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A note on consistency conditions on dimer models

By

Akira ISHII * and Kazushi UEDA**

§1. Introduction

Dimer models are introduced by string theorists (see e.g. [6, 7, 8, 11, 12, 13]) to

study supersymmetric quiver gauge theories in four dimensions. A dimer model is a

bicolored graph on a 2‐torus which encode the information of a quiver with relations. If

a dimer model is non‐degenerate, then the moduli space \mathcal{M}_{ $\theta$} of stable representations of

the quiver with dimension vector ( 1, \ldots, 1) with respect to a generic stability parameter

 $\theta$ in the sense of King [17] is a smooth toric Calabi‐Yau 3‐fold [15].
Let \mathcal{V}=\oplus_{v}\mathcal{L}_{v} be the tautological bundle on the moduli space \mathcal{M}_{ $\theta$} and

(1.1)  $\phi$:\mathbb{C} $\Gamma$\rightarrow \mathrm{E}\mathrm{n}\mathrm{d}(\mathcal{V})

be the universal morphism from the path algebra \mathbb{C} $\Gamma$ of the quiver with relations asso‐

ciated with a dimer model. This map is not an isomorphism in general, and it is easy

to see that the injectivity of this map is equivalent to the  fir\mathcal{S}tcon\mathcal{S}i\mathcal{S} $\theta$ ency condition of

Mozgovoy and Reineke [19]. The path algebra \mathbb{C} $\Gamma$ is a Calabi‐Yau algebra of dimen‐

sion three in the sense of Ginzburg [9] if the dimer model satisfies the first consistency
condition [19, 4, 3]. This in turn implies [2, 20] that  $\phi$ is an isomorphism, the functor

\mathbb{R}\mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{V}, \ovalbox{\tt\small REJECT}) : D^{b} coh \mathcal{M}_{ $\theta$}\rightarrow D^{b} mod \mathbb{C} $\Gamma$

is an equivalence of triangulated categories, and \mathbb{C} $\Gamma$ is a non‐commutative crepant res‐

olution of a Gorenstein affine toric 3‐fold.
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The first consistency condition is an algebraic condition, which is not easy to check

in examples. In this paper, we show that a more tractable condition, given in Def‐

inition 3.5, is equivalent to the first consistency condition under the non‐degeneracy

assumption:

Theorem 1.1. For a non‐degenerate dimer model

\ovalbox{\tt\small REJECT} the fir\mathcal{S}tcon\mathcal{S}i_{\mathcal{S}}tency condition,

\ovalbox{\tt\small REJECT} the con\mathcal{S}i_{\mathcal{S}}tency condition in Definition 3.5, and

\ovalbox{\tt\small REJECT} the properly‐orderedness in the \mathcal{S}en\mathcal{S}e of Gulotta [10]

are equivalent.

It is known that the consistency condition in Definition 3.5 implies the non‐degeneracy

[14, Proposition 6.2]. Together with a work of Kenyon and Schlenker [16, Theorem 5.1],
Theorem 1.1 implies a result of Broomhead [3] that an i_{\mathcal{S}} oradial dimer model satisfies

the first consistency condition. Here we note that isoradiality is a strong condition, and

a large number of otherwise well‐behaved dimer models fall out of this class.

We recall basic definitions on dimer models in Section 2. The content of Section

3 has bubbled off from [14, Section 5], and the rest of [14] will appear in a separate

paper. In Section 4, we show that a dimer model satisfies the consistency condition in

Definition 3.5 if and only if it is properly‐ordered in the sense of Gulotta [10]. Relations

between consistency conditions on dimer models are also discussed by Bocklandt [1,
Section 8].

Acknowledgment: We thank Alastair Craw, Nathan Broomhead, Ben Davi‐

son, Dominic Joyce, Alastair King, Diane Maclagan, Balazs Szendroi, Yukinobu Toda,
Michael Wemyss and Masahito Yamazaki for valuable discussions. We also thank the

anonymous referee for carefully reading the manuscript and suggesting a number of

improvements.

