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Splitting of Frobenius sandwiches

By

Nobuo HARA * and Tadakazu SAWADA**

Abstract

We study Frobenius sandwiches in positive characteristic globally and locally from the

viewpoint of Frobenius splitting and F‐singularities.

Let X be a smooth variety over an algebraically closed field k of characteristic

p>0 . A Frobenius sandwich of X is a normal variety Y through which the (relative)
Frobenius morphism of X factors as F:X\rightarrow Y\rightarrow X . Although X and its Frobenius

sandwich Y have the same underlying space in the Zariski topology, it happens that they
have very different structures as algebraic varieties. For example, Y may be singular
even if X is smooth. More surprisingly, there is a Frobenius sandwich of the projective

plane \mathbb{P}^{2} whose minimal resolution is a uniruled surface of general type called a Zariski

surface; see e.g., [6], [15].
Frobenius sandwiches such as Zariski surfaces reflect pathology of purely insepa‐

rable morphisms, and so it is difficult to analyze them systematically. In this paper,

we will consider Frobenius sandwiches that behave better in the sense of Frobenius

splitting. There are a few local and global properties of algebraic varieties in character‐

istic p>0 defined via splitting of Frobenius maps, among which are local and global
F‐regularity [16], [17], [26]. These properties have close connection with \log terminal

singularities and \log Fano varieties, respectively [12], [25]. Thus, assuming such Frobe‐

nius splitting properties, we can restrict the Frobenius sandwiches under consideration

to �well‐behaved� ones only, so that we may expect systematic study of them.

Taking the above point of view into account, we propose the following problems.

First, we consider a characterization of  F‐regular Frobenius sandwich singularities. We
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ask if an F‐regular Frobenius sandwich singularity is always a toric singularity, and give
a partial answer to this problem in Section 2; see also [1], [2], [3]. Second, we consider a

global version of the above problem. Namely, we ask if a globally F‐regular Frobenius

sandwich of a smooth projective toric surface X is always toric. This turns out to be

affirmative if X is the projective plane \mathbb{P}^{2} or a Hirzebruch surface $\Sigma$_{d} . Indeed, we are

able to classify globally F‐regular Frobenius sandwiches of \mathbb{P}^{2} and $\Sigma$_{d} in Section 3.

Finally in Section 4, we consider F‐blowups of certain surface singularities in char‐

acteristic p>0 . The notion of F‐blowup is introduced by Yasuda [31], and he asks if

an F‐blowup of a surface singularity coincides with the minimal resolution. We give
a counterexample to this question constructed as a non‐F‐regular Frobenius sandwich

surface singularity. On the other hand, we observe that an F‐blowup of any F‐regular
double point is the minimal resolution.

Acknowledgements. We thank Prof. Daisuke Matsushita for giving us an opportu‐

nity to present this note.

Notation and Convention. Unless otherwise specified, we work over an alge‐

braically closed field k of characteristic p>0 . Let X be an algebraic variety over k . By

definition, the absolute Frobenius morphism F:X\rightarrow X of X is the morphism given by
the identity on the underlying space, together with the pth power map on the structure

sheaf, which we also denote by F:\mathcal{O}_{X}\rightarrow F_{*}\mathcal{O}_{X}=\mathcal{O}_{X} . To distinguish the \mathcal{O}_{X} on the

both sides of this Frobenius ring homomorphism, we often identify it with the inclusion

map \mathcal{O}_{X}\mapsto \mathcal{O}_{X}^{1/p} into the ring of pth roots. On the other hand, the relative (or k‐linear)
Frobenius F_{\mathrm{r}\mathrm{e}1}:X\rightarrow X^{(-1)} is defined by the following Cartesian square:

\mathrm{r}\mathrm{e}\mathrm{l}

(1)

Spec k \rightarrow Spec k

Here  X^{(-1)} is the base change of X by the absolute Frobenius of Spec k at the bottom,
so that it is isomorphic to X as an abstract scheme but not as a variety over k . We

use these variants of Frobenius morphisms interchangeably, since it doesn�t matter to

identify them in most of our arguments.

§1. Local and global splitting of Frobenius

In this section we review some definitions and preliminary results on F‐singularities
and global F‐regularity which motivates us for the present work.
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Let X be an algebraic variety over k . We say that X is Frobenius split, or F‐split
for short, if the Frobenius ring homomorphism F:\mathcal{O}_{X}\rightarrow F_{*}\mathcal{O}_{X} splits as an \mathcal{O}_{X} ‐module

homomorphism, i.e., if there exists an \mathcal{O}_{X} ‐module homomorphism  $\phi$:F_{*}\mathcal{O}_{X}\rightarrow \mathcal{O}_{X} such

that  $\phi$\circ F is the identity on \mathcal{O}_{X}.
The local version of F‐splitting is called F‐purity, and F‐regularity is a local Frobe‐

nius splitting property stronger than F‐purity:

Denition 1.1 ([18], [17]). Let R be an integral domain of characteristic p>0
which is F‐finite (i.e., the inclusion map R\mapsto R^{1/p} is module‐finite).

(1) We say that R is F‐pure if the map R\mapsto R^{1/p} splits as an R‐module homomorphism.

(2) We say that R is strongly F‐regular if for every nonzero element c\in R ,
there exists

a power q=p^{e} such that the inclusion map c^{1/q}R\mapsto R^{1/q} splits as an R‐module

homomorphism.

Historically, the notions of F‐splitting and F‐purity appeared in different contexts

([19], [18]), and later, F‐regularity was defined in terms of �tight closure� [16]. The

above defined strong F‐regularity is another version of F‐regularity, but they are known

to coincide for \mathbb{Q}‐Gorenstein rings (and in particular in dimension two). Although it

is not known whether or not these two variants of F‐regularity coincide in general, we

sometimes say F‐regular� or �locally F‐regular� to mean �strongly F‐regular,� since

we do not treat tight closure in this paper.

Finally, global F‐regularity was defined as a global version of strong F‐regularity.

Denition 1.2 ([26]). Let X be a projective variety over k and fix any ample
line bundle L on X . We say that X is globally F‐regular if the following equivalent
conditions hold.

(1) For any n\geq 0 and 0\neq s\in H^{0}(X, L^{\otimes n}) ,
there exists e\geq 0 such that the composition

map \mathcal{O}_{X}\rightarrow^{F^{\mathrm{e}}}F_{*}^{e}\mathcal{O}_{X}\rightarrow^{.s}F_{*}^{e}L^{\otimes n} splits as an \mathcal{O}_{X} ‐module homomorphism, where

F^{e}:\mathcal{O}_{X}\rightarrow F_{*}^{e}\mathcal{O}_{X} denotes the e‐times iterated Frobenius map.

(2) For any effective Cartier divisor D on X
,

there exists e\geq 0 such that the composi‐

tion map \mathcal{O}_{X}\rightarrow F_{*}^{e}\mathcal{O}_{X}F^{\mathrm{e}}\mapsto F_{*}^{e}\mathcal{O}_{X}(D) splits as an \mathcal{O}_{X} ‐module homomorphism.

Remark. (1) Condition (1) of Definition 1.2 does not depend on the choice of an

ample line bundle L
,

and it is equivalent to the strong F‐regularity of the section ring

R(X, L)=\oplus_{n\geq 0}H^{0}(X, L^{\otimes n}) ; see [14], [26].
(2) The above notions of Frobenius splitting are generalized to those for pairs (X, \triangle)

consisting of a normal variety X and an effective \mathbb{R}‐divisor \triangle
,

and even more, those for

triples (X, \triangle, a^{t}) where a\subseteq \mathcal{O}_{X} is an ideal sheaf and 0\leq t\in \mathbb{R} . For example, global
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\mathrm{F}‐regularity of (X, \triangle) is defined by replacing the map \mathcal{O}_{X}\rightarrow F_{*}^{e}\mathcal{O}_{X}F^{\mathrm{e}}\mapsto F_{*}^{e}\mathcal{O}_{X}(D) in

Definition 1.2 (2) by \mathcal{O}_{X}\rightarrow F_{*}^{e}\mathcal{O}_{X}F^{\mathrm{e}}\mapsto F_{*}^{e}\mathcal{O}_{X}(\lfloor(p^{e}-1)\triangle\rfloor+D) . Similarly, we say that

(X, \triangle) is F‐split if the map \mathcal{O}_{X}\rightarrow F_{*}^{e}\mathcal{O}_{X}F^{\mathrm{e}}\mapsto F_{*}^{e}\mathcal{O}_{X}(\lfloor(p^{e}-1)) splits for all e\geq 0.

See e.g., [13], [23], [24] for more details.

1.3. Properties of F‐singularities. We collect some fundamental properties of F‐

purity and F‐regularity from [16], [17], [12], [13], [28].

(1) The following implications are known:

regular \Rightarrow strongly F-regular \Rightarrow F‐pure, normal and CohenMacaulay.

