrm{w}})^{l} for some c\in R\backslash \{0\} and l\in \mathrm{N}.

The following is a basic result on tameness of elements of Aut (R[\mathrm{x}]/R) for n=2 . In

the case of \mathrm{w}=(1,1) ,
the result is commonly known (cf. [7, Proposition 1]).

Proposition 2.1 ([12, Proposition 3.2]). Assume that n=2
,

and \mathrm{w}:=(w_{1}, w_{2})\in$\Gamma$^{2} is

such that \mathrm{w}\neq(0,0) and w_{i}\geq 0 fori=1 ,
2. If \deg_{\mathrm{w}} $\phi$>|\mathrm{w}| holds for  $\phi$\in \mathrm{T}(R, \mathrm{x}) ,

then

 $\phi$ admits an affine reduction or elementary reduction for the weight \mathrm{w}.
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Next, we recall the notion of coordinate. We call f\in R[\mathrm{x}] a coordinate of R[\mathrm{x}] over

R if f is equal to  $\phi$(X) for some  $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R) ,
which is said to be tame if  $\phi$ can be

taken from \mathrm{T}(R, \mathrm{x}) ,
and wild otherwise. Let S be an integral domain containing R as a

subring. Then, we may regard Aut (R[\mathrm{x}]/R) as a subgroup of Aut (S[\mathrm{x}]/S) by identifying

 $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R) with the automorphism \mathrm{i}\mathrm{d}_{S}\otimes $\phi$ of  S\otimes_{R}R[\mathrm{x}]\simeq S[\mathrm{x}] over S . Hence,

every coordinate of R[\mathrm{x}] over R is a coordinate of S[\mathrm{x}] over S . On the other hand, not

every coordinate of S[\mathrm{x}] over S is a coordinate of R[\mathrm{x}] over R . When n=2
,

we say that

a coordinate f of S[\mathrm{x}] over S is reduced over R if

\deg_{x_{1}} $\tau$(f)+\deg_{x_{2}} $\tau$(f)\geq\deg_{x_{1}}f+\deg_{x_{2}}f

holds for every  $\tau$\in \mathrm{T}(R, \mathrm{x}) .

For f\in R[\mathrm{x}] ,
we consider the subgroup

H(f) :=\mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R[f])\cap \mathrm{T}(R, \mathrm{x})

of Aut (R[\mathrm{x}]/R) .

The following theorem is a consequence of Proposition 2.1.

Theorem 2.2 ([12, Theorem 4.3]). Assume that n=2 . Let R\subset S be an extension of

integral domains, and f\in R[\mathrm{x}] a coordinate of S[\mathrm{x}] over S which is reduced over R.

(i) If \deg_{x_{1}}f=\deg_{x_{2}}f ,
then H(f) is contained in \mathrm{A}\mathrm{f}\mathrm{f}(R, \mathrm{x}) .

(ii) If \deg_{x_{i}}f<\deg_{x_{j}}f for (i, j)\in\{(1,2) , (2, 1 then H(f) is contained in \mathrm{J}(R;x_{j}, x_{i}) .

If \deg_{x_{i}}f=0 ,
then H(f)=\mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R[x_{j}]) .

Here, for a permutation x_{i_{1}} ,
. . .

, x_{i_{n}} of x_{1} ,
. . .

, x_{n} ,
we denote by \mathrm{J}(R;x_{i_{1}}, \ldots, x_{i_{n}}) the

set of  $\phi$\in Aut(R[x]/R) such that  $\phi$(X) belongs to R[x_{i_{1}}, . . . , x_{i_{l}}] for l=1
,

. . .

,
n . Note

that \mathrm{J}(R;x_{i_{1}}, \ldots, x_{i_{n}}) forms a subgroup of \mathrm{T}(R, \mathrm{x}) consists of the automorphisms  $\phi$ of

the form  $\phi$(x_{i_{l}})=a_{l}x_{i_{l}}+h_{l} for l=1
,

. . .

,
n

,
where a_{l}\in R^{\times} and h_{l}\in R[x_{i_{1}}, . . . , x_{i_{l-1}}].

Results explained in Sections 4, 5 and 6 are derived from Theorems 1.2 and 2.2.

3 An easy criterion for wildness

The following corollary is an immediate consequence of Theorem 1.2, and Proposition 2.1

applied with R=k[x_{3}].

Corollary 3.1. Assume that n=3 . Then,  $\phi$\in Aut(k[x]/k[x]) does not belong to

\mathrm{T}(k, \mathrm{x}) if there exist w_{1},  w_{2}\in $\Gamma$ with (w_{1}, w_{2})\neq(0,0) and w_{i}\geq 0 fori=1 ,
2 such that

the following conditions hold forw: =(w_{1}, w_{2},0) :

(i) \deg_{\mathrm{w}} $\phi$>|\mathrm{w}|.
(ii) There exists (i, j)\in\{(1,2) , (2, 1) \} such that \deg_{\mathrm{w}} $\phi$(x_{i})<\deg_{\mathrm{w}} $\phi$(x_{j}) ,

and  $\phi$(x_{j})^{\mathrm{w}} is

not equal to c( $\phi$(x_{i})^{\mathrm{w}})^{l} for any c\in k[X] and l\in \mathrm{N}.
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Proof. Suppose to the contrary that  $\phi$ belongs to \mathrm{T}(k, \mathrm{x}) . Then,  $\phi$ belongs to

\mathrm{T}(k[x_{3}], \{x_{1}, x_{2}\}) by Theorem 1.2, since  $\phi$ is an element of Aut(k[x]/k[x]) by assumption.

Regard  k[\mathrm{x}] as the polynomial ring in x_{1} and x_{2} over k[x_{3}] ,
where we consider the weight

\mathrm{w}':=(w_{1}, w_{2}) . Then, degw� m=i_{1}w_{1}+i_{2}w_{2}=\deg_{\mathrm{w}}m holds for each monomial m=

x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}} . Hence, we get degw� f=\deg_{\mathrm{w}}f and f^{\mathrm{w}'}=f^{\mathrm{w}} for each f\in k[\mathrm{x}] . It follows

that \deg_{\mathrm{w}},  $\phi$=\deg_{\mathrm{w}} $\phi$ ,
and is greater than |\mathrm{w}|=|\mathrm{w}'| by (i). By Proposition 2.1, we

know that  $\phi$ admits an affine reduction or elementary reduction for the weight \mathrm{w}' as an

automorphism of the polynomial ring in x_{1} and x_{2} over k[x_{3}] . On the other hand, since

\deg_{\mathrm{w}},  $\phi$(x_{l})=\deg_{\mathrm{w}} $\phi$(X) and  $\phi$(x_{l})^{\mathrm{w}'}= $\phi$(x_{l})^{\mathrm{w}} for l=1
, 2, the condition (ii) implies that

 $\phi$ does not admit an affine reduction or elementary reduction for the weight \mathrm{w}' . This is

a contradiction. Therefore,  $\phi$ does not belong to \mathrm{T}(k, \mathrm{x}) . \square 

For example, consider Nagata�s automorphism [16] given by

 $\phi$(x_{1})=x_{1}-2(x_{1}x_{3}+x_{2}^{2})x_{2}-(x_{1}X3 +x_{2}^{2})^{2}x_{3},  $\phi$(x_{2})=x_{2}+(x_{1}X3 +x_{2}^{2}) X3

and  $\phi$(x_{3})=X3. Let  $\Gamma$ be the additive group \mathrm{Z}^{2} equipped with the lexicographic order

with \mathrm{e}_{1}>\mathrm{e}_{2} ,
where \mathrm{e}_{1}:=(1,0) and \mathrm{e}_{2}:=(0,1) . Then, for \mathrm{w}=(\mathrm{e}_{1}, \mathrm{e}_{2},0) ,

we have

\deg_{\mathrm{w}} $\phi$(x_{1})=2\mathrm{e}_{1}, \deg_{\mathrm{w}} $\phi$(x_{2})=\mathrm{e}_{1},  $\phi$(x_{1})^{\mathrm{w}}=-x_{1}^{2}x_{3}^{3},  $\phi$(x_{2})^{\mathrm{w}}=x_{1}x_{3}^{2}.