§2. Dimer models and quivers

Let T=\mathbb{R}^{2}/\mathbb{Z}^{2} be a real two‐torus equipped with an orientation. A bicolored graph
on T consists of

\ovalbox{\tt\small REJECT} a finite set B\subset T of black nodes,

\ovalbox{\tt\small REJECT} a finite set W\subset T of white nodes, and

\ovalbox{\tt\small REJECT} a finite set E of edges, consisting of embedded closed intervals e on T such that one

boundary of e belongs to B and the other boundary belongs to W . We assume that

two edges intersect only at the boundaries.
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A face of a graph is a connected component of T\displaystyle \backslash \bigcup_{e\in E}e . A bicolored graph G on T is

called a dimer model if every face is simply‐connected.
A quiver consists of

\ovalbox{\tt\small REJECT} a set V of vertices,

\ovalbox{\tt\small REJECT} a set A of arrows, and

\ovalbox{\tt\small REJECT} two maps s, t : A\rightarrow V from A to V.

For an arrow a\in A, s(a) and t(a) are said to be the \mathcal{S}ource and the target of a re‐

spectively. A path on a quiver is an ordered set of arrows (a_{n}, a_{n-1}, \ldots, a_{1}) such that

s(a_{i+1})=t(a_{i}) for i=1
,

. . .

,
n-1 . We also allow for a path of length zero, starting

and ending at the same vertex. The path algebra \mathbb{C}Q of a quiver Q=(V, A, s, t) is the

algebra spanned by the set of paths as a vector space, and the multiplication is defined

by the concatenation of paths;

(bm, . . .

, b_{1} ) (an, . . .

, a_{1} ) =\left\{\begin{array}{ll}
(bm, . . . , b_{1}, an, . . . , a_{1}) & s(b_{1})=t(a_{n}) ,\\
0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
A quiver with relation\mathcal{S} is a pair of a quiver and a two‐sided ideal \mathcal{I} of its path algebra.
For a quiver  $\Gamma$=(Q, \mathcal{I}) with relations, its path algebra \mathbb{C} $\Gamma$ is defined as the quotient

algebra \mathbb{C}Q/\mathcal{I} . Two paths a and b are said to be equivalent if they give the same element

in \mathbb{C} $\Gamma$.

A dimer model (B, W, E) encodes the information of a quiver  $\Gamma$=(V, A, s, t, \mathcal{I}) with

relations in the following way: The set V of vertices is the set of connected components

of the complement T\displaystyle \backslash (\bigcup_{e\in E}e) ,
and the set A of arrows is the set E of edges of the

graph. The directions of the arrows are determined by the colors of the nodes of the

graph, so that the white node w\in W is on the right of the arrow. In other words,
the quiver is the dual graph of the dimer model equipped with an orientation given by

rotating the white‐to‐Ulack flow on the edges of the dimer model by minus 90 degrees.
The relations of the quiver are described as follows: For an arrow a\in A ,

there

exist two paths p_{+}(a) and p_{-}(a) from t(a) to s(a) ,
the former going around the white

node connected to a\in E=A clockwise and the latter going around the black node

connected to a counterclockwise. Then the ideal \mathcal{I} of the path algebra is generated by

p_{+}(a)-p_{-}(a) for all a\in A.

\mathrm{A}\mathcal{S}mall cycle on a quiver coming from a dimer model is the product of arrows

surrounding only a single node of the dimer model. A path p is said to be minimal if it

is not equivalent to a path containing a small cycle. A path p is said to be minimum if

any path from s(p) to t(p) homotopic to p is equivalent to the product of p and a power

of a small cycle. For a pair of vertices of the quiver, a minimum path from one vertex

to another may not exist, and will always be minimal when it exists.
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Small cycles starting from a fixed vertex are equivalent to each other. Hence the

sum  $\omega$ of small cycles over the set of vertices is a well‐defined element of the path

algebra. For any arrow  a
,

the small cycles $\omega$_{s(a)} and $\omega$_{t(a)} starting from the source s(a)
and the target t(a) of a respectively satisfies

a$\omega$_{s(a)}=$\omega$_{t(a)}a.