(2) F‐singularities are related to singularities in MMP as follows:

normal, \mathbb{Q}‐Gorenstein and F-pure \Rightarrow\log canonical singularity;

\mathbb{Q}‐Gorenstein and strongly F-regular \Rightarrow\log terminal singularity.

The converse of the implication at the bottom holds in characteristic  p\gg 0 . Namely,
if a complex variety X has only \log terminal singularities, then reduction modulo  p

of X is locally F‐regular for p\gg 0 . These results are generalized for pairs.

Remark. It is easy to see that global splitting of Frobenius implies local splitting,

i.e., if X is F‐split (resp. globally F‐regular), then \mathcal{O}_{X,x} is F‐pure (resp. strongly F‐

regular) for all x\in X . The converse of this implication does not hold. Actually, global

splitting of Frobenius gives strong restriction on the structure of varieties. In particular:

(1) The Kodaira vanishing holds on F‐split varieties [19]: If X is an F‐split projective

variety and L is an ample line bundle on X
,

then

H^{i}(X, L^{-1})=0 for all i<\dim X.

If X is globally F‐regular, then the above vanishing holds for any nef and big line

bundle L. (Note that the Kodaira vanishing fails in characteristic p in general.)

(2) If a normal projective variety X is F‐split, then H^{0}(X, \mathcal{O}_{X}((1-p)K_{X}))\neq 0 . This

is because \mathcal{H}om_{\mathcal{O}_{X}}(F_{*}\mathcal{O}_{X}, \mathcal{O}_{X})\cong F_{*}\mathcal{O}_{X}((1-p)K_{X}) by the adjunction formula

(see e.g., [13]), and an F‐splitting  $\phi$:F_{*}\mathcal{O}_{X}\rightarrow \mathcal{O}_{X} is its non‐zero global section.

Similarly, if X is globally F‐regular, then -K_{X} is big. This is refined as in 1.4 (1)
below.

1.4. Globally F‐regular vs. log Fano. Global F‐regularity has a strong connection

with \log Fano varieties. This connection is a global version of the results in 1.3 (2), and

has been taken for granted as a folklore among experts. The following statements are

recently established by Schwede and Smith [25]. See also a remarkable application due

to Fujino and Gongyo [8].
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(1) If  X is globally F‐regular, then there exists an effective \mathbb{Q}‐divisor \triangle on  X such that

-(K_{X}+\triangle) is an ample \mathbb{Q}‐Cartier divisor and the pair (X, \triangle) is globally F‐regular

(and so, locally F‐regular).

(2) If (X, \triangle) is a \log Fano pair defined over \mathbb{C} in the sense that (X, \triangle) is a klt pair and

-(K_{X}+\triangle) is ample, then reduction modulo p of (X, \triangle) (and so, reduction modulo

p of X) is globally F‐regular for p\gg 0.

Example 1.5. One of the simplest examples of globally F‐regular varieties is

the projective n‐space \mathbb{P}^{n} . Let x_{0} ,
. . .

, x_{n} be the homogeneous coordinates of \mathbb{P}^{n} and

U_{i}=D(x) its basic affine open subset for i=0 ,
. . .

,
n . Fix any U_{i}\cong \mathrm{A}^{n} and let y_{1}=

x_{1}/x_{i} ,
. . .

, y_{i-1}=x_{i-1}/x_{i}, y_{i+1}=x_{i+1}/x_{i} ,
. . .

, y_{n}=x_{n}/x_{i} be its affine coordinates.

Since F_{*}^{e}\mathcal{O}_{U_{i}}\cong \mathcal{O}_{U_{i}}^{1/q} is a free \mathcal{O}_{U_{i}} ‐module with basis y_{1}^{i_{1}/q}\cdots y_{n^{n}}^{i/q}(0\leq i\mathrm{l}, . . .

,  i_{n}\leq

 q-1) , \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{U_{i}}}(F_{*}^{e}\mathcal{O}_{U_{i}}, \mathcal{O}_{U_{i}})\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{U_{i}}}(\mathcal{O}_{U_{i}}^{1/q}, \mathcal{O}_{U_{i}}) is generated as an \mathcal{O}_{U_{i}} ‐module by
the dual basis $\phi$_{i_{1},\ldots,i_{n}}(0\leq i_{1}, \ldots, i_{n}\leq q-1) . If we identify the anticanonical divisor

-K_{\mathbb{P}^{n}} with the reduced toric divisor \triangle consisting of coordinate hyperplanes, then setting

 q=p^{e} we have

\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{\mathrm{p}n}}(F_{*}^{e}\mathcal{O}_{\mathbb{P}^{n}}, \mathcal{O}_{\mathbb{P}^{n}})\cong H^{0}(\mathbb{P}^{n}, F_{*}^{e}\mathcal{O}_{\mathbb{P}^{n}}((1-q)K_{\mathbb{P}^{n}}))\cong H^{0}(\mathbb{P}^{n}, F_{*}^{e}\mathcal{O}_{\mathbb{P}^{n}}((q-1

=\{y_{1}^{(j_{1}-q+1)/q}\cdots y_{n}^{(j_{n}-q+1)/q}|_{j_{1}'+}^{j_{1}}\cdot.\cdot.� j_{n}\geq 0+j_{n}\leq(n+1)(q-1)\}
by the adjunction formula, via which $\phi$_{i_{1},\ldots,i_{n}} corresponds to y_{1}^{-i_{1}/q}\cdots y_{n}^{-i_{n}/q} in the

right‐hand side. In particular, $\phi$_{0,\ldots,0}\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{\mathrm{p}n}}(F_{*}^{e}\mathcal{O}_{\mathbb{P}^{n}}, \mathcal{O}_{\mathbb{P}^{n}}) and it gives a canonical

splitting of F^{e}:\mathcal{O}_{\mathbb{P}^{n}}\rightarrow F_{*}^{e}\mathcal{O}_{\mathbb{P}^{n}} . Thus \mathbb{P}^{n} is F‐split, and we can see easily that \mathbb{P}^{n} is

globally F‐regular by a similar argument. More generally, we have the following.

(1) Any projective toric variety X is globally F‐regular. Indeed, the section ring R=

R(X, L) of X with respect to an ample line bundle L is a toric ring, so that it is

a direct summand of a regular ring. Hence R is strongly F‐regular, and so X is

globally F‐regular.

(2) Any toric variety X is F‐split and locally F‐regular. Even more, if \triangle\sim-K_{X} is

the reduced toric divisor, then the pair (X, \triangle) is F‐split; cf. [13, Corollary 2.5].

(3) Let X\subseteq \mathbb{P}^{n} be a hypersurface defined by a homogeneous polynomial f\in S=

k[x_{0}, . . . , x_{n}] . Then X is F‐split if and only if f^{p-1}\not\in(x_{0}^{p}, \ldots, x_{n}^{p}) in S . There are

similar criteria for global F‐regularity, and F‐purity and F‐regularity of hypersur‐
face singularities. These are special cases of the Fedder‐type criteria [7].

We close this section with some conditions for morphisms under which splitting
of Frobenius inherits. In the following proposition we assume that the varieties under

consideration are projective, whenever we speak of global F‐regularity.
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Proposition 1.6. Let f:X\rightarrow Y be a morphism of varieties over k satisfy ing
either of the following conditions.

(1) f is a projective morphism with f_{*}\mathcal{O}_{X}=\mathcal{O}_{Y}.

(2) The ring homomorphism \mathcal{O}_{Y}\rightarrow f_{*}\mathcal{O}_{X} splits as an \mathcal{O}_{Y} ‐module homomorphism.

Then, if X is globally F‐regular (resp. F‐split), so is Y.

Proof. As for case (1), see [14]. Case (2) is proved similarly as a well known fact

that strong F‐regularity and F‐purity inherit to pure subrings. \square 

§2. Frobenius sandwiches

Denition 2.1. Let X be a smooth variety over k and let e be a positive integer.
We say that a normal variety Y is an F^{e} ‐sandwich of X if the eth iterated relative

Frobenius morphism of X factors as

rel

Y

for some finite k‐morphisms  $\pi$:X\rightarrow Y and  $\rho$:Y\rightarrow X^{(-e)} ,
which are homeomorphisms

in the Zariski topology. An F‐sandwich will mean an F^{1} ‐sandwich.

Remark. (1) By the normality, an F^{e}‐sandwich Y of X is determined by its

rational function field k(Y) with k(X^{(-e)})\subseteq k(Y)\subseteq k(X) .

(2) We say that the Frobenius sandwich Y is of exponent one if the degree of the

morphism  $\pi$:X\rightarrow Y is p . It is known that F‐sandwiches Y of X of exponent one

are in one‐to‐one correspondence with saturated p‐closed invertible subsheaves L of the

tangent bundle T_{X} ,
where L is said to be p‐closed if it is closed under p‐times iterated

composite of differential operators. The correspondence is given by

L\mapsto \mathcal{O}_{Y}= { f\in \mathcal{O}_{X}| $\delta$(f)=0 for all  $\delta$\in L },

Y\mapsto L= {  $\delta$\in T_{X}| $\delta$(f)=0 for all f\in \mathcal{O}_{Y} }.