One easily checks that (i) and (ii) in Corollary 3.1 are satisfied. Thus,  $\phi$ does not belong
to \mathrm{T}(k, \mathrm{x}) .

Ohta [17, Theorem 3] gave two kinds of automorphisms, one of which is defined by

$\phi$_{1}(x_{1})=(g_{1}(x_{3}, f_{1}+x_{1}x_{3}^{3})-x_{2})x_{3}^{-3}, $\phi$_{1}(x_{2})=f_{1}+x_{1}x_{3}^{3}, $\phi$_{1}(x_{3})=X3,

where f_{1} is a certain element of k[x_{2}, x_{3}] ,
and g_{1}(x, y) is a polynomial in x and y over k

of the form 3x^{2}y^{5}+ (terms of lower degree in y ). Here, x_{1}, x_{2} and X3 are denoted by z, y

and x
, respectively, in the original text. For the same  $\Gamma$ and \mathrm{w} as above, we have

\deg_{\mathrm{w}}$\phi$_{1}(x_{1})=5\mathrm{e}_{1}+14\mathrm{e}_{3}, \deg_{\mathrm{w}}$\phi$_{1}(x_{2})=\mathrm{e}_{1}+3\mathrm{e}_{3}, $\phi$_{1}(x_{1})^{\mathrm{w}}=3x_{1}^{5}x_{3}^{14}, $\phi$_{1}(x_{2})^{\mathrm{w}}=x_{1}x_{3}^{3}.

It is easy to check that (i) and (ii) in Corollary 3.1 are satisfied. Hence, we conclude

that $\phi$_{1} does not belong to \mathrm{T}(k, \mathrm{x}) . As this example shows, we can sometimes decide

the wildness of  $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) from only partial information on  $\phi$(x_{1}) ,  $\phi$(X) and  $\phi$(x_{3}) .

Tameness of another automorphism of Ohta is determined at the end of the next section.

4 Triangular derivation

Let D be a locally nilpotent derivation of R[\mathrm{x}] over R
, i.e., an element of \mathrm{D}\mathrm{e}\mathrm{r}_{R}R[\mathrm{x}] such

that D^{l}(f)=0 holds for some l\in \mathrm{N} for each f\in R[\mathrm{x}] . When R contains \mathrm{Q} ,
an element
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\exp D of \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R) is defined by

(\displaystyle \exp D)(f)=\sum_{i\geq 0}\frac{D^{i}(f)}{i!}
for each f\in R[\mathrm{x}] . We say that D\in \mathrm{D}\mathrm{e}\mathrm{r}_{R}R[\mathrm{x}] is triangular if D(X) belongs to

R[x_{1}, . . . , x_{i-1}] for each i . If D is triangular, then D is locally nilpotent, and (\exp D)(x_{i})=
x_{i}+f_{i} for each i

,
where f_{i}\in R[x_{1}, . . . , x_{i-1}] . Hence, \exp D belongs to \mathrm{J}(R, x_{1}, \ldots, x_{n}) ,

and so belongs to \mathrm{T}(R, \mathrm{x}) . For D\in \mathrm{D}\mathrm{e}\mathrm{r}_{R}R[\mathrm{x}] and h\in R[\mathrm{x}] ,
it is well‐known that hD

is a locally nilpotent derivation of R[\mathrm{x}] if and only if D is a locally nilpotent derivation

of R[\mathrm{x}] ,
and h belongs to \mathrm{k}\mathrm{e}\mathrm{r}D (cf. [3, Corollary 1.3.34]). Even if D is triangular, hD is

not always triangular, and so \exp hD may not belong to \mathrm{T}(k, \mathrm{x}) for h\in \mathrm{k}\mathrm{e}\mathrm{r}D\backslash k . For

instance, Nagata�s automorphism is wild, and is of the form \exp hD ,
where

h=x_{1}x_{3}+x_{2}^{2}, D=-2x_{2}\displaystyle \frac{\partial}{\partial x_{1}}+x_{3}\frac{\partial}{\partial x_{2}}.
This derivation is triangular if x_{1} and X3 are interchanged.

Thus, the following problem arises.

Problem. Assume that n=3 . Let D be a triangular derivation of k[\mathrm{x}] ,
and h an element

of \mathrm{k}\mathrm{e}\mathrm{r}D\backslash k . When does \exp hD belong to \mathrm{T}(k, \mathrm{x}) ?

We completely settle this problem as a consequence of a more general result as follows.

Let R be a \mathrm{Q}‐domain, and D a triangular derivation of R[x_{1}, x_{2}] such that

D(x_{1})=a D(x_{2})=\displaystyle \sum_{i=0}^{l}b_{i}x_{1}^{i},
where l\geq 0 ,

and a, b_{0} ,
. . .

, b_{l}\in R with a\neq 0 and b_{l}\neq 0 . Set

I=\{i\geq 0|b_{i}\not\in aR\}, I'=\{1, . . . , l\}\backslash I,

and define  $\tau$\in \mathrm{A}\mathrm{u}\mathrm{t}(R[x_{1}, x_{2}]/R) by

 $\tau$(x_{1})=x_{1},  $\tau$(x_{2})=x_{2}+\displaystyle \sum_{i\in I'}\frac{b_{i}}{(i+1)a}x_{1}^{i+1}
With this notation, we have the following theorem.

Theorem 4.1 ([12, Theorem 6.1 Let D be as above, and h an element of \mathrm{k}\mathrm{e}\mathrm{r}D\backslash R.
Then, \exp hD belongs to \mathrm{T}(R, \{x_{1}, x_{2}\}) if and only if one of the following conditions holds:

(i) I=\emptyset.

(ii) I=\{0\} ,
and b_{0}/a belongs to V(R) or \deg $\tau$(h)=1.

In particular, when V(R)=K^{\times} ,
it fo llows that \exp hD belongs to \mathrm{T}(R, \{x_{1}, x_{2}\}) if and

only if  I=\emptyset or  I=\{0\} ,
where K is the field of fractions of R.
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Applying Theorem 4.1 with R=k[x_{3}] ,
we get the following theorem with the aid of

Theorem 1.2.

Theorem 4.2 ([12, Theorem 6.2]). Assume that n=3 . Let D be a triangular derivation

of k[\mathrm{x}] with D(x_{1})=0 and D(x_{2})\neq 0 ,
and h an element of \mathrm{k}\mathrm{e}\mathrm{r}D\backslash k[x_{1}] . Then, \exp hD

belongs to \mathrm{T}(k, \mathrm{x}) if and only if \partial D(x_{3})/\partial x_{2} belongs to D(x_{2})k[x_{1}, x_{2}].