If follows that  $\omega$ belongs to the center of the path algebra, and there is the universal

map

\mathbb{C} $\Gamma$\rightarrow \mathbb{C} $\Gamma$[$\omega$^{-1}]

into the localization of the path algebra by the multiplicative subset generated by  $\omega$.

Two paths a and b are said to be weakly equivalent if they are mapped to the same

element in \mathbb{C} $\Gamma$[$\omega$^{-1}] , i.e., there is an integer i\geq 0 such that a$\omega$^{i}=b$\omega$^{i} in \mathbb{C} $\Gamma$ . Note that

the following holds for the paths of the quiver.

Lemma 2.1. For two  path_{\mathcal{S}} a and b with the \mathcal{S}ame\mathcal{S}ource and target, the follow‐

ing are equivalent.

\ovalbox{\tt\small REJECT} a and b are homotopy equivalent.

\ovalbox{\tt\small REJECT} There are integer\mathcal{S}i, j\geq 0\mathcal{S}uch that a$\omega$^{i}=b$\omega$^{j} in \mathbb{C} $\Gamma$.

\ovalbox{\tt\small REJECT} There i_{\mathcal{S}} an integer i\geq 0\mathcal{S}uch that either (a, b$\omega$^{i}) or (a$\omega$^{i}, b)i_{\mathcal{S}} a weakly equivalent

pair.

For example, the paths p and q shown in Figure 1 are weakly equivalent, but not

equivalent. They are homotopic and one has

 $\omega$ p= $\omega$ q.

----\mathrm{r}_{\mathrm{I}}^{\mathrm{I}}---\mathrm{O}^{\mathrm{I}}---\mathrm{r}_{\mathrm{I}}^{\mathrm{I}}----\circ_{q}\circ_{\mathrm{I}}\mathrm{O}]\mathrm{I}\mathrm{I}
Figure 1. A pair of weakly equivalent paths which are not equivalent

A perfect matching (or a dimer configuration) on a bicolored graph G=(B, W, E)
is a subset D of E such that for any node v\in B\cup W ,

there is a unique edge e\in D
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connected to v . A dimer model is said to be non‐degenerate if for any edge e\in E ,
there

is a perfect matching D such that e\in D.

A zigzag path is a path on a dimer model which makes a maximum turn to the

right on a white node and to the left on a black node. Note that it is not a path on a

quiver. We assume that a zigzag path does not have an endpoint, so that we can regard
a zigzag path as a sequence (e_{i}) of edges e_{i} parameterized by i\in \mathbb{Z} , up to translations

of i . Figure 2 shows an example of a part of a dimer model and a zigzag path on it.

Figure 2. A zigzag path

As an example, consider the dimer model in Figure 3. The corresponding quiver is

shown in Figure 4, whose relations are given by

\mathcal{I}= (dbc—cbd, dac—cad, adb—bda, acb—bca).

This dimer model is non‐degenerate, and has four perfect matchings D_{0} ,
. . .

, D3 shown

in Figure 5.

We end this section with the following lemma:

Lemma 2.2. A_{\mathcal{S}\mathcal{S}}ume that a dimer model ha\mathcal{S} a perfect matching D. Then for

any path p on the quiver, there are another path q and a non‐negative integer k\mathcal{S}uch

that pi_{\mathcal{S}} equivalent to q$\omega$^{k} and qi_{\mathcal{S}} not equivalent to a path containing a \mathcal{S}mall cycle.

Proof. Consider the number of times the path p crosses D . Then this is a non‐

negative integer which decreases by one as one removes a small cycle from the path. \square 

d a

\ovalbox{\tt\small REJECT}.
b c

.