See [6] for more details.

(3) An F^{e} ‐sandwich of a smooth variety may be singular. We call such a singularity
an F^{e} ‐sandwich singularity. Also, an F^{e}‐sandwich of a globally F‐regular variety may

not be F‐split. Indeed, there is an F‐sandwich of \mathbb{P}^{2} whose minimal resolution is a sur‐

face of general type (so is not F‐split) called a Zariski surface [33]. Zariski surfaces seem

to reflect pathological aspects of purely inseparable morphisms. But if we assume global
or local F‐regularity for Frobenius sandwiches, the situation becomes much simpler.
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We rephrase Proposition 1.6 (2) for Frobenius sandwiches as follows.

Proposition 2.2. Let Y be an F^{e} ‐sandwich of X and assume that X is globally
F‐regular (resp. locally F‐regular). Then the following conditions are equivalent:

(1) Y is F‐split (resp. locally F‐pure);

(2) Y is globally F‐regular (resp. locally F‐regular);

(3) The ring homomorphism \mathcal{O}_{Y}\rightarrow$\pi$_{*}\mathcal{O}_{X} associated to  $\pi$:X\rightarrow Y splits (resp. splits

locally) as an \mathcal{O}_{Y} ‐module homomorphism.

Example 2.3. Let X=\mathrm{A}^{n} with affine coordinate ring \mathcal{O}_{X}=k[x_{1}, . . . , x_{n}] ,
and

let Y be an F‐sandwich of X of exponent one. Then there exists a nonzero p‐closed

vector field  $\delta$\in T_{X} such that the affine coordinate ring of Y is the constant ring of  $\delta$ :

\mathcal{O}_{Y}=\mathcal{O}_{X}^{ $\delta$}:=\{f\in \mathcal{O}_{X}| $\delta$(f)=0\}\subset \mathcal{O}_{X}.

Here are examples of F‐regular and non‐F‐regular F‐sandwich singularities:

(1) Let 0\displaystyle \neq $\delta$=\sum_{i=1}^{n}a_{i}x_{i}\partial/\partial x_{i}\in T_{X} with a_{1} ,
. . .

, a_{n}\in \mathrm{F}_{p} . This is a p‐closed vector

field with  $\delta$^{p}= $\delta$
,

and  Y=X/ $\delta$ has a toric singularity of type \displaystyle \frac{1}{p}(\mathrm{a}_{1}, \ldots, a_{n}) , i.e.,

\mathcal{O}_{X}^{ $\delta$}=k[x_{1}^{l_{1}}\cdots x_{n}^{l_{n}}|l_{1}, . . . , l_{n}\geq 0;a_{1}l_{1}+\cdots+a_{n}l_{n}\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} p)].

(2) Let n=2, \mathcal{O}_{X}=k[x, y] and let  $\delta$=x^{p}\partial/\partial x+y^{p}\partial/\partial y\in T_{X}=\mathrm{D}\mathrm{e}\mathrm{r}_{k}(\mathcal{O}_{X}) . This is

a nilpotent derivation (i.e., $\delta$^{p}=0 ) and

\mathcal{O}_{X}^{ $\delta$}=k[x^{p}, x^{p}y-xy^{p}, y^{p}]\cong k[X, Y, Z]/(Z^{p}-(X^{p}Y —XYp) ) .

It follows from Fedder�s criterion [7] that this is not F‐regular; see Example 4.4 for

more details.

Since local and global F‐regularity impose undoubtedly strong restriction on the

structure of singularities and projective varieties in characteristic p>0 , respectively, it

is natural to ask the following

Problem. Characterize F‐regular Frobenius sandwich singularities and globally
F‐regular Frobenius sandwiches of a given globally F‐regular variety. More specifically:

(1) Is an F‐regular F^{e}‐sandwich singularity always a toric singularity?

(2) Given a smooth toric surface X
, classify globally F‐regular F‐sandwiches of X.

First we give a partial answer to the problem (1) above. Since the problem is local,
the results are stated for a local ring (R, \mathfrak{m}) . The following proposition is essentially

proved by Aramova [1], [2], [3]. A detailed proof is recorded in [21].
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Proposition 2.4. Let R be an F ‐sandwich singularity of S=k[[x_{1}, . . . , X]] of

exponent one, i.e., R=S^{ $\delta$} for some p ‐closed vector field  $\delta$\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}(S) . If R is strongly
F‐regular, then there is a p ‐closed derivation $\delta$'=\displaystyle \sum_{i=1}^{n}a_{i}x_{i}\partial/\partial x_{i}\in Der(S) with

 a_{1} ,
. . .

, a_{n}\in \mathrm{F}_{p} such that R\cong S^{$\delta$'}

Sketch of Proof. For simplicity, we consider the case where S=k[[x, y]] ,
and let

\mathfrak{m}=(x, y) . If  $\delta$(S)\not\subset \mathfrak{m} , then R=S^{ $\delta$} is regular, and the conclusion follows easily. So we

may assume  $\delta$(S)\subseteq \mathfrak{m} . We have  $\delta$^{p}= $\alpha \delta$ for some  $\alpha$\in R by the assumption. Since R

is strongly F‐regular, the inclusion map R\mapsto S splits as an R‐module homomorphism.
Then we see that  $\alpha$\in S^{\times} (see the proof of Lemma 3.2), so that $\alpha$^{-1/(p-1)}\in S . Thus

$\alpha$^{-1/(p-1)}\in R . Replacing  $\delta$ by  $\alpha$^{-1/(p-1)} $\delta$
,

we may assume that  $\delta$^{p}= $\delta$.

We define $\delta$_{i}\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}(\mathfrak{m}/\mathfrak{m}^{i}) by $\delta$_{i}(\overline{s})=\overline{ $\delta$(s)} . Since $\delta$^{p}- $\delta$=0 ,
the minimal

polynomial $\mu$_{$\delta$_{i}}(t)\in k[t] of $\delta$_{i} divides t^{p}-t=t(t-1)(t-2)\cdots(t-(p-1)) . Hence

$\delta$_{i} is diagonalizable with eigenvalues in \mathrm{F}_{p} . Let z_{2}, w_{2}\in \mathfrak{m}/\mathfrak{m}^{2} be linearly independent

eigenvectors of $\delta$_{2} and a, b\in \mathrm{F}_{p} their eigenvalues, respectively. Now we choose z_{i},  w_{i}\in

\mathfrak{m}/\mathfrak{m}^{i} for i\geq 3 inductively as follows: Given z_{i-1}, w_{i-1} ,
we can choose z_{i}, w_{i} so that (i)

they are part of a basis of \mathfrak{m}/\mathfrak{m}^{i} with eigenvalues a, b ; and (ii) their images by a natural

surjection \mathfrak{m}/\mathfrak{m}^{i}\rightarrow \mathfrak{m}/\mathfrak{m}^{i-1} are z_{i-1}, w_{i-1} . Let z=\displaystyle \lim_{i\rightarrow\infty}z_{i}, w=\displaystyle \lim_{i\rightarrow\infty}w_{i}\in S.
Then z, w are a regular system of parameters of S=\displaystyle \lim_{\leftarrow}S/\mathfrak{m}^{i} and  $\delta$=az\partial/\partial z+

bw\partial/\partial w. \square 

Proposition 2.5. Let (R, \mathfrak{m}) be a two‐dimensional F^{e} ‐sandwich double point.

If R is strongly F‐regular, then R is an A_{q-1} ‐singularity for some q|p^{2e}.

2.6. Hilbert‐Kunz multiplicity. The above proposition is proved by using the

invariant called the Hilbert‐Kunz multiplicity introduced by Monsky [20].
Let (R, \mathfrak{m}) be an n‐dimensional Noetherian local ring over k with R/\mathfrak{m}=k and let

I be an \mathfrak{m}‐primary ideal. Then the Hilbert‐Kunz multiplicity e_{\mathrm{H}\mathrm{K}}(I, R) is defined by

e_{\mathrm{H}\mathrm{K}}(I, R)=\displaystyle \lim_{e\rightarrow\infty}\frac{1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{R}(R/I^{[p^{\mathrm{e}}]})}{p^{ne}}=\lim_{e\rightarrow\infty}\frac{\dim_{k}R/I^{[p^{\mathrm{e}}]}}{p^{ne}}.
It is known that this limit exists and is a positive real number.

In general, it is hard to compute e_{\mathrm{H}\mathrm{K}}(I, R) ,
but if a regular local ring S is a

module‐finite extension of R of degree r=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{R}S ,
it is computed as

(2.1) e_{\mathrm{H}\mathrm{K}}(I, R)=\displaystyle \frac{e_{\mathrm{H}\mathrm{K}}(IS,S)}{r}=\frac{1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{S}(S/IS)}{r},
see [30]. In particular, if R is an F^{e} ‐sandwich of S ,

then e_{\mathrm{H}\mathrm{K}}(I, R)\displaystyle \in\frac{1}{p^{n\mathrm{e}}}\mathbb{Z}.