Note that \partial D(x_{3})/\partial x_{2} belongs to D(x_{2})k[x_{1}, x_{2}] if and only if the coefficient of x_{2}^{i} in

D(X) is divisible by D(X) in k[X] for each i\geq 1 ,
where we regard D(X) as a polynomial

in x_{2} over k[x_{1}].
If D(x_{1})=0 and h belongs to k[x_{1}] ,

then hD is triangular, and so \exp hD is tame.

If D(x_{1})=D(x_{2})=0 ,
or if D(x_{1})\neq 0 ,

then it is easy to check that \exp hD is tame for

every h\in \mathrm{k}\mathrm{e}\mathrm{r}D (see [12, Section 6] for detail). Therefore, we have completely answer the

problem above.

Now, for f\in k[x_{1}]\backslash \{0\} and g\in k[x_{1}, x_{2}] ,
we define a triangular derivation T_{f,g} of

k[\mathrm{x}] by

T_{f,g}(x_{1})=0, T_{f,g}(x_{2})=f, T_{f,g}(x_{3})=-\displaystyle \frac{\partial g}{\partial x_{2}}.
Then, we have T_{f,g}(fx_{3}+g)=0 ,

so hT_{f,g} is a locally nilpotent derivation of k[\mathrm{x}] for each

h\in k[x_{1}, fx_{3}+g] . By Theorem 4.2, it follows that $\Phi$_{f,g}^{h}:=\exp hT_{f,g} belongs to \mathrm{T}(k, \mathrm{x})
if and only if \partial T_{f,g}(x_{3})/\partial x_{2}=-\partial^{2}g/\partial x_{2}^{2} belongs to T_{f,g}(x_{2})k[x_{1}, x_{2}]=fk[x_{1}, x_{2}] for each

h\in k[x_{1}, fx_{3}+g]\backslash k[x_{1}] . Thus, we get a family

\{$\Phi$_{f,g}^{h}|(f, g)\in $\Lambda$, h\in k[x_{1}, fx_{3}+g]\backslash k[x_{1}]\}

of wild automorphisms of k[\mathrm{x}] ,
where  $\Lambda$ is the set of (f, g)\in(k[x_{1}]\backslash \{0\})\times x_{2}k[x_{1}, x_{2}]

such that \partial^{2}g/\partial x_{2}^{2} does not belong to fk[x_{1}, x_{2}].
Let us consider the second automorphism of Ohta [17, Theorem 3] defined by

$\phi$_{2}(x_{1})=x_{1}, $\phi$_{2}(x_{2})=x_{2}+x_{1}f_{2}, $\phi$_{2}(x_{3})=X3 -\displaystyle \sum_{i\geq 0}\sum_{j\geq 1}a_{i,j}((x_{2}+x_{1}f_{2})^{j}-x_{2}^{j})x_{1}^{i-1},
where

f_{2}:=x_{1}x_{3}+\displaystyle \sum_{i\geq 0}\sum_{j\geq 1}a_{i,j}x_{1}^{i}x_{2}^{j}
with a_{i,j}\in k for each i, j . Here, x_{1}, x_{2} and X3 are denoted by x, y and z

, respectively, in

the original text.

Proposition 4.3. $\phi$_{2} belongs to \mathrm{T}(k, \mathrm{x}) if and only if a_{0,j}=0 for every j\geq 2.

7
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Proof. Set D=T_{x_{1},g} and  $\phi$=$\Phi$_{x_{1}^{2},g}^{f}=\exp f_{2}D ,
where g:=f_{2}-x_{1}x_{3} . Then, we

claim that  $\phi$=$\phi$_{2} . In fact, we have  $\phi$(x_{1})=x_{1} and  $\phi$(x_{2})=x_{2}+x_{1}f_{2} ,
since D(x_{1})=0,

f_{2}D(x_{2})=x_{1}f_{2} and (f_{2}D)^{2}(x_{2})=0 . Since D(f_{2})=0 ,
we have  $\phi$(f_{2})=f_{2} ,

and hence

x_{1} $\phi$(x_{3})+\displaystyle \sum\sum a_{i,j}x_{1}^{i}(x_{2}+x_{1}f_{2})^{j}= $\phi$(f_{2})=f_{2}=x_{1}x_{3}+\sum\sum a_{i,j}x_{1}^{i}x_{2}^{j}
i\geq 0j\geq 1 i\geq 0j\geq 1

This gives that  $\phi$(x_{3})=$\phi$_{2}(x_{3}) . Hence,  $\phi$ is equal to  $\phi$_{2} . Since f_{2} is an element of

k[x_{1}, f_{2}]\backslash k[x_{1}] ,
it holds that  $\phi$=$\Phi$_{x_{1}^{2},g}^{f} belongs to \mathrm{T}(k, \mathrm{x}) if and only if \partial^{2}g/\partial x_{2}^{2}=

\displaystyle \sum_{i\geq 0}\sum_{j\geq 1}j(j-1)a_{i,j}x_{1}^{i}x_{2}^{j-2} belongs to x_{1}k[x_{1}, x_{2}] as mentioned. This condition is equiv‐
alent to the condition that a_{0,j}=0 for every j\geq 2. \square 

5 Tameness and triangularizability

We say that D\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}k[\mathrm{x}] is triangularizable if  $\tau$^{-1}\mathrm{o}D\mathrm{o} $\tau$ is triangular for some  $\tau$\in

\mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) . When this is the case, D is locally nilpotent. Moreover, \exp D belongs to

\mathrm{T}(k, \mathrm{x}) if so does  $\tau$
,

since \exp($\tau$^{-1}\mathrm{o}D\mathrm{o} $\tau$)=$\tau$^{-1}\mathrm{o}(\exp D)\circ $\tau$ . If  $\tau$ does not belong
to \mathrm{T}(k, \mathrm{x}) , however, \exp D does not belong to \mathrm{T}(k, \mathrm{x}) in general. Actually, as will be

remarked after Theorem 8.1, \exp D can be wild even if $\tau$^{-1}\mathrm{o}D\mathrm{o} $\tau$=\partial/\partial x_{1} for some  $\tau$.

On the other hand, it is also not clear whether D is always triangularizable if \exp D belongs
to \mathrm{T}(k, \mathrm{x}) . When n=2

, every locally nilpotent derivation of k[\mathrm{x}] is triangularizable due

to Rentschler [19]. When n\geq 4 ,
there exists a locally nilpotent derivation D of k[\mathrm{x}] which

is not triangularizable, but \exp D belongs to \mathrm{T}(k, \mathrm{x}) , by the results of Bass [1], Popov [18]
and Smith [20] (see also [6, Sections 3.9]). So Freudenburg [6, Section 5.3] raised the

following question.

Question (Freudenburg). Assume that n=3 . Is a locally nilpotent derivation D of k[\mathrm{x}]
always triangularizable if D is tame, i.e., \exp D belongs to \mathrm{T}(k, \mathrm{x}) ?

We give a partial affirmative answer to this question as follows.

Theorem 5.1 ([12, Theorem 1.2]). Assume that n=3
,

and D is a locally nilpotent
derivation of k[\mathrm{x}] such that \mathrm{k}\mathrm{e}\mathrm{r}D contains a tame coordinate of k[\mathrm{x}] over k . Then, \exp D

belongs to \mathrm{T}(k, \mathrm{x}) if and only if  $\tau$^{-1}\mathrm{o}D\mathrm{o} $\tau$ is triangular for some  $\tau$\in \mathrm{T}(k, \mathrm{x}) .