\cdot

 c b

\circ.\cdot
a  d

Figure 3. A dimer model Figure 4. The corresponding quiver



6 AKIRA ISHII AND KAZUSHI UEDA

D_{0} D_{1}

.

\cdot\cdot

 D_{2} D_{3}

Figure 5. Four perfect matchings

The statement of Lemma 2.2 can be false if there is no perfect matching: Figure
6 shows an example of a dimer model without any perfect matching, which we learned

from Broomhead and King. One can see from the relation

a= eadcb

that

cbfead =cbfe^{2}adc(bd)=cbfe^{3}adc(bd)c(bd)=\cdots,

which shows that the loop cbfead can be divided by any power of the small cycle bd.

e . . C

\cdots\cdots \cdots\cdots \cdots\cdots \ddot{\ovalbox{\tt\small REJECT}}\cdots\cdots\cdots \cdot\cdot

 f.\cdot b

\ovalbox{\tt\small REJECT} \ovalbox{\tt\small REJECT} \mathrm{Q}. \mathrm{o}
a d

Figure 6. A dimer model without any perfect matching

§3. Consistency conditions for dimer models

The following notion is due to Duffin [5] and Mercat [18]:

Definition 3.1. A dimer model is i_{\mathcal{S}} oradial if one can choose an embedding of

the graph into the torus so that every face of the graph is a polygon inscribed in a circle

of a fixed radius with respect to a flat metric on the torus. Here, the circumcenter of

any face must be contained in the face.
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A dimer model is isoradial if and only if zigzag paths behave like straight lines:

Theorem 3.2 (Kenyon and Schlenker [16, Theorem 5.1]). A dimer model i_{\mathcal{S}}i_{\mathcal{S}}o-

radial if and only if the following condition\mathcal{S} are \mathcal{S}ati\mathcal{S}fied :

1. Every zigzag path i_{\mathcal{S}}a\mathcal{S}impleclo\mathcal{S}ed curve.

2. The lift of any pair of zigzag path_{\mathcal{S}} to the univer\mathcal{S}al cover of the t_{oru\mathcal{S}\mathcal{S}}hare at mo\mathcal{S}t

one edge.

The following condition is introduced by Mozgovoy and Reineke:

Definition 3.3 ([19, Condition 4.12]). A dimer model is said to satisfy the fir\mathcal{S}t

con\mathcal{S}i_{\mathcal{S}}tency condition if weakly equivalent paths are equivalent.

We regard a zigzag path on the universal cover as a sequence (e_{i}) of edges e_{i}

parameterized by i\in \mathbb{Z} , up to translations of i.

Definition 3.4. Let \mathrm{z}=(e_{i}) and w=(f_{i}) be two zigzag paths on the universal

cover. We say that \mathrm{z} and w intersect if there are i, j\in \mathbb{Z} with e_{i}=f_{j} such that if u, v are

the maximum and the minimum of t with e_{i+t}=f_{j-t} respectively, then u-v\in 2\mathbb{Z} . In

this case, the sequence (e_{i+v}=f_{j-v}, e_{i+v+1}=f_{j-v-1}, \ldots, e_{i+u}=f_{j-u}) of intersections

is counted as a single intersection. We say that \mathrm{z} has a self‐intersection if there is a pair

i\neq j with e_{i}=e_{j} such that the directions of \mathrm{z} at e_{i} and e_{j} are opposite, and u-v\in 2\mathbb{Z}

for u and v defined similarly as above. We say that \mathrm{z} is homologically trivial if the map

i\mapsto e_{i} is periodic.

Note that if u-v>0 in the above definition, then the nodes between e_{v} and

e_{u} are divalent. According to this definition, there are cases where \mathrm{z} and w have a

common nodes or common edges, but they do not intersect as shown in Figure 7. The

assumption u-v\in 2\mathbb{Z} is needed to remove the effect of a divalent node; if there is no

divalent node, then a pair of zigzag paths intersect if and only if they have a common

edge.