Proof of Proposition 2.5. We have e_{\mathrm{H}\mathrm{K}}(\displaystyle \mathfrak{m}, R)\in\frac{1}{p^{2\mathrm{e}}}\mathbb{Z} by the assumption. On the

other hand, if R is an F‐regular double point of \dim R=2 ,
then R has the same ordinary
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defining equation as in characteristic zero ([4], [11]), and one can take a module‐finite

extension R\subseteq S with S regular local such that r= rankS is not a power of p unless R

is an A_{q-1} ‐singularity for some power q of p . For example, if R is an E_{8}‐singularity, then

p>5 by F‐regularity, and R=S^{G} for a finite group G of order r=120 ,
which is not

divisible by p . Then the McKay correspondence holds true as in the formula (4.1) before

Proposition 4.9, so that e_{\mathrm{H}\mathrm{K}}(\mathfrak{m}, R)=2-1/r by [30]. This leads to a contradiction if R

is a rational double point of type D_{n}, E_{6}, E_{7} or E_{8}. \square 

Frobenius sandwich surfaces. We quickly review generalities on Frobenius sand‐

wiches of a smooth surface for the next section. See [6], [15] for further details.

Let X be a smooth projective surface and let k(X) be the function field of X.

We define an equivalence relation \sim between rational vector fields  $\delta$, $\delta$'\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}\mathrm{k}(\mathrm{X}) as

follows: We write  $\delta$\sim$\delta$' if there is a nonzero rational function  $\alpha$\in k(X) such that

 $\delta$= $\alpha \delta$'

By a 1‐foliation of X
,

we mean a saturated p‐closed invertible subsheaf of the

tangent bundle T_{X} . For a 1‐foliation L
,

we have the natural exact sequence

0\rightarrow L\rightarrow T_{X}\rightarrow I_{Z}\otimes L'\rightarrow 0,

where I_{Z} is the defining ideal sheaf of a zero‐dimensional subscheme Z and L' is an

invertible sheaf. We call Z the singular locus of L and denote it by Sing L.

Now we recall the relationship between rational vector fields and 1‐foliations. \mathrm{A}

rational vector field  $\delta$\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}\mathrm{k}(\mathrm{X}) is locally expressed as  $\alpha$(f\partial/\partial s+g\partial/\partial t) where s, t

are local coordinates, f, g are regular functions without a common factor and  $\alpha$\in k(X) .

The divisor ( $\delta$)_{0} associated to  $\delta$ is defined by glueing the divisors ( $\alpha$)_{0} on affine open

sets. Let Z be the zero‐dimensional subscheme of X defined locally by f=g=0 . Then

we have the natural exact sequence

0\rightarrow \mathcal{O}_{X}(( $\delta$)_{0})\rightarrow T_{X}\rightarrow I_{Z}\otimes L'\rightarrow 0,

where I_{Z} is the defining ideal sheaf of Z and L' is an invertible sheaf. It follows that

 $\delta$\mapsto \mathcal{O}_{X}(( $\delta$)_{0}) gives a one‐to‐one correspondence between nonzero p‐closed rational

vector fields modulo equivalence and 1‐foliations.

Theorem 2.7 (Ekedahl [6]). Let X be a smooth projective surfa ce. Then there

is a one‐to‐one correspondence between 1‐foliations L\subset T_{X} and F‐sandwich surfa ces Y

of X of exponent one, given by foliation quotient  $\pi$:X\rightarrow Y=X/L . Furthermore,

Sing Y= $\pi$( Sing L ) ,

where Sing Y is the singular locus of Y
,

and outside Sing L we have the canonical bundle

formula
$\omega$_{X}\cong$\pi$^{*}$\omega$_{Y}\otimes L^{\otimes(p-1)}.
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§3. Globally F‐regular Frobenius sandwiches of \mathbb{P}^{2} and $\Sigma$_{d}

In this section we classify globally F‐regular F‐sandwiches of the projective plane
and Hirzebruch surfaces of exponent one. Ganong and Russell showed in [9] that (non‐
trivial) F‐sandwiches of the projective plane are singular and moreover that for each

Hirzebruch surface there are at most two smooth F‐sandwiches. (The former result was

first proved by Bloch.) We study these F‐sandwiches from the viewpoint of Frobenius

splitting.

Globally F‐regular F‐sandwiches of \mathbb{P}^{2} . Let X_{0}, X_{1} and X_{2} be homogeneous
coordinates of \mathbb{P}^{2}

, i.e., \mathbb{P}^{2}= Proj k[X_{0}, X_{1}, X_{2}] . Let x=X_{1}/X_{0}, y=X_{2}/X_{0} (resp.
z=X_{0}/X_{1}, w=X_{2}/X_{1} ; u=X_{0}/X_{2}, v=X_{1}/X_{2}) be the affine coordinates of

U_{0}:=D(X) (resp. U_{1}:=D_{+}(X_{1});U_{2}:=D_{+}(X_{2}) ).
Let N\cong \mathbb{Z}^{2} be a lattice with standard basis e_{1}=(1,0) , e_{2}=(0,1) ,

M=

\mathrm{H}\mathrm{o}\mathrm{m}(N, \mathbb{Z}) , N_{\mathbb{R}}=N\otimes_{\mathbb{Z}}\mathbb{R} and M_{\mathbb{R}}=M\otimes_{\mathbb{Z}}\mathbb{R} . For a fan \triangle in  N
,

we denote the as‐

sociated toric variety over k by T_{N}

\mathbb{P}^{2} is a toric surface given by the complete fan whose rays are spanned by $\rho$_{0}=e_{2},

$\rho$_{1}=e_{1} and $\rho$_{2}=e_{1}-e_{2} . For i=0 , 1, 2, let D_{i} be the divisor that corresponds to the

ray spanned by $\rho$_{i}.

We state here some lemmas which will be used in the proof of Theorem 3.4.

Lemma 3.1. Let  $\delta$\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}k(\mathbb{P}^{2}) . If the corresponding 1‐foliation L=\mathcal{O}_{\mathbb{P}^{2}}(( $\delta$)_{0})
has a nonzero global section, then

 $\delta$\displaystyle \sim(ax+by+cx^{2}+dxy+e)\frac{\partial}{\partial x}+(fx+gy+dy^{2}+cxy+h)\frac{\partial}{\partial y},
where a, b, c, d, e, f, g, h\in k.

Proof. Multiplying a suitable rational function on \mathbb{P}^{2}
,

we may assume that

 $\delta$\displaystyle \sim\sum_{0\leq i,j}a_{ij}x^{i}y^{j}\frac{\partial}{\partial x}+\sum_{0\leq mn},b_{mn}x^{m}y^{n}\frac{\partial}{\partial y},
where a_{ij}, b_{mn}\in k ,

and \displaystyle \sum_{0\leq i,j}a_{ij}x^{i}y^{j} and \displaystyle \sum_{0\leq m,n}b_{mn}x^{m}y^{n} have no common fac‐

tor. If we express  $\delta$ for the local coordinates  z, w (resp. u, v ), then we easily see

that the coefficient of  $\delta$ in \partial/\partial z (resp. \partial/\partial u ) equals -\displaystyle \sum_{0\leq i,j}a_{ij}w^{j}/z^{i+j-2} (resp.

-\displaystyle \sum_{0\leq m,n}b_{mn}v^{m}/u^{m+n-2}) . Since \displaystyle \sum_{0\leq i,j}a_{ij}x^{i}y^{j} and \displaystyle \sum_{0\leq m,n}b_{mn}x^{m}y^{n} have no com‐

mon factor, we have \deg( $\delta$)_{0}=\mathrm{o}\mathrm{r}\mathrm{d}_{D_{2}}( $\delta$)_{0} . Now \deg L\geq 0 ,
so that a_{ij}=0 for i+j\geq 3

(resp. b_{mn}=0 for m+n\geq 3 ). Thus we may assume that  $\delta$\displaystyle \sim\sum_{0\leq i+j\leq 2}a_{ij}x^{i}y^{j}\partial/\partial x+
\displaystyle \sum_{0\leq m+n\leq 2}b_{mn}x^{m}y^{n}\partial/\partial y . Considering  $\delta$ for the local coordinates  z, w again, we see

that b_{20}=a_{02}=0, b_{11}=a_{20} and b_{02}=a_{11} . This means that  $\delta$\sim(ax+by+cx^{2}+
dxy+e)\partial/\partial x+(fx+gy+dy^{2}+cxy+h)\partial/\partial y ,

where a, b, c, d, e, f, g, h\in k. \square 
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Lemma 3.2. Let S=k[x, y] and let  $\delta$=f\partial/\partial x+g\partial/\partial x\in Der(S), where

 f, g\in(x, y) and have no common factor. Suppose  $\delta$ is  p ‐closed. If the inclusion S^{ $\delta$}\subset S

splits as an S^{ $\delta$} ‐module, then  $\delta$ is not nilpotent.