We note that there exists a locally nilpotent derivation of k[\mathrm{x}] for n=3 such that

\mathrm{k}\mathrm{e}\mathrm{r}D contains no coordinate of k[\mathrm{x}] over k (cf. [4] and [5]). Such a locally nilpotent
derivation is never conjugate to a triangular derivation multiplied by an element of \mathrm{k}\mathrm{e}\mathrm{r}D.

In fact, every triangular derivation of k[\mathrm{x}] kills a tame coordinate of k[\mathrm{x}] over k if n\geq 2.

In Section 9, we will discuss tameness of \exp D for such special D.

Theorem 5.1 is obtained by Theorem 1.2 and the following theorem.
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Theorem 5.2 ([12, Theorem 5.1]). Let R be a \mathrm{Q} ‐domain, and D a locally nilpotent
derivation of R[x_{1}, x_{2}] over R such that \exp D belongs to \mathrm{T}(R, \{x_{1}, x_{2}\}) . Then, there

exists  $\tau$\in \mathrm{T}(R, \mathrm{x}) such that D' :=$\tau$^{-1}\mathrm{o}D\mathrm{o} $\tau$ is triangular, or \deg D'(x_{i})\leq 1 fori=1 ,
2.

If V(R)=K^{\times} ,
then there exists  $\tau$\in \mathrm{T}(R, \mathrm{x}) such that D' is triangular, where K is the

field of fractions of R.

It is interesting to ask the following question.

Question. Let R be a \mathrm{Q}‐domain, and D a locally nilpotent derivation of R[\mathrm{x}] over

R . Does \exp D belong to \mathrm{T}(R, \mathrm{x}) whenever \exp hD belongs to \mathrm{T}(R, \mathrm{x}) for some  h\in

\mathrm{k}\mathrm{e}\mathrm{r}D\backslash \{0\} ?

As a corollary to Theorem 5.2, we get the following result.

Corollary 5.3 ([12, Corollary 5.2]). Let R be a \mathrm{Q} ‐domain, and D a locally nilpotent
derivation of R[\mathrm{x}] over Rforn =2 . If \exp hD belongs to \mathrm{T}(R, \mathrm{x}) for some h\in \mathrm{k}\mathrm{e}\mathrm{r}D\backslash \{0\},
then \exp D belongs to \mathrm{T}(R, \mathrm{x}) .

6 Invariant coordinates

In Theorem 2.2, we described a rough structure of the subgroup H(f) of \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R)
for a coordinate f\in R[\mathrm{x}] of S[\mathrm{x}] over S which is reduced over R . In this section, we

assume that the field K of fractions of R is of characteristic zero, and determine the

precise structure of H(f) and classify f such that H(f) has at least two elements.

By the following lemma, we may assume that S=K.

Lemma 6.1 ([12, Lemma 7.1]). Assume that K is of characteristic zero. If f\in R[x_{1}, x_{2}]
is a coordinate of S[x_{1}, x_{2}] over S

,
then f is a coordinate of K[x_{1}, x_{2}] over K.

Now, we define four types of elements of R[\mathrm{x}] which are coordinates of K[\mathrm{x}] over K as

follows: For a\in R\backslash \{0\}, g\in R[x_{1}] with \deg g\geq 2 ,
and u(z)\in K[z^{l}]\backslash K and 1\neq $\zeta$\in R^{\times}

with $\zeta$^{l}=1 for some l\geq 2 ,
we define

f_{1}=ax_{2}+g, f_{2}=ax_{1}+u(( $\zeta$-1)x_{2}+g) ,

where we assume that g,  $\zeta$ and  u(z) are such that u(( $\zeta$-1)x_{2}+g) belongs to R[\mathrm{x}] . For

 $\tau$\in \mathrm{A}\mathrm{f}\mathrm{f}(K, \mathrm{x}) such that  $\tau$(x_{1})= $\alpha$ x_{1}+ $\beta$ x_{2}+ $\gamma$ for  $\alpha$,  $\beta$,  $\gamma$\in K with  $\alpha$,  $\beta$\neq 0 ,
and for

v\in K[X] with \deg v=2 ,
or v\in K[x_{1}^{l}]\backslash K for some l\geq 2 ,

we define

f_{3}= $\tau$(x_{1}) , f_{4}= $\tau$(x_{2}+v) ,

where we assume that  $\tau$ and  v are such that  $\tau$(x_{2}+v) belongs to R[\mathrm{x}].

9
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For f_{1} ,
. . .

, f_{4} as above, we define subsets H_{1} ,
. . .

, H_{4} of Aut(R[x]/R) as follows:

\bullet  H_{1}=\mathrm{J}(R;x_{1}, x_{2})\cap \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R[f_{1}]) .

\bullet  H_{2} is the set of  $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(R[\mathrm{x}]/R[\mathrm{X}]) such that  $\phi$(x_{2})= $\xi$ x_{2}+( $\xi$-1)( $\zeta$-1)^{-1}g . Here,

 $\xi$\in R is such that ( $\xi$-1)( $\zeta$-1)^{-1}g belongs to R[x_{1}] ,
and $\xi$^{m}=1 ,

where m is the maximal

integer for which u(z) belongs to R[z^{m}].
\bullet  H_{3}=\mathrm{A}\mathrm{f}\mathrm{f}(R, \mathrm{x})\cap $\tau$\circ \mathrm{A}\mathrm{u}\mathrm{t}(K[\mathrm{x}]/K[x_{1}])\circ$\tau$^{-1}.
\bullet  H_{4}=\mathrm{A}\mathrm{f}\mathrm{f}(R, \mathrm{x})\cap $\tau$\circ \mathrm{A}\mathrm{u}\mathrm{t}(K[\mathrm{x}]/K[x_{2}+v])\circ$\tau$^{-1}.

In the notation above, we have the following result.

Theorem 6.2 ([12, Theorem 7.2]). Assume that n=2 and K is of characteristic zero.

(i) Let f\in R[\mathrm{x}] be a coordinate of K[\mathrm{x}] over K which is reduced over R. If \deg_{x_{1}}f\geq
\deg_{x_{2}}f\geq 1 and H(f)\neq\{\mathrm{i}\mathrm{d}_{R[\mathrm{x}]}\} ,

then f has the form of f_{i} for some i\in\{1 , 2, 3, 4 \}.
(ii) If f_{i} is reduced over R for i\in\{1 , 2, 3, 4 \} ,

then we have H(f_{i})=H_{i}.

In the case where R=k[x_{3}] ,
the above theorem and Theorem 1.2 imply the following

corollary.

Corollary 6.3 ([12, Corollary 7.5]). Assume that n=3 . Let f\in k[\mathrm{x}] be a coordinate of

k(x_{3})[x_{1}, x_{2}] over k(x_{3}) . If H:=\mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k[x_{3}, f])\cap \mathrm{T}(k, \mathrm{x}) has at least two elements,
then one of the following holds for some  $\tau$\in \mathrm{T}(k[x_{3}], \{x_{1}, x_{2}\}) :

(i)  $\tau$(f)=ax_{1}+b for some a, b\in k[X] with a\neq 0 ,
and H=\mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k[x_{1}, x_{3}]) .

(ii)  $\tau$(f)=ax_{2}+g for some a\in k[X] and g\in k[x_{1}, x_{3}] with \deg_{x_{1}}g\geq 2 for which

the leading coefficient of g ,
as a polynomial in x_{1} over k[x_{3}] ,

does not belong to ak[x_{3}].
Moreover, we have H=\mathrm{J}(k[x_{3}];x_{1}, x_{2})\cap \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k[ax_{2}+g, x_{3}]) .