Figure 7. Examples of an intersection (left) and a non‐intersection (right)

The following condition is slightly weaker than isoradiality, and easy to check in

examples:
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Definition 3.5. A dimer model is said to be con\mathcal{S}i\mathcal{S} $\theta$ ent if

\ovalbox{\tt\small REJECT} there is no homologically trivial zigzag path,

\ovalbox{\tt\small REJECT} no zigzag path has a self‐intersection on the universal cover, and

\ovalbox{\tt\small REJECT} no pair of zigzag paths intersect each other on the universal cover in the same

direction more than once.

Here, the third condition means that if a pair (\mathrm{z}, w) of zigzag paths has two inter‐

sections a and b and the zigzag path \mathrm{z} points from a to b
,

then the other zigzag path w

must point from b to a.

Figure 8. A homologically trivial zigzag

path

Figure 9. An inconsistent dimer model

Figure 10. A pair of zigzag paths in the same direction intersecting twice

Figure 8 shows a part of an inconsistent dimer model which contains a homologically
trivial zigzag path. Figure 9 shows an inconsistent dimer model, which contains a pair
of zigzag paths intersecting in the same direction twice as in Figure 10.

On the other hand, a pair of zigzag paths going in the opposite direction may

intersect twice in a consistent dimer model. Figure 12 shows a pair of such zigzag paths
on a consistent dimer model in Figure 11.

To obtain a criterion for the minimality of a path, we discuss the intersection of a

path of the quiver and a zigzag path. Note that paths of the quiver and zigzag paths
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Figure 11. A consistent non‐isoradial dimer model

Figure 12. A pair of zigzag paths in the opposite direction intersecting twice
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are both regarded as sequences of arrows of the quiver, where the former are finite and

the latter are infinite.

Definition 3.6. Let  p=a_{1}a_{2}\ldots be a path of the quiver (a_{i}\in A) and \mathrm{z}=

(b_{i})_{i\in \mathbb{Z}} be a zigzag path. We say p intersects \mathrm{z} at an arrow a if there are i, j with

a=a_{i}=b_{j}\in A=E , satisfying the following condition: If u, v denote the maximum

and the minimum of t with a_{i+t}=b_{j-t} respectively, then u-v is even. In this case,

the sequence (a_{i+v}=b_{j-v}, \ldots, a_{i+u}=b_{j-u}) is counted as a single intersection.

Figure 13 shows an example of a non‐intersection; the path shown in dark gray

does not intersect the zigzag path shown in light gray. Note that the dark gray path is

equivalent to the dashed path, which does not have a common edge (or an arrow) with

the light gray path.

Figure 13. An example of a non‐intersection

The following lemma is obvious from the definition of the equivalence relations of

paths:

Lemma 3.7. Let \mathrm{z} be a zigzag path on the univer\mathcal{S}al cover. Suppo\mathcal{S}e that a path

p^{\ovalbox{\tt\small REJECT}}i_{\mathcal{S}} obtained from another path p by replacing p+(a)\subset p with p_{-}(a) or the other way

around for a \mathcal{S}ingle arrow a, a\mathcal{S} in the definition of the equivalence relation\mathcal{S} of path_{\mathcal{S}} . If
neither ap+(a) nor p+(a)ai_{\mathcal{S}} a part of p ,

then there i_{\mathcal{S}} a natural bijection between the

inter\mathcal{S}ection\mathcal{S} of \mathrm{z} and p and tho\mathcal{S}e of \mathrm{z} and p^{\ovalbox{\tt\small REJECT}} If a i_{\mathcal{S}} not a part of p ,
then thi_{\mathcal{S}} bijection

pre\mathcal{S}erve\mathcal{S} the order of inter\mathcal{S}ection\mathcal{S} along \mathrm{z}.

Because ap+(a) and p+(a)a are small cycles, the first half of Lemma 3.7 immediately

gives the following:

Corollary 3.8. A minimal path which doe\mathcal{S} not inter\mathcal{S}ect a zigzag path \mathrm{z} cannot

be equivalent to a path inter\mathcal{S} ecting z .