Proof. We have  $\delta$^{p}= $\alpha \delta$ for some  $\alpha$\in S by the assumption. Now the inclusion

i:S^{ $\delta$}\mapsto S splits as an S^{ $\delta$} ‐module, so that there is an endomorphism  $\varphi$\in \mathrm{E}\mathrm{n}\mathrm{d}_{S^{ $\delta$}}(S)
such that  $\varphi$\circ i=\mathrm{i}\mathrm{d}_{S^{ $\delta$}} . Since f and g have no common factor, \mathrm{D}\mathrm{e}\mathrm{r}_{k}(S)/\langle $\delta$\rangle is torsion‐

free, where \langle $\delta$\rangle is the  S‐submodule of Der(S) spanned by $\delta$^{p^{i}}(i\geq 0) . By the Galois

correspondence established in [3], we see that \langle $\delta$\rangle\mapsto S^{ $\delta$}\mapsto \mathrm{D}\mathrm{e}\mathrm{r}_{S^{ $\delta$}}(S)=\langle $\delta$\rangle . Thus by [3,
Proposition 2.7] we have  S[ $\delta$]=\mathrm{E}\mathrm{n}\mathrm{d}_{S^{ $\delta$}}(S) ,

which means that  $\varphi$=\displaystyle \sum_{i=0}^{p-1}a_{i}$\delta$^{i} for some

a_{i}\in S . Since  $\varphi$\circ i=\mathrm{i}\mathrm{d}_{S^{ $\delta$}} ,
we have a_{0}=1 . Considering the coefficient of  $\delta$\circ $\varphi$(=0) in

$\delta$^{1}
,

we see that  $\delta$(a_{1})+1+ $\alpha$ a_{p-1}=0 . Since f, g\in(x, y) ,
the linear term of  $\alpha$ a_{p-1} is

equal to -1 . Therefore  $\delta$ is not nilpotent. \square 

One can check easily the following lemma.

Lemma 3.3. Let  $\delta$=(ax+by+c)\partial/\partial x+(dy+e)\partial/\partial y\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}(k[x, y where

a, b, c, d, e\in k ,
and ax+by+c and dy+e have no common factor. Suppose  $\delta$ is  p ‐closed.

If  $\delta$ is not nilpotent, then  a, d\neq 0.

For i=1
,

. . .

, p-1 ,
let \triangle^{i} be the complete fan whose rays are spanned by e_{2},

pe_{1}-ie_{2} and -pe_{1}+(i-1)e_{2}.

Theorem 3.4. A globally F‐regular F‐sandwich of \mathbb{P}^{2} of exponent one is isomor‐

phic to either one of the singular toric surfa ces T_{N}(\triangle^{i})(1\leq i\leq p-1) . In particular,
there are just p-1 isomorphism classes of globally F‐regular F‐sandwiches.

Proof. Let  $\pi$ : \mathbb{P}^{2}\rightarrow Y be a globally F‐regular F‐sandwich surface and let L\subset T_{\mathbb{P}^{2}}

(resp.  $\delta$\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}k(\mathbb{P}^{2}) ) be the corresponding 1‐foliation (resp. the rational vector field).
Since the associated ring homomorphism \mathcal{O}_{Y}\rightarrow$\pi$_{*}\mathcal{O}_{\mathbb{P}^{2}} splits by Proposition 2.2, there

is a nonzero \mathcal{O}_{Y} ‐module homomorphism $\pi$_{*}\mathcal{O}_{\mathbb{P}^{2}}\rightarrow \mathcal{O}_{Y} . Outside Sing Y we have

\mathcal{H}om_{\mathcal{O}_{Y}}($\pi$_{*}\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{Y})\cong \mathcal{H}om_{\mathcal{O}_{Y}}($\pi$_{*}\mathcal{O}_{\mathbb{P}^{2}}, $\omega$_{Y})\otimes$\omega$_{Y}^{-1}
\cong$\pi$_{*}($\omega$_{\mathbb{P}^{2}})\otimes$\omega$_{Y}^{-1}\cong$\pi$_{*}($\omega$_{\mathbb{P}^{2}}\otimes$\pi$^{*}($\omega$_{Y}^{-1}))\cong$\pi$_{*}(L^{\otimes(p-1)}) ,

which gives \mathrm{a} (global) isomorphism \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{Y}}($\pi$_{*}\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{Y})\cong H^{0}(\mathbb{P}^{2}, L^{\otimes(p-1)}) since Y

is normal. Thus L has a nonzero global section. In particular, \deg L\geq 0 . On the

other hand, since the tangent bundle T_{\mathbb{P}^{2}} is stable, we have \deg L<3/2 . Therefore we

conclude that L\cong \mathcal{O}_{\mathbb{P}^{2}}(1) or \mathcal{O}_{\mathbb{P}^{2}} . Now we have the induced exact sequence

0\rightarrow L\rightarrow T_{\mathbb{P}^{2}}\rightarrow I_{\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}L}\otimes L'\rightarrow 0,
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where I_{\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}L} is the ideal sheaf of Sing L and L' is an invertible sheaf. From this sequence

we see that the second Chern class c_{2}(I_{\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}L})=1 or 3, which means that there is a

singular point on Y . After a suitable change of coordinates, we may assume that Y is

singular at the point corresponding to the origin of U_{0} . Then by Lemma 3.1 we may

assume that

 $\delta$=(ax+by+cx^{2}+dxy)\displaystyle \frac{\partial}{\partial x}+(ex+fy+dy^{2}+cxy)\frac{\partial}{\partial y},
where a, b, c, d, e, f\in k.

First suppose that the 1‐foliation L\subset T_{\mathbb{P}^{2}} is isomorphic to \mathcal{O}_{\mathbb{P}^{2}}(1) . If we express  $\delta$

for the local coordinates  z, w
,

we have  $\delta$= −(bzw + az + dw + c) \partial / \partialz‐(bw2 +(a-f)w-
e)\partial/\partial w . Suppose that ax+by+cx^{2}+dxy and ex+fy+dy^{2}+cxy have no common

factor. Then we have \deg( $\delta$)_{0}=\mathrm{o}\mathrm{r}\mathrm{d}_{D_{2}}( $\delta$)_{0} . Now L\cong \mathcal{O}_{\mathbb{P}^{2}}(1) ,
so that bzw+az+dw+c

and bw^{2}+(a-f)w-e must have the common factor z
,
which implies b=c=d=e=0

and a=f . Thus  $\delta$\sim x\partial/\partial x+y\partial/\partial y . Similarly we have  $\delta$\sim x\partial/\partial x+y\partial/\partial y in the case

where ax+by+cx^{2}+dxy and ex+fy+dy^{2}+cxy have a common factor of degree
1. If they have a common factor of degree 2, then Y is smooth on the image of U_{0},
which is a contradiction. Now we easily see that the corresponding globally F‐regular
F‐sandwich Y is isomorphic to the singular toric surface T_{N}(\triangle^{1}) . In this case, Y has

only one singular point.
Next suppose that the 1‐foliation L\subset T_{\mathbb{P}^{2}} is isomorphic to \mathcal{O}_{\mathbb{P}^{2}} . We will show that

after suitable changes of coordinates, we have

 $\delta$\displaystyle \sim $\alpha$\frac{\partial}{\partial $\alpha$}+i $\beta$\frac{\partial}{\partial $\beta$},
where  $\alpha$ (resp.  $\beta$ ) is the local coordinate  z or u (resp. w or v) and i\in(\mathbb{Z}/p\mathbb{Z})^{\times},
i\not\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} p) .

Suppose that ax+by+cx^{2}+dxy and ex+fy+dy^{2}+cxy have no common factor.