If K is of positive characteristic, the statements of Lemma 6.1 and Theorem 6.2 do

not hold in general (cf. [12, Section 7]).

7 Generalized Shestakov‐Umirbaev theory

In the following sections, we explain the main results of [13] and [14]. These papers are

devoted to applications of the generalized Shestakov‐Umirbaev theory [10], [11]. In this

section, we mention some consequences of this theory used in [13] and [14]. In what

follows, we assume that n=3 unless otherwise stated, and a wild automorphism always
means an element of Aut(k[x]/k) not belonging to \mathrm{T}(k, \mathrm{x}) .

For \mathrm{w}=(w_{1}, w_{2}, w_{3})\in$\Gamma$^{3} ,
we define rankw to be the rank of the \mathrm{Z} ‐submodule of  $\Gamma$

generated by  w_{1}, w_{2} and W3. For  $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) ,
consider the following conditions:

(1)  $\phi$(x_{1})^{\mathrm{w}},  $\phi$(x_{2})^{\mathrm{w}} and  $\phi$(x_{3})^{\mathrm{w}} are algebraically dependent over k
,

and are pairwise alge‐

braically independent over k ;

10
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(2)  $\phi$(x_{i})^{\mathrm{w}} does not belong to k[\{ $\phi$(x_{j})^{\mathrm{w}}|j\neq i\}] for i=1
, 2, 3.

The generalized Shestakov‐Umirbaev theory implies the following sufficient condition

for wildness, where $\Gamma$_{>0}:=\{ $\alpha$\in $\Gamma$| $\alpha$>0\}.

Proposition 7.1 ([13, Section 1 If  $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) is such that (1) and (2) hold for
some \mathrm{w}\in($\Gamma$_{>0})^{3} with rankw =3

,
then  $\phi$ is wild.

We call  P\in k[\mathrm{x}] a W‐test polynomial if, for each  $\phi$\in \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) ,
it holds that  $\phi$

is wild whenever there exist a totally ordered additive group  $\Gamma$ and \mathrm{w}\in($\Gamma$_{>0})^{3} with

rank \mathrm{w}=3 as follows:

(a) \deg_{\mathrm{w}} $\phi$(P)<\deg_{\mathrm{w}} $\phi$(X) for some i_{1}\in\{1 , 2, 3 \} ;

(b) \deg_{\mathrm{w}} $\phi$(X) and \deg_{\mathrm{w}} $\phi$(X) are linearly independent over \mathrm{Z} for some i_{2}, i_{3}\in\{1 , 2, 3 \}.
It is sometimes useful to use a \mathrm{W}‐test polynomial for showing that an automorphism

is wild. The following proposition follows from Proposition 7.1.

Proposition 7.2 ([14, Proposition 6.1]). Let P be an element of k[\mathrm{x}] not belonging to

k[\mathrm{x}\backslash \{x_{i}\}] fori=1 , 2, 3. Then, P is a W‐test polynomial if the following conditions

hold for every totally ordered additive group  $\Gamma$ and \mathrm{w}\in($\Gamma$_{>0})^{3} such that P^{\mathrm{w}} is not a

monomial:

(i) P^{\mathrm{w}} is not divisible by x_{i}-g for any g\in k[\mathrm{x}\backslash \{x_{i}\}]\backslash k for i=1
, 2, 3;

(ii) P^{\mathrm{w}} is not divisible by x_{i}^{s_{i}}-cx_{j}^{s_{j}} for any c\in k^{\times}, s_{i}, s_{j}\in \mathrm{N} and i, j\in\{1 , 2, 3 \} with

i\neq j.

By this proposition, we can check that P=x_{1}x_{3}-\displaystyle \sum_{i=1}^{t}$\alpha$_{i}x_{2}^{i-1} and x_{2}-Px_{3} are

\mathrm{W}‐test polynomials if t\geq 2 ,
where $\alpha$_{1} ,

. . .

, $\alpha$_{t-1}\in k and $\alpha$_{t}\in k^{\times} . This result is used to

prove Theorems 9.1 and 9.3.

8 Absolutely wild and totally wild coordinates

We say that a coordinate f of k[\mathrm{x}] over k is absolutely wild if D(f)=0 implies that \exp D
is wild for every nonzero locally nilpotent D of k[\mathrm{x}] ,

and totally wild if  $\phi$(f)=f implies
that  $\phi$ is wild for every \mathrm{i}\mathrm{d}_{k[\mathrm{x}]}\neq $\phi$\in Aut(k[x]/k). Since  D(f)=0 implies (\exp D)(f)=f,
�totally wild� implies �absolutely wild�. We claim that �absolutely wild� implies �wild�

In fact, if f is a tame coordinate, then there exists  $\sigma$\in \mathrm{T}(k, \mathrm{x}) such that  $\sigma$(x_{1})=f ,
for

which we have D(f)=0 ,
and \exp D belongs to \mathrm{T}(k, \mathrm{x}) ,

where D:= $\sigma$\circ(\partial/\partial x_{2})\circ$\sigma$^{-1}.
In [13], we construct totally wild coordinates, and absolutely wild coordinates which are

not totally wild as follows.

For  $\theta$(z)\in k[z]\backslash k ,
we define a locally nilpotent derivation D_{ $\theta$} of k[\mathrm{x}] by

D_{ $\theta$}(x_{1})=-$\theta$' (x2), D_{ $\theta$}(x_{2})=X3, D_{ $\theta$}(x_{3})=0,

11
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where $\theta$'(z) is the derivative of  $\theta$(z) . Then, f_{ $\theta$}:=x_{1}x_{3}+ $\theta$(X) belongs to \mathrm{k}\mathrm{e}\mathrm{r}D_{ $\theta$} . Hence,

f_{ $\theta$}D_{ $\theta$} is a locally nilpotent derivation of k[\mathrm{x}] . Set $\sigma$_{ $\theta$}=\exp f_{ $\theta$}D_{ $\theta$} ,
and y_{1}=$\sigma$_{ $\theta$}(x_{1}) . We

consider the subgroup

G_{ $\theta$}:= Aut (k[\mathrm{x}]/k[y_{1}])\cap \mathrm{T}(k, \mathrm{x})

of Aut(k[x]/k). Note that G_{ $\theta$}=\{\mathrm{i}\mathrm{d}_{k[\mathrm{x}]}\} if and only if y_{1} is a totally wild coordinate. If G_{ $\theta$}

is a finite group, then y_{1} is an absolutely wild coordinate. Actually, \exp D has an infinite

order for every locally nilpotent derivation D\neq 0 ,
since (\exp D)^{l}=\exp  lD\neq \mathrm{i}\mathrm{d}_{k[\mathrm{x}]}.

Let a and b be the coefficients of z^{d} and z^{d-1} in  $\theta$(z) , respectively, where d:=\deg $\theta$(z) .

We set c=-b/(ad) and write  $\theta$(z)=\displaystyle \sum_{i=0}^{d}u_{i}(z-c)^{i} ,
where u_{i}\in k for each i . Then, we

have u_{d}=a, u_{d-1}=0 and u_{0}= $\theta$(c) . Let e\in \mathrm{N} be the the positive generator of the ideal

of \mathrm{Z} generated by 2i-1 for 1\leq i\leq d with u_{i}\neq 0 ,
and define

T_{ $\theta$}=\{ $\zeta$\in k^{\times}|$\zeta$^{e}=1\}.