Lemma 3.7 also gives the following:
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Corollary 3.9. Let p be a path of the quiver. If there i_{\mathcal{S}} no zigzag path that

inter\mathcal{S}ect_{\mathcal{S}}p more than once in the \mathcal{S}ame direction on the univer\mathcal{S}al cover, then pi_{\mathcal{S}}
minimal.

Proof. Assume that there is no zigzag path that intersects p more than once in

the same direction on the universal cover. If p contains an arrow a and either p+(a) or

p_{-}(a) ,
then one of two zig‐zag paths containing the edge corresponding to a intersects p

more than once in the same direction on the universal cover. It follows that if p contains

p+(a) or p_{-}(a) for an arrow a
,

then p does not contain a . Let p^{\ovalbox{\tt\small REJECT}} be a path related to p

as in Lemma 3.7. Since p does not contain small cycles ap+(a) or p+(a)a ,
Lemma 3.7

implies that p^{\ovalbox{\tt\small REJECT}} also satisfies the assumption and hence does not contain a small cycle.

By repeating this argument, we can see that if a path is equivalent to p ,
then it does

not contain a small cycle. \square 

The following lemma shows that the consistency condition implies the first consis‐

tency condition of Mozgovoy and Reineke:

Lemma 3.10. If weak equivalence doe\mathcal{S} not imply equivalence, then the dimer

model i_{\mathcal{S}} not con\mathcal{S}i_{\mathcal{S}}tent.

Proof. Assume for contradiction that a consistent dimer model has a pair of weakly

equivalent paths which are not equivalent. Then there is a pair (a, b) of paths on the

universaly cover such that

\ovalbox{\tt\small REJECT} There is an integer i\geq 0 such that either (a, b$\omega$^{i}) or (a$\omega$^{i}, b) is weakly equivalent
but not equivalent.

\ovalbox{\tt\small REJECT} If one of a and b contains loops, then it is a loop and the other one is a trivial path.

\mathrm{e} a and b meet only at the endpoints.

Choose one of such pairs, without fixing the endpoints, so that the area bounded by a

and b is minimal with respect to the inclusion relation.

Figure 14 shows a pair (a, b) of such paths. We may assume that a is a non‐

trivial path. Let v_{1} and v_{2} be the source and the target of a respectively. To show

the inconsistency of the dimer model, consider the zigzag path \mathrm{z} which starts from the

white node just on the right of the first arrow in the path a as shown in light gray in

Figure 14.

We show that if \mathrm{z} crosses a
,
then it contradicts the minimality of the area. Assume

that \mathrm{z} crosses a
,

and consider the path c which goes along \mathrm{z} as in Figure 14. Since \mathrm{z}

crosses a
,

the path c also crosses a . Let V3 be the vertex where a and c intersects, and
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a

Figure 14. A pair of inequivalent paths which are weakly equivalent

Figure 15. The paths a^{\ovalbox{\tt\small REJECT}} and c^{\ovalbox{\tt\small REJECT}}
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a^{\ovalbox{\tt\small REJECT}} and c
� be the parts of a and c from v_{1} to V3 respectively. The part of a from V3 to v_{2}

will be denoted by d as in Figure 15.

If there is a zigzag path w which intersects c
�

more than once in the same direction,
then w also intersects \mathrm{z} more than once in the same direction, which contradicts the

assumption that the dimer model is consistent. Hence no zigzag path intersects c
�

more

than once in the same direction, so that c
� is minimal by Corollary 3.9.

Suppose dc� is different from b . Then by the minimality of the area and the min‐

imality of c�, there are non‐negative integers i and j such that a
� is equivalent to c^{\ovalbox{\tt\small REJECT}}$\omega$^{i}

and either (dc^{\ovalbox{\tt\small REJECT}}$\omega$^{j}, b) or (dc^{\ovalbox{\tt\small REJECT}}, b$\omega$^{j}) are equivalent pairs. Then one of (a, b$\omega$^{i-j}) , (a$\omega$^{j-i}, b)
and (a, b$\omega$^{i+j}) is an equivalent pair, which contradicts the assumption. If dc� coincides

with b
,

then b is equivalent to a path that goes along the opposite side of \mathrm{z} as in Figure

16, which contradicts the minimality of the area.