Then  $\delta$ is not nilpotent by Lemma 3.2. Suppose  b=0 . For the local coordinate z, w,

we have  $\delta$=-(az+dw+c)\partial/\partial z+((f-a)w+e)\partial/\partial w . By Lemma 3.3 we have

a, f-a\neq 0 . After a change of coordinates as z-(ac-cf+de)/a(f-a)\mapsto z and

w-e/(a-f)\mapsto w ,
we have  $\delta$=-(az+dw)\partial/\partial z+(f-a)w\partial/\partial w . Since a\neq 0 and

 $\delta$ is  p‐closed, we have  $\delta$\sim(z+sw)\partial/\partial z+iw\partial/\partial w ,
where s\in k, i\in(\mathbb{Z}/p\mathbb{Z})^{\times} . For the

local coordinates u, v
,

we have (z+sw)\partial/\partial z+iw\partial/\partial w=((1-i)u+s)\partial/\partial u-iv\partial/\partial v.
After a suitable change of coordinates, we eventually have  $\delta$\sim u\partial/\partial u+iv\partial/\partial v ,

where

i\in(\mathbb{Z}/p\mathbb{Z})^{\times}, i\not\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} p) . (Since Y is singular on the image of U_{0} ,
we see that

i\not\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} p
Next suppose that b\neq 0 . We may assume b=1 . For the local coordinates z, w,

we have  $\delta$=-(zw+az+dw+c)\partial/\partial z-(w^{2}+(a-f)w-e)\partial/\partial w . Let A+, A_{-}\in k be

the roots of the quadratic equation w^{2}+(a-f)w-e=0.
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Now we show that a+A+\neq 0 . If a+A+=0 ,
then we have  $\delta$=-(zw+az+

dw+c)\partial/\partial z-(w+a)(w-f)\partial/\partial w . If a+f=0 ,
then after a change of a coordinate as

w-f\mapsto w ,
we have  $\delta$=-(zw+dw+fd+c)\partial/\partial z-w^{2}\partial/\partial w . For the local coordinates

u, v
,

we have  $\delta$=-((fd+c)v+d)\partial/\partial u+\partial/\partial v . This implies that  $\delta$ is nilpotent or

not  p‐closed, which is a contradiction. Next suppose that a+f\neq 0 . After a change of

coordinates as z+(df+c)/(a+f)\mapsto z and w-f\mapsto w ,
we have

 $\delta$=\displaystyle \frac{-ad+c}{a+f}\frac{\partial}{\partial u}+((a+f)v+1)\frac{\partial}{\partial v}
for the local coordinates u, v . If -ad+c\neq 0 ,

then  $\delta$ is not  p‐closed, which is a

contradiction. If -ad+c=0 ,
then  $\delta$ defines a nonzero divisor on  U_{0} ,

which is a

contradiction. Therefore we conclude that a+A+\neq 0.
After a change of coordinates as z+(dA++c)/(a+A_{+})\mapsto z and w-A_{-}\mapsto w,

we have

 $\delta$=-((a+A_{-})u+\displaystyle \frac{ad-c}{a+f})\frac{\partial}{\partial u}+((a+A_{+})v+1)\frac{\partial}{\partial v}
for the local coordinates u, v . After a suitable change of coordinates, we have  $\delta$\sim

 u\partial/\partial u+iv\partial/\partial v ,
where i\in(\mathbb{Z}/p\mathbb{Z})^{\times}, i\not\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} p) .

Therefore we conclude that

 $\delta$\displaystyle \sim x\frac{\partial}{\partial x}+iy\frac{\partial}{\partial y},
where i\in(\mathbb{Z}/p\mathbb{Z})^{\times}, i\not\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} p) . The same holds for the case where ax+by+cx^{2}+dxy
and ex+fy+dy^{2}+cxy have a common factor of degree 1. If they have a common

factor of degree 2, then Y is smooth on the image of U_{0} ,
which is a contradiction. Now

we easily see that the corresponding globally F‐regular F‐sandwich Y is isomorphic to

the singular toric surface T_{N}(\triangle^{i}) . In this case, Y has 3 singular points. \square 

Globally F‐regular F‐sandwiches of Hirzebruch surfaces. The Hirzebruch

surface $\Sigma$_{d}(d\geq 0) is the \mathbb{P}^{1} ‐bundle associated to the vector bundle \mathcal{O}_{\mathbb{P}^{1}}\oplus \mathcal{O}_{\mathbb{P}^{1}}(d) on

\mathbb{P}^{1} . It is well‐known that $\Sigma$_{d} is the union of affine planes whose affine coordinate rings
are k[x, y], k[x^{d}y, 1/x], k[1/x, 1/x^{d}y] and k[1/y, x] , respectively.

As with Lemma 3.1, we can prove the following lemma.

Lemma 3.5. Let  $\delta$\in \mathrm{D}\mathrm{e}\mathrm{r}_{k}k($\Sigma$_{d}) . Suppose that the corresponding 1‐foliation

\mathcal{O}_{$\Sigma$_{d}}(( $\delta$)_{0}) has a nonzero global section. Then we have the following.

(1) If d=0 ,
then  $\delta$\sim(ax^{2}+bx+c)\partial/\partial x+(ey^{2}+fy+g)\partial/\partial y ,

where a, b, c, e, f, g\in k.

(2) If d\geq 1 ,
then  $\delta$\sim(ax^{2}+bx+c)\partial/\partial x+(F(x)y-dax+e)y\partial/\partial y ,

where a, b, c, e\in k

and F(x)\in k[x] with \deg F(x)\leq d.
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Let \triangle_{di}(1\leq i\leq p-1) (resp. \triangle_{d0} ; \triangle_{dp} ) be the complete fan whose rays are

spanned by e_{2}, pe_{1}-ie_{2}, -e_{2} and -pe_{1}+(i+d)e_{2} (resp. e_{2}, e_{1}, -e_{2} and -pe_{1}+de_{2} ;

e_{2}, e_{1}, -e_{2} and -e_{1}+dpe_{2} ).
By Lemma 3.5, we easily see that a globally F‐regular F‐sandwich of $\Sigma$_{0} of exponent

one is isomorphic to either one of the toric surfaces T_{N}() (0\leq i\leq p-1) . (In
particular, there are just p isomorphism classes of globally F‐regular F‐sandwiches.)
We can prove similar results in the case where d\geq 1 . See [21], [22].

Theorem 3.6. A globally F ‐regular F ‐sandwich of $\Sigma$_{d}(d\geq 1) of exponent one

is isomorphic to either one of the toric surfa ces T_{N}() (0\leq i\leq p) . In particular,
there are just p+1 isomorphism classes of globally F ‐regular F ‐sandwiches.

§4. F‐blowups vs. minimal resolution for surface singularities

In this section, we consider the F‐blowups of surface singularities, and give examples
of an F‐sandwich surface singularity whose \mathrm{F}‐blowup is not the minimal resolution.

In what follows, we denote by q=p^{e} a power of char k=p>0 . For a variety
X defined over k

,
we identify the eth iterate of Frobenius map F^{e}:\mathcal{O}_{X}\rightarrow F_{*}^{e}\mathcal{O}_{X}

with the inclusion map \mathcal{O}_{X}\mapsto \mathcal{O}_{X}^{1/q} . In this manner the induced morphism X^{1/q}:=

\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}_{X}\mathcal{O}_{X}^{1/q}\rightarrow X is identified with the eth absolute Frobenius morphism F^{e}:X\rightarrow X.

(We also abuse the absolute and relative Frobenius, since it is harmless under our

assumption that k is algebraically closed.)

Denition 4.1 (Yasuda [31]). Let X be a variety of \dim X=n over k . The eth

F‐blowup FB(X) of X is defined to be the irreducible component \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{p^{ne}}(X^{1/p^{\mathrm{e}}}/X)^{\mathrm{o}}
of the relative Hilbert scheme \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{p^{ne}}(X^{1/p^{\mathrm{e}}}/X) that dominates X

, together with the

projective birational morphism  $\varphi$:\mathrm{F}\mathrm{B}_{e}(X)\rightarrow X.

By definition,  $\varphi$:Z=\mathrm{F}\mathrm{B}_{e}(X)\rightarrow X satisfies the property that the torsion‐free

pullback $\varphi$^{\star}\mathcal{O}_{X}^{1/q} :=$\varphi$^{*}\mathcal{O}_{X}^{1/q}/torsion is a flat (equivalently, locally free) \mathcal{O}_{Z} ‐algebra of

rank q^{n}=p^{ne} ,
and FB(X) is universal with respect to this property.

Through the remainder of this section, we consider the surface case n=2 and work

under the following notation: Let (X, x) be a normal surface singularity defined over k.

Since we are interested in birational modifications of an isolated singularity (X, x) ,
we

will presumably put X= Spec \mathcal{O}_{X,x} . Let f:\overline{X}\rightarrow X be the minimal resolution.

We will consider the following question raised by Yasuda:

Question. Is FB(X) equal to the minimal resolution \overline{X}?

It is proved that FB(X) =\overline{X} for e\gg 0 if X is either a toric singularity [31]
or a tame quotient singularity [29]. When X=S/G is a quotient of smooth S by a
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finite group G of order not divisible by p ,
the essential part is to prove the isomorphism

FB(X) \cong \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}^{G}(S) of the F‐blowup with the G‐Hilbert scheme. In general, it is easy

to see that F‐blowups of a quotient singularity are dominated by the G‐Hilbert scheme,
and the following is a slight generalization thereof; see [31].

Proposition 4.2. Suppose that  $\pi$:S\rightarrow X is a finite morphism of degree d with

S smooth such that the associated ring homomorphism \mathcal{O}_{X}\rightarrow$\pi$_{*}\mathcal{O}_{S} splits as an \mathcal{O}_{X^{-}}
module homomorphism. Then the F‐blowups of X are dominated by \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{\mathrm{d}}(S/X)^{\mathrm{o}} , i.e.,

for all e\geq 0 there exists a morphism over X,

\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{\mathrm{d}}(S/X)^{\mathrm{o}}\rightarrow \mathrm{F}\mathrm{B}_{e}(X) .

Proof. We will show that there exist morphisms over X,

\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{\mathrm{d}}(S/X)\rightarrow\sim \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{dq^{2}}(S^{1/q}/X)\rightarrow \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{q^{2}}(X^{1/q}/X) .