For each  $\zeta$\in T_{ $\theta$} ,
we define an element $\phi$_{ $\zeta$} of \mathrm{J}(k;X3, x_{2}, x_{1}) by $\phi$_{ $\zeta$}(x_{3})= $\zeta$ x_{3} ,

and

$\phi$_{ $\zeta$}(x_{2}-c)=$\zeta$^{2}(x_{2}-c)+ $\zeta$( $\zeta$-1) $\theta$(c)x_{3}, $\phi$_{ $\zeta$}(x_{1})=x_{1}+g_{ $\zeta$},

where

g_{ $\zeta$}:=( $\zeta \theta$(x_{2})- $\theta$($\phi$_{ $\zeta$}(x_{2}))+(1- $\zeta$) $\theta$(c))( $\zeta$ x_{3})^{-1}
Here, we note that g_{ $\zeta$} always belongs to k[\mathrm{x}] for  $\zeta$\in T_{ $\theta$}.

In the notation above, we have the following theorem.

Theorem 8.1 ([13, Theorem 6.1]). For each  $\zeta$\in T_{ $\theta$} , the automorphism $\phi$_{ $\zeta$} belongs to G_{ $\theta$}.

The map  $\iota$ :  T_{ $\theta$}\ni $\zeta$\mapsto$\phi$_{ $\zeta$}\in G_{ $\theta$} is an injective homomorphism of groups. If d\geq 9 and

d\neq 10 , 12, then  $\iota$ is an isomorphism.

By this theorem, we know that there exist a number of totally wild coordinates, and

absolutely wild coordinates which are not totally wild as follows. If  d\geq 9 and d\neq 10 , 12,
then G_{ $\theta$} is isomorphic to T_{ $\theta$} . Since T_{ $\theta$} is a finite group, it follows that G_{ $\theta$} is a finite group.

Hence, y_{1} is an absolutely wild coordinate as mentioned. Furthermore, y_{1} is a totally
wild coordinate if and only if T_{ $\theta$}=\{1\} . Since some  $\theta$(z) �s satisfy T_{ $\theta$}=\{1\} and others

do not, it follows that there exist various totally wild coordinates, and absolutely wild

coordinates which are not totally wild.

Note that

\mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k[y_{1}])=$\sigma$_{ $\theta$}\circ \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k[x_{1}])\circ$\sigma$_{ $\theta$}^{-1},
so every element of $\sigma$_{ $\theta$}\circ \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k[x_{1}])\circ$\sigma$_{ $\theta$}^{-1} not belonging to G_{ $\theta$} is wild. Hence, if d\geq 9

and d\neq 10 , 12, then \exp D is wild even for the locally nilpotent derivation

D:=$\sigma$_{ $\theta$}\displaystyle \circ(\frac{\partial}{\partial x_{3}})\circ$\sigma$_{ $\theta$}^{-1},
12
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since \exp D=$\sigma$_{ $\theta$}\mathrm{o}(\exp\partial/\partial x_{3})\circ$\sigma$_{ $\theta$}^{-1} ,
and \exp D has an infinite order. If y_{1} is a totally

wild coordinate, then $\sigma$_{ $\theta$}0 $\tau$\circ$\sigma$_{ $\theta$}^{-1} is wild even for  $\tau$\in \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) defined by

 $\tau$(x_{1})=x_{1},  $\tau$(x_{2})=x_{2},  $\tau$(x_{3})=-x_{3}.

As these examples show, the existence of absolutely wild or totally wild coordinates means

the existence of a very large class of wild automorphisms of k[\mathrm{x}].

9 Local slice constructions

The rank rank D of D\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}k[\mathrm{x}] is by definition the minimal number r\geq 0 for which

D( $\sigma$(x_{i}))\neq 0 holds for i=1
,

. . .

,
r for some  $\sigma$\in \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) (cf. [5]). As mentioned after

Theorem 5.1, every triangular derivation of k[\mathrm{x}] is of rank less than n when n\geq 2 . If

n=2
, every locally nilpotent derivation of k[\mathrm{x}] is of rank at most one by Rentschler [19].

Freudenburg [4], [5] first gave locally nilpotent derivations of k[\mathrm{x}] of rank n for n\geq 3

using his method of local slice constructions. It is not easy to construct such a locally

nilpotent derivation D
,

for which it is previously not known whether \exp D is tame.

In this section, we summarize the main results of [14], where we give a large family of

locally nilpotent derivations of k[\mathrm{x}] by means of local slice construction, and determine

tameness of \exp hD for each D and h\in \mathrm{k}\mathrm{e}\mathrm{r}D\backslash \{0\} . The family includes the locally

nilpotent derivations of Freudenburg, and many other locally nilpotent derivations of

rank three. The result is that \exp hD is always wild unless hD is triangularizable by a

tame automorphism, i.e.,  $\tau$^{-1}\circ(hD)\circ $\tau$ is triangular for some  $\tau$\in \mathrm{T}(k, \mathrm{x}) . This gives a

partial affirmative answer to the question of Freudenburg (Section 5).
Now, for i=0 , 1, let t_{i} be a positive integer, and $\alpha$_{j}^{i} an element of k for j=1 ,

. . .

, t_{i}

with $\alpha$_{t_{i}}^{i}=1 . We define a sequence (b_{i})_{i=0}^{\infty} of integers by

b_{0}=b_{1}=0 and b_{i+1}=t_{i}b_{i}-b_{i-1}+$\xi$_{i} for i\geq 1,

where t_{i}:=t_{0} if i is an even number, and t_{i}:=t_{1} otherwise, and where $\xi$_{i}:=1 if i\equiv 0 ,
1

(mod4), and $\xi$_{i}:=-1 otherwise. For each i\geq 1 ,
we define $\eta$_{i}(y, z)\in k[y, z] by

$\eta$_{i}(y, z)=z^{t_{i}b_{i}+1}+\displaystyle \sum_{j=1}^{t_{i}}$\alpha$_{j}^{i}y^{j}z^{(t_{i}-j)b_{i}}
$\eta$_{i}(y, z)=y^{t_{i}}+\displaystyle \sum_{j=1}^{t_{i}}$\alpha$_{j}^{i}z^{jb_{i}-1}y^{t_{i}-j}

if i\equiv 0 ,
1 (mod4)

otherwise,

where $\alpha$_{j}^{i} :=$\alpha$_{j}^{0} if i is an even number, and $\alpha$_{j}^{i} :=$\alpha$_{j}^{1} otherwise for each j . Set

r=x_{1}x_{2}x_{3}-\displaystyle \sum_{i=1}^{t_{0}}$\alpha$_{i}^{0}x_{2}^{i}-\sum_{j=1}^{t_{1}}$\alpha$_{j}^{1}x_{1}^{j},
13
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and define a sequence (f_{i})_{i=0}^{\infty} of rational functions by f_{0}=x_{2}, f_{1}=x_{1} and f_{i+1}=f_{i-1}^{-1}q_{i}
for each i\geq 1 by induction on i

,
where q_{i}=$\eta$_{i}(f_{i}, r) . Note that

q_{1}=r+\displaystyle \sum_{j=1}^{t_{1}}$\alpha$_{j}^{1}x_{1}^{j}=x_{1}x_{2}x_{3}-\sum_{i=1}^{t_{0}}$\alpha$_{i}^{0_{X_{2}^{i}}}, f_{2}=x_{1}x_{3}-\sum_{i=1}^{t_{0}}$\alpha$_{i}^{0_{X_{2}^{i-1}}} , (9.1)

and r=x_{2}f_{2}-\displaystyle \sum_{j=1}^{t_{1}}$\alpha$_{j}^{1}x_{1}^{j} . If t_{0}=2 ,
then we have f_{2}=x_{1}x_{3}-x_{2}-$\alpha$_{1}^{0} . In this case, we

can define $\tau$_{2}\in \mathrm{T}(k, \mathrm{x}) by

$\tau$_{2}(x_{1})=f_{2}, $\tau$_{2}(x_{2})=x_{1}, $\tau$_{2}(x_{3})=X3.