Figure 16. A path equivalent to dc�

Hence the zigzag path \mathrm{z} cannot cross the path a . In the same way, the dashed gray

zigzag path in Figure 14 cannot cross the path b . It follows that if we extend these two

zigzag paths in both directions, then they will intersect in the same direction more than

once or have a self‐intersection. This contradicts the consistency of the dimer model,
and Lemma 3.10 is proved.

\square 

Lemma 3.11. For a path p in a con\mathcal{S}i_{\mathcal{S}}tent dimer model, the following are equiv‐
alent:

1. pi_{\mathcal{S}} minimal.

2. pi_{\mathcal{S}} minimum.
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3. There i_{\mathcal{S}} no zigzag path that inter\mathcal{S}ect_{\mathcal{S}}p more than once in the \mathcal{S}ame direction on

the univer\mathcal{S}al cover.

Proof. It is clear that 2 implies 1. To show the converse, take a minimal path

p and a path q from s(p) to t(p) homotopic to p . Then (p, q$\omega$^{i}) or (p$\omega$^{i}, q) is weakly

equivalent, hence equivalent. By the minimality of p, p$\omega$^{i} is equivalent to q ,
which

means p is mimmum.

Corollary 3.9 states that 3 implies 1. To show the converse, suppose there is a

zigzag path \mathrm{z} as above. Let a_{1} and a_{2} be arrows on the intersection of \mathrm{z} and p such that

the directions are from a_{1} to a_{2} on both \mathrm{z} and p ,
and their parts between a_{1} and a_{2} do

not meet each other. Let p^{\ovalbox{\tt\small REJECT}} be the part of p from s(a_{1}) to t(a_{2}) . There is a path q from

s(a_{1}) to t(a_{2}) which is parallel to \mathrm{z} . Since q is minimal by Corollary 3.9, it is minimum

and there is an integer i\geq 0 such that p^{\ovalbox{\tt\small REJECT}} is equivalent to q$\omega$^{i} If p^{\ovalbox{\tt\small REJECT}} is also minimal, i

must be zero and therefore p^{\ovalbox{\tt\small REJECT}} is equivalent to q . This contradicts Lemma 3.7 and thus

p is not minimal. \square 

The following lemmas show that the first consistency condition of Mozgovoy and

Reineke together with the existence of a perfect matching implies the consistency con‐

dition:

Lemma 3.12. A_{\mathcal{S}\mathcal{S}}ume that a dimer model ha\mathcal{S} a perfect matching and a pair

of zigzag path_{\mathcal{S}}inter\mathcal{S} ecting in the \mathcal{S}ame direction twice on the univer\mathcal{S}al cover, none of
which ha\mathcal{S}a\mathcal{S}elf-inter\mathcal{S} ection. Then there i_{\mathcal{S}} a pair of inequivalent path_{\mathcal{S}} which are weakly

equivalent.

Proof. For a pair (\mathrm{z}, w) of zigzag paths intersecting in the same direction twice

on the universal cover, consider the pair (a, b) of paths as shown in dark gray in Figure
17. Our assumption that w does not have a self‐intersection implies that a does not

intersect w . We claim that there is a minimal path a^{\ovalbox{\tt\small REJECT}} which does not intersect w such

that a=a^{\ovalbox{\tt\small REJECT}}$\omega$^{k} for some k\in \mathbb{N} . The existence of such a^{\ovalbox{\tt\small REJECT}} and k follows from Corollary
3.8 and the existence of a perfect matching: A perfect matching intersects a in a finite

number of points, and the number of intersection decreases by one as one factors out a

small cycle. Hence the process of

\ovalbox{\tt\small REJECT} deforming the path without letting it intersect w (Lemma 3.7), and