The isomorphism on the left exists because S^{1/q}\rightarrow S is faithfully flat of degree q^{2} by
the smoothness of S . The morphism on the right is constructed similarly as in [32]: The

map \mathcal{O}_{X}^{1/q}\rightarrow$\pi$_{*}\mathcal{O}_{S}^{1/q} splits as an \mathcal{O}_{X} ‐module homomorphism by the assumption, so that

its torsion‐free pullback to W=\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{dq^{2}}(s^{1/q}/X) by  $\psi$:W\rightarrow X, $\psi$^{\star}\mathcal{O}_{X}^{1/q}\rightarrow$\psi$^{\star}$\pi$_{*}\mathcal{O}_{S}^{1/q}
splits as an \mathcal{O}_{W} ‐module homomorphism. Since $\psi$^{\star}$\pi$_{*}\mathcal{O}_{S}^{1/q} is a flat \mathcal{O}_{W} ‐module, its direct

summand $\psi$^{\star}\mathcal{O}_{X}^{1/q} is also flat (of rank q^{2} ) over W . Thus we have \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{dq^{2}}(s^{1/q}/X)\rightarrow
\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{q^{2}}(X^{1/q}/X) by the universal property of \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{q^{2}}(X^{1/q}/X) .

Composing the above, we get a morphism \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{d}(S/X)\rightarrow \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{q^{2}}(X^{1/q}/X) over X,
and taking the irreducible components dominating X gives the desired morphism. \square 

For Frobenius sandwiches we have even more:

Proposition 4.3. Suppose X is an F^{e} ‐sandwich of a smooth surfa ce S , i.e., the

e‐th iterate of the Frobenius of S factors as F^{e}:S\rightarrow $\pi$ X\rightarrow S . If  d=\deg $\pi$ ,
then

\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{\mathrm{d}}(S/X)^{\mathrm{o}}\cong \mathrm{F}\mathrm{B}_{e}(X) .

Proof. By the assumption the eth iterate of Frobenius of X factors as  F^{e}:\mathcal{O}_{X}\rightarrow

\mathcal{O}_{S}\rightarrow \mathcal{O}_{X}^{1/q} ,
via which \mathcal{O}_{X}^{1/q} is a reflexive \mathcal{O}_{S} ‐module. Since S is a smooth surface,

this implies that \mathcal{O}_{X}^{1/q} is a locally free \mathcal{O}_{S} ‐module. On the other hand, the torsion‐free

pullback $\psi$^{\star}\mathcal{O}_{S} by  $\psi$:W=\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{d}(S/X)^{\mathrm{o}}\rightarrow X is a flat (hence locally free) \mathcal{O}_{W} ‐module,
so that $\psi$^{\star}\mathcal{O}_{X}^{1/q} is also a locally free \mathcal{O}_{W} ‐module. Hence  $\psi$ factors as  $\psi$:\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{\mathrm{d}}(S/X)^{\mathrm{o}}\rightarrow
\mathrm{F}\mathrm{B}_{e}(X)\rightarrow X.

To give the inverse morphism FB(X) \rightarrow \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{d}(S/X)^{\mathrm{o}} ,
we note that the map

\mathcal{O}_{S}\rightarrow \mathcal{O}_{X}^{1/q} splits as an \mathcal{O}_{S} ‐module homomorphism since \mathcal{O}_{S}\rightarrow \mathcal{O}_{S}^{1/q} splits by the
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smoothness of S . Then by a similar argument as in the proof of Proposition 4.2, we

obtain \mathrm{F}\mathrm{B}_{e}(X)\rightarrow \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{d}(S/X)^{\mathrm{o}} \square 

Now we give a counterexample to the Question above.

Example 4.4. Let  X=S/ $\delta$ be the quotient of  S=\mathrm{A}^{2}= Spec k [x, y] by a

p‐closed vector field  $\delta$=x^{p}\partial/\partial x+y^{p}\partial/\partial y . Then \mathcal{O}_{X}=\mathcal{O}_{S}^{ $\delta$}=k[x^{p}, x^{p}y-xy^{p}, y^{p}]\subset
\mathcal{O}_{S}=k[x, y] . Let S'\rightarrow S be the blowup at the origin and let g:X'\rightarrow X be the induced

morphism. Then we have a commutative diagram

S'\rightarrow S

\downarrow g \downarrow $\pi$
 X'\rightarrow X,

where the vertical arrows are homeomorphic in the Zariski topology, and the exceptional
set of g is a single \mathbb{P}^{1}

,
on which X' has p+1A_{p-1} ‐singularities. Resolving these A_{p-1^{-}}

singularities, we obtain the minimal resolution f:\overline{X}\rightarrow X.
We will show that FB(X) is dominated by X' for all e\geq 0 ,

so that the F‐blowups
of X do not coincide with any resolution of X . To see this it suffices to show that

g^{\star}$\pi$_{*}\mathcal{O}_{S} is locally free, which implies that Hilb(S/X)o is dominated by X' and so does

FB(X) by virtue of Proposition 4.3.

Let Sí and S_{2}' be the affine open subsets of S' with affine coordinates x, y/x and

y, x/y , respectively, and let Xí and X_{2}' be the corresponding affine open subsets covering
X' . We verify that g^{\star}$\pi$_{*}()|_{X\'{i}} is a free \mathcal{O}_{X_{i}'} ‐module of rank 2 for i=1

,
2. By symmetry

it is enough to consider the case i=1 . Denote the affine coordinates of Sí by x, z=y/x.
Then \mathcal{O}_{S}=k[x, xz]\subset \mathcal{O}S\'{i}=k[x, z] and

\mathcal{O}_{X}=k[x^{p}, x^{p+1}z(1-z^{p-1}), x^{p}z^{p}] \subset \mathcal{O}x\'{i}=k[x^{p}, xz(1-z^{p-1}), z^{p}].
Hence

g^{\star}$\pi$_{*}(\mathcal{O}_{S})|_{X_{1}'}={\rm Im} ( \mathcal{O}_{X_{1}'}\otimes_{\mathcal{O}_{X}} \mathcal{O}s \rightarrow \mathcal{O}sí) =k[x , xz, z^{p}],

and this is a free \mathcal{O}_{X_{1}'} ‐module with basis 1, x
,

. . .

,
x^{p-1}.

Remark. In the above example, the singularity of X is a rational singularty if

and only if p=2 ,
and in this case it is a rational double point of type D_{4} ,

which is not

F‐regular. In Artin�s list [4] of rational double points in characteristic p\leq 5 ,
we can find

similar examples of F‐sandwiches whose F‐blowups are singular. We can obtain more

detailed information about these rational double points. First of all, we shall recall

Lemma 4.5 (See e.g., [5]). Let (X, x) be a rational surfa ce singularity and let

f:\overline{X}\rightarrow X be any resolution of the singularity. If M is a reexive \mathcal{O}_{X} ‐module, then

the torsion‐free pullback f^{\star}M=f^{*}M/torsion is a locally free \mathcal{O}_{\overline{X}} ‐module.
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Since \mathcal{O}_{X}^{1/q} is a reflexive \mathcal{O}_{X} ‐module of rank q^{2}, f^{\star}\mathcal{O}_{X}^{1/q} is locally free of rank q^{2} by
Lemma 4.5. In particular, we have

Corollary 4.6. The F‐blowup FB(X) of a rational surfa ce singularity X is

dominated by the minimal resolution X for all e\geq 0.

Lemma 4.7 (ArtinVerdier [5]). Let (X, x) be a two‐dimensional rational dou‐

ble point and let f:\overline{X}\rightarrow X be the minimal resolution. Let E_{1} ,
. . .

, E_{s} be the irreducible

exceptional curves of f and write the fundamental cycle as Z_{0}=\displaystyle \sum_{i=1}^{s}r_{i}E_{i}.

(1) There is a one‐to‐one corrspondence between the exceptional curves E_{i} of f and the

isomorphism classes of non‐trivial indecomposable reexive \mathcal{O}_{X} ‐modules M_{i}.

(2) The torsion‐free pullback \overline{M_{i}}=f^{\star}M_{i} of each M_{i} is a locally free \mathcal{O}_{\overline{X}} ‐module of rank

r_{i} ,
and c_{1}(\overline{M_{i}})E_{j}=$\delta$_{ij}.

Example 4.8. Recall the case p=2 of Example 4.4. In this case, the reflexive

\mathcal{O}_{X} ‐module $\pi$_{*}\mathcal{O}_{S} is of rank p=2 ,
and it is an indecomposable reflexive module corre‐

sponding to the central curve of the exceptional set of f (the solid circle in the figure

below).
\circ

\circ-\bullet-\circ

Similarly we can observe that for non‐F‐regular  F‐sandwich rational double points
listed below, $\pi$_{*}\mathcal{O}_{S} is an indecomposable reflexive \mathcal{O}_{X} ‐module corresponding to the solid

circle; see [4] for the defining equations of E_{6}^{0}, E_{7}^{0} and E_{8}^{0} ‐singularities.