We can also construct the sequence (f_{i})_{i=0}^{\infty} from the same data t_{0}, t_{1}, ($\alpha$_{j}^{0})_{j=1}^{t_{0}-1} and ($\alpha$_{j}^{1})_{j=1}^{t_{1}-1}
by interchanging the role of t_{0} and t_{1} ,

and ($\alpha$_{j}^{0})_{j=1}^{t_{0}-1} and ($\alpha$_{j}^{1})_{j=1}^{t_{1}-1} . To distinguish it from

the original one, we denote it by (f_{i}')_{i=0}^{\infty} . If t_{1}=2 ,
then we can define $\tau$_{2}'\in \mathrm{T}(k, \mathrm{x}) by

$\tau$_{2}'(x_{1})=f_{2}', $\tau$_{2}'(x_{2})=x_{1} and $\tau$_{2}'(x_{3})=x_{3} as above.

When f_{i} and f_{i+1} belong to k[\mathrm{x}] ,
we consider the derivation D_{i}:=\triangle_{(f_{i},f_{i+1})} of

k[\mathrm{x}] . Here, for g_{1}, g_{2}\in k[\mathrm{x}] ,
we define a derivation \triangle_{(g_{1},g_{2})} of k[\mathrm{x}] by \triangle_{(g_{1},g_{2})}(g_{3})=

\det(\partial g_{i}/\partial x_{j})_{i,j} for each g_{3}\in k[\mathrm{x}] . For example, we have

D_{1}(x_{1})=0, D_{1}(x_{2})=-x_{1} and D_{1}(x_{3})=-\displaystyle \sum_{i=2}^{t_{0}}(i-1)$\alpha$_{i}^{0}x_{2}^{i-2} (9.2)

by (9.1). Hence, D_{1} is triangular. When f_{i}' and f_{i+1}' belong to k[\mathrm{x}] ,
we define D_{i}'=

\triangle_{(f_{i}',f_{i+1}')} similarly.
Set a_{i}=t_{i}b_{i}+$\xi$_{i} for each i\geq 0 ,

and let I be the set of i\in \mathrm{N} such that a_{j}>0 for

j=1 ,
. . .

,
i . Then, we have a_{0}=0, a_{1}=1 and a_{i+1}=t_{i+1}a_{i}-a_{i-1} for i\geq 1 . From this,

we get

I=\left\{\begin{array}{ll}
\{1\} & \mathrm{i}\mathrm{f} t_{0}=1\\
\{1, 2\} & \mathrm{i}\mathrm{f} (t_{0}, t_{1})=(2,1)\\
\{1, 2, 3, 4\} & \mathrm{i}\mathrm{f} (t_{0}, t_{1})=(3,1)\\
\mathrm{N} & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right. (9.3)

In the notation above, we have the following result.

Theorem 9.1 ([13, Theorem 2.1]). The following assertions hold for each i\in I :

(i) f_{i} and f_{i+1} belong to k[\mathrm{x}] ,
and D_{i} is a locally nilpotent derivation of k[\mathrm{x}] such that

D_{i}(r)=-f_{i}f_{i+1} . Furthermore, we have the following:

(1) If i is the maximum of I
,

then D_{i} is not irreducible and \mathrm{k}\mathrm{e}\mathrm{r}D_{i}\neq k[f_{i}, f_{i+1}].
(2) If i is not the maximum of I

,
then D_{i} is irreducible and \mathrm{k}\mathrm{e}\mathrm{r}D_{i}=k[f_{i}, f_{i+1}].

(ii) Assume that t_{0}=2 . Then, we have $\tau$_{2}^{-1}\mathrm{o}D_{i}\mathrm{o}$\tau$_{2}=D_{i-1}' . Hence, D_{2} is triangularizable

by a tame automorphism. Moreover, the following assertions hold:
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(a) If t_{1}=2 ,
then we have $\tau$^{-1}\mathrm{o}D_{i}\mathrm{o} $\tau$=D_{0} ,

where  $\tau$:=($\tau$_{2}0$\tau$_{2}')^{i/2} if i is an even number,
and  $\tau$:=($\tau$_{2}\circ$\tau$_{2}')^{(i-1)/2}\circ$\tau$_{2} otherwise.

(b) If t_{1}\geq 3 and i\geq 3 ,
then \exp hD_{i} is wild for every h\in \mathrm{k}\mathrm{e}\mathrm{r}D_{i}\backslash \{0\}.

(iii) If t_{0}\geq 3 and i\geq 2 ,
then \exp hD_{i} is wild for every h\in \mathrm{k}\mathrm{e}\mathrm{r}D_{i}\backslash \{0\}.

Here, D\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}k[\mathrm{x}] is said to be irreducible if D(k[\mathrm{x}]) is contained in no proper

principal ideal of k[\mathrm{x}].
Recall that pl D:=D(k[\mathrm{x}])\cap \mathrm{k}\mathrm{e}\mathrm{r}D forms an ideal of \mathrm{k}\mathrm{e}\mathrm{r}D for each D\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}k[\mathrm{x}],

and is called the plinth ideal of D . Assume that D is locally nilpotent. Then, we have

pl D\neq\{0\} unless D=0 . Owing to Miyanishi [15], it holds that pl D=\mathrm{k}\mathrm{e}\mathrm{r}D if and only
if D is irreducible and of rank one when n=3 . By Daigle‐Kaliman [2, Theorem 1], pl D

is always a principal ideal of \mathrm{k}\mathrm{e}\mathrm{r}D when n=3.

We use the following lemma to determine the rank of a locally nilpotent derivation.

Lemma 9.2 ([14, Lemma 2.5]). Let D\neq 0 be an irreducible locally nilpotent derivation

of k[\mathrm{x}] . If \mathrm{k}\mathrm{e}\mathrm{r}D contains a coordinate p of k[\mathrm{x}] over k
,

then there exists s\in k[\mathrm{x}] such

that D(s) belongs to k[p]\backslash \{0\}.

Since pl D is a principal ideal of \mathrm{k}\mathrm{e}\mathrm{r}D
,

Lemma 9.2 implies that pl D is generated by
an element of k[p]\backslash \{0\} if D is irreducible, and \mathrm{k}\mathrm{e}\mathrm{r}D contains a coordinate p of k[\mathrm{x}] over

k . On the other hand, if t_{0}=2, t_{1}\geq 3 and i\geq 3 ,
or if t_{0}\geq 3, (t_{0}, t_{1})\neq(3,1) and

i\geq 2 ,
then we have pl D_{i}=f_{i}f_{i+1}\mathrm{k}\mathrm{e}\mathrm{r}D_{i} (cf. [14, Proposition 1.2]). Since f_{i} and f_{i+1}

are algebraically independent over k
,

we see that f_{i}f_{i+1} does not belong to k[p] for any

coordinate p of k[\mathrm{x}] over k . Thus, we conclude that D_{i} is of rank three. In [14], we also

determined the rank of D_{i} for the other cases.