\bullet

(1)  E_{7}^{0} ‐singularity in p=2 :

\circ-\circ-\circ-\circ-\circ-\circ

\circ

(2)  E_{8}^{0} ‐singularity in p=2 :

\bullet-\circ-\circ-\circ-\circ-\circ-\circ

\circ

(3)  E_{6}^{0} ‐singularity in p=3 :

\circ-\circ-\bullet-\circ-\circ

\bullet

(4)  E_{8}^{0} ‐singularity in p=3 :

\circ-\circ-\circ-\circ-\circ-\circ-\circ
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\circ

(5)  E_{8}^{0} ‐singularity in p=5 :

\circ-\circ-\circ-\bullet-\circ-\circ-\circ

Remark. The above examples reflect pathology of non‐F‐regular  F‐sandwich ra‐

tional double points in characteristic p\leq 5 . Contrary to this, if a rational double point

(X, x) is a tame quotient singularity, that is, a quotient of a smooth surface S by a finite

group of order not divisible by p ,
then by the McKay correspondence [10] one has

(4.1) $\pi$_{*}\displaystyle \mathcal{O}_{S}\cong \mathcal{O}_{X}\oplus\bigoplus_{i=1}^{s}M_{i}^{\oplus r_{i}},
in which every indecomposable reflexive module M_{i} appears as a direct summand with

multiplicity r_{i}= rank M_{i}>0 . This is also verified to be true whenever the rational dou‐

ble point under consideration is F‐regular. Explicitly, this is the case for A_{n}‐singularities
in arbitrary characteristic p, D_{n}‐singularities in p\neq 2, E_{6} and E_{7}‐singularities in p>3
and E_{8}‐singularities in p>5 ; see [11] for a classification of F‐regular surface singulari‐
ties. The formula (4.1) is also stated in [30], in which there seems to be an ambiguity
about the difference of F‐regular singularity and tame quotient singularity.

The following proposition follows from [31] for A_{n}‐singularities (which are toric)
and from [29] for E_{6}, E_{7} and E_{8} ‐singularities (which are tame quotients), but only the

case 2\neq p|n-2 for D_{n} ‐singularities is not covered by [31], [29].

Proposition 4.9. If (X, x) is a two‐dimensional F‐regular double point, then

FB(X) \cong\overline{X} for e\gg 0.

To prove this, we need a result which enables us to compare F_{*}^{e}\mathcal{O}_{X} with $\pi$_{*}\mathcal{O}_{S}
for a finite covering  $\pi$:S\rightarrow X by a smooth surface S . The following lemma is a

slight improvement of the formula (2.1) for Hilbert‐Kunz multiplicity. (Note that it is

straightforward in the case where X is a Frobenius sandwich of S. )

Lemma 4.10. Let (X, x) be a two‐dimensional F‐regular double point, and let

 $\pi$:S\rightarrow X be a finite covering by a smooth surfa ce S of degree r . Decompose $\pi$_{*}\mathcal{O}_{S} and

F_{*}^{e}\mathcal{O}_{X}=\mathcal{O}_{X}^{1/q} into direct sums of indecomposable reexive \mathcal{O}_{X} ‐modules as (4.1) and

F_{*}^{e}\displaystyle \mathcal{O}_{X}=\mathcal{O}_{X}^{\oplus a_{0}^{(\mathrm{e})}}\oplus\bigoplus_{i=1}^{s}M_{i}^{\oplus a_{i}^{(\mathrm{e})}}
Then for all i=0 , 1, . . .

,
s

,
one has

\displaystyle \lim_{e\rightarrow\infty}\frac{a_{i}^{(e)}}{p^{2e}}=\frac{r_{i}}{r}>0.
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Proof. Since \mathcal{O}_{X} is F‐regular, the limit \displaystyle \lim_{e\rightarrow\infty}\frac{a_{i}^{(\mathrm{e})}}{p^{2\mathrm{e}}} exists by [27, Proposition

3.3.1]. Let f:\overline{X}\rightarrow X be the minimal resolution, Z=\displaystyle \sum_{i=1}^{s}z_{i}E_{i} any anti‐f‐nef cycle
on X

,
and let I=f_{*}\mathcal{O}_{X}(-Z)\subset \mathcal{O}_{X} . Then by Kato�s Riemann‐Roch (see e.g., [30]),

1\displaystyle \mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{\mathcal{O}_{X}}\mathcal{O}_{X}/I^{[q]}=-\frac{Z(K_{\overline{X}}+Z)}{2}q^{2}+c_{1}(f^{\star}\mathcal{O}_{X}^{1/q})Z.
Since K_{\overline{X}}=0 and c_{1}(\overline{M_{i}})Z=z_{i} ,

one has

e_{\mathrm{H}\mathrm{K}}(I, \displaystyle \mathcal{O}_{X})=-\frac{Z^{2}}{2}+\sum_{i=1}^{s}\lim_{e\rightarrow\infty}\frac{a_{i}^{(e)}}{p^{2e}}z_{i}.
On the other hand, one has

e_{\mathrm{H}\mathrm{K}}(I, \displaystyle \mathcal{O}_{X})=\frac{1}{r}1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{\mathcal{O}_{X}}\mathcal{O}_{S}/I\mathcal{O}_{S}=-\frac{Z^{2}}{2}+\sum_{i=1}^{s}\frac{r_{i}}{r}z_{i}
again by Kato�s Riemann‐Roch applied to (4.1). Thus \displaystyle \sum_{i=1}^{s}\lim_{e\rightarrow\infty}\frac{a_{i}^{(e)}}{p^{2e}}z_{i}=\sum_{i=1}^{s}\frac{r_{i}}{r}z_{i} . Since

the cone of f‐nef divisors has dimension equal to s
,
one can choose s linearly independent

(e)

vectors in \mathbb{Z}^{s} as (zl, . . .

, z_{s} ), from which follows that \displaystyle \lim_{e\rightarrow\infty}\frac{a_{i}}{p^{2e}}=\frac{r_{i}}{r} . The right‐hand

side of this equality is positive, since r_{i}= rank M_{i}>0 from the McKay correspondence,
which holds true for any F‐regular double point. \square 

Proof of Proposition 4.9. Let n be the minimal number of generators of \mathcal{O}_{X}^{1/q} as

an \mathcal{O}_{X} ‐module and pick a surjection \mathcal{O}_{X}^{\oplus n}\rightarrow \mathcal{O}_{X}^{1/q} . Since f^{\star}\mathcal{O}_{X}^{1/q} is a locally free \mathcal{O}_{\overline{x}^{-}}
module of rank q^{2} by Lemma 4.5, the induced surjection \mathcal{O}_{\overline{X}}^{\oplus n}\rightarrow f^{\star}\mathcal{O}_{X}^{1/q} gives rise to

a morphism $\Phi$_{e}:\overline{X}\rightarrow \mathbb{G} over X to the Grassmannian \mathbb{G}=\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{s}(q^{2}, \mathcal{O}_{X}^{\oplus n}) such that

f^{\star}\mathcal{O}_{X}^{1/q} is isomorphic to the pull back of the universal quotient bundle of \mathbb{G}.

Similarly, since the torsion‐free pullback $\varphi$^{\star}\mathcal{O}_{X}^{1/q} to Z=\mathrm{F}\mathrm{B}(\mathrm{X}) is locally free, the

surjection \mathcal{O}_{Z}^{\oplus n}\rightarrow$\varphi$^{\star}\mathcal{O}_{X}^{1/q} gives rise to a morphism Z=\mathrm{F}\mathrm{B}_{e}(X)\rightarrow \mathbb{G} over X
, through

which $\Phi$_{e} factors as

$\Phi$_{e}:\overline{X}\rightarrow \mathrm{F}\mathrm{B}_{e}(X)\rightarrow \mathbb{G}

by Corollary 4.6. Composing with the Plücker embedding \mathbb{G}\mapsto \mathbb{P} over X
,

we have

$\Phi$_{|L|}:\overline{X}\rightarrow \mathrm{F}\mathrm{B}_{e}(X)\rightarrow \mathbb{P},

the morphism over X given by the f‐generated line bundle L=c_{1}(f^{\star}\mathcal{O}_{X}^{1/q}) . Now by
Lemma 4.7, the intersection number of L with each exceptional curves E_{i} is L\cdot E_{i}=a_{i} ,

(e)

so that L is f‐very ample for e\gg 0 by Lemma 4.10. It follows that $\Phi$_{e} is a closed

immersion for e\gg 0 ,
so that \overline{X}\cong \mathrm{F}\mathrm{B}_{e}(X) . \square 
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Remark. The above proof also shows that \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{n}(S/X)^{\mathrm{o}}\cong FB(X) holds for

 e\gg 0 in the notation of Proposition 4.2.

Conjecture. If X is an F‐regular surface singularity, then FB(X) is the minimal

resolution of X for e\gg 0.
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