Next, take i\in \mathrm{N} with i\geq 2 ,
and assume that t_{0}\geq 3 if i=2

,
and t_{0}\geq 3 and

(t_{0}, t_{1})\neq(3,1)\mathrm{i}\mathrm{f}i\geq 3. \displaystyle \mathrm{L}\mathrm{e}\mathrm{t} $\lambda$(y)\in k[y]\backslash \{0\}\mathrm{a}\mathrm{n}\mathrm{d} $\mu$(y, z)=\sum_{j\geq 1}$\mu$_{j}(y)z^{j}\in zk[y, z]\backslash \{0\}
be such that \mathrm{g}\mathrm{c}\mathrm{d}( $\lambda$(y), $\mu$_{j}(y))=1 for some j\geq 1 ,

where $\mu$_{j}(y)\in k[y] for each j\geq 1 . We

set

r_{i}= $\lambda$(f_{i})\tilde{r}- $\mu$(f_{i}, f_{i-1}) ,
where \tilde{r}:=\left\{\begin{array}{ll}
x_{2} & \mathrm{i}\mathrm{f} i=2\\
r & \mathrm{i}\mathrm{f} i\geq 3.
\end{array}\right.

Then, we define

\tilde{f_{i+1}}=\tilde{ $\eta$}_{i}(f_{i}, r_{i} $\lambda$(f_{i})^{-1}) $\lambda$(f_{i})^{a_{i}}f_{i-1}^{-1},
where

\displaystyle \tilde{ $\eta$}_{2}(y, z):=y+\sum_{j=1}^{t_{0}}$\alpha$_{j}^{0}z^{j-1}
and \tilde{ $\eta$}_{i}(y, z) :=$\eta$_{i}(y, z) for i\geq 3.

With this notation and assumptions, we have the following result.
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Theorem 9.3 ([13, Theorem 3.1]). (i) \tilde{f_{i+1}} belongs to k[\mathrm{x}] ,
and \tilde{D}_{i}:=\triangle_{(f_{i},\overline{f}_{i+1})} is an

irreducible locally nilpotent derivation of k[\mathrm{x}] such that \mathrm{k}\mathrm{e}\mathrm{r}\tilde{D}_{i}=k[f_{i}, \tilde{f_{i+1}}] . Moreover, we

have \tilde{D}_{i}(r_{i})=- $\lambda$(f_{i})\tilde{f_{i+1}} if i=2
,

and \tilde{D}_{i}(r_{i})=- $\lambda$(f_{i})f_{i}\tilde{f_{i+1}} if i\geq 3.

(ii) Assume that  $\lambda$(y) belongs to k^{\times},  $\mu$(y, z) belongs to zk [z] ,
and i=2 . Then, \exp h\tilde{D}_{2}

is tame if and only if h belongs to k[\tilde{f}_{3}] for h\in \mathrm{k}\mathrm{e}\mathrm{r}\tilde{D}_{2} . In the other case, \exp h\tilde{D}_{i} is wild

for each h\in \mathrm{k}\mathrm{e}\mathrm{r}\tilde{D}_{i}\backslash \{0\}.

In the same situation, the following proposition holds.

Proposition 9.4 ([14, Proposition 1.5]). (i) If i\geq 3 ,
then we have rank \tilde{D}_{i}=3.

(ii) If  $\lambda$(y) belongs to k^{\times}
,

then rank \tilde{D}_{2}=2 ,
and \tilde{f}_{3} is a coordinate of k[\mathrm{x}] over k.

(iii) Assume that  $\lambda$(y) does not belong to k . If t_{0}\geq 4 ,
or $\mu$_{j}(y) does not belong to

\sqrt{ $\lambda$(y)k[y]} for some j\geq 2 ,
then we have rank \tilde{D}_{2}=3 . If t_{0}=3 ,

and $\mu$_{j}(y) belongs to

\sqrt{ $\lambda$(y)k[y]} for every j\geq 2 ,
then we have pl \tilde{D}_{2}=\tilde{f}_{3}\mathrm{k}\mathrm{e}\mathrm{r}\tilde{D}_{2}.

The locally nilpotent derivations of Freudenburg [4] are obtained as follows. Assume

that t_{j}=3 and $\alpha$_{1}^{j}=$\alpha$_{2}^{j}=0 for j=0 ,
1. Then, we have I=\mathrm{N} by (9.3). By

Theorem 9.1 (i), it follows that f_{i} and f_{i+1} belong to k[\mathrm{x}] ,
and D_{i} is an irreducible locally

nilpotent derivation of k[\mathrm{x}] with \mathrm{k}\mathrm{e}\mathrm{r}D_{i}=k[f_{i}, f_{i+1}] for each i\geq 1 . It is easy to check

that a_{1}=1, a_{2}=2, f_{2}=x_{1}x_{3}-x_{2}^{2} and a_{i+1}=3a_{i}-a_{i-1} for every i\geq 2 . Moreover,
we have r=x_{2}f_{2}-x_{1}^{3}, f_{0}=x_{2}, f_{1}=x_{1} and f_{i+1}=f_{i-1}^{-1}(r^{a_{i}}+f_{i}^{3}) for every i\geq 2.

From this, we see that ($\iota$^{-1}\mathrm{o}D_{i}\mathrm{o} $\iota$)_{i=1}^{\infty} is the same as the sequence of locally nilpotent
derivations of �Fibonacci type� given by Freudenburg [4], where  $\iota$\in \mathrm{A}\mathrm{u}\mathrm{t}(k[\mathrm{x}]/k) is such

that  $\iota$(x_{2})=-x_{2} and  $\iota$(x_{i})=x_{i} for i=1
, 3. According to Theorem 9.1 (ii), \exp hD_{i}

is wild for each h\in \mathrm{k}\mathrm{e}\mathrm{r}D_{i}\backslash \{0\} for every i\geq 2 . Next, for l, m\in \mathrm{N} ,
set  $\lambda$(y)=y^{l}

and  $\mu$(y, z)=-z^{m} . Then, it follows from Theorem 9.3 that \tilde{f}_{3} belongs to k[\mathrm{x}], \tilde{D}_{2} is an

irreducible locally nilpotent derivation of k[\mathrm{x}] such that \mathrm{k}\mathrm{e}\mathrm{r}\tilde{D}_{2}=k[f_{2}, \tilde{f}_{3}] ,
and \exp h\tilde{D}_{2} is

wild for each h\in \mathrm{k}\mathrm{e}\mathrm{r}\tilde{D}_{2}\backslash \{0\} . In this case, we have r_{2}=f_{2}^{l}x_{2}+x_{1}^{m} . Since \tilde{ $\eta$}_{2}(y, z)=y+z^{2},
and a_{2}=t_{0}-1=2 ,

we get

\displaystyle \tilde{ $\eta$}_{2}(f_{2}, \frac{r_{2}}{ $\lambda$(f_{2})})(f_{2}^{l})^{2}=(f_{2}+\frac{r_{2}^{2}}{f_{2}^{2l}})f_{2}^{2l}=f_{2}^{2l+1}+r_{2}^{2}=x_{1}(f_{2}^{2l}x_{3}-2f_{2}^{l}x_{1}^{m-1_{X_{2}}}+x_{1}^{2m-1}) ,

and so \tilde{f}_{3}=f_{2}^{2l}x_{3}-2f_{2}^{l}x_{1}^{m-1}x_{2}+x_{1}^{2m-1} . We note that, if m=2l+1 ,
then \tilde{D}_{2} is the same as

the homogeneous locally nilpotent derivation of �type (2, 4l+1 given by Freudenburg [4].
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