\ovalbox{\tt\small REJECT} factoring out a small cycle if any

must terminate in finite steps. Moreover, the resulting path a^{\ovalbox{\tt\small REJECT}} cannot be equivalent to a

path intersecting w by Corollary 3.8. Similarly, there is a minimal path b � from v_{1} to v_{2}

which does not intersect \mathrm{z} . On the other hand, a^{\ovalbox{\tt\small REJECT}} and b � intersect \mathrm{z} and w respectively
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Figure 17. A pair of inequivalent paths which are weakly equivalent

for topological reason. It follows that (a^{\ovalbox{\tt\small REJECT}}, b^{\ovalbox{\tt\small REJECT}}$\omega$^{i}) or (a^{\ovalbox{\tt\small REJECT}}$\omega$^{i}, b^{\ovalbox{\tt\small REJECT}}) for some non‐negative integer
i gives a pair of weakly equivalent paths which are not equivalent. \square 

Lemma 3.13. A_{\mathcal{S}\mathcal{S}}ume that a dimer model ha\mathcal{S} a perfect matching and a zigzag

path with a \mathcal{S}elf-inter\mathcal{S} ection on the univer\mathcal{S}al cover. Then there i_{\mathcal{S}} a pair of inequivalent

path_{\mathcal{S}} which are weakly equivalent.

Proof. Let \mathrm{z} be a zigzag path on the universal cover with a self‐intersection and

e_{0}e_{1}e_{2}\ldots e_{n}e_{0} be a loop in \mathrm{z}
,

where \mathrm{z} has a self‐intersection at e_{0} and does not have

any self‐intersection in (el, . . .

, e_{n} ). The union of the edges e_{1} ,
. . .

, e_{n} will be denoted

by C.

Regarding e_{0} as an arrow, we put v_{1}=s(e_{0}) and v_{2}=t(e_{0}) . There is a path b

from v_{1} to v_{2} which goes along \mathrm{z} . The edge e_{0} as an arrow of the quiver also forms a

path from v_{1} to v_{2} . We show that the path e_{0} is minimal, and

\ovalbox{\tt\small REJECT} there is a minimal path b � from v_{1} to v_{2} which is not equivalent to e_{0} ,
or

\ovalbox{\tt\small REJECT} there is a non‐trivial cyclic path which is not equivalent to any positive power of a

small cycle.

In the latter case, since we are working on the universal cover, this cyclic path is

homologically trivial, and the pair consisting of this cyclic path and a suitable power
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Figure 18. A pair of inequivalent path,
which are weakly equivalent

Figure 19. Homologically trivial zigzag path
and a cyclic path on the quiver

of a small cycle gives a pair of inequivalent paths which are weakly equivalent. In the

former case, there is a non‐negative integer i such that either (e_{0}, b^{\ovalbox{\tt\small REJECT}}$\omega$^{i}) or (e_{0}$\omega$^{i}, b^{\ovalbox{\tt\small REJECT}}) is

a pair of weakly equivalent paths, since both e_{0} and b �
are paths from v_{1} to v_{2} on the

universal cover, and hence homotopic. This pair of paths cannot be equivalent since e_{0}

and b �
are minimal.

To obtain a minimal path from b
,

we first remove as many small cycles from b as

possible without making it intersect C . This process terminates in finite steps just as in

the proof of Lemma 3.12. The resulting path b_{1} may not be minimal yet since it might
allow a deformation first to a path intersecting C and then to a path containing small

cycles. Assume that another path b_{1}^{\ovalbox{\tt\small REJECT}} from v_{1} to v_{2} intersecting C is obtained from b_{1}

by replacing p_{-}(a)\subset b_{1} with p+(a) (or the other way around, depending on the color

of the node at e_{0}\cap e_{1} ) for a single arrow a . Since C is a part of a zigzag path, it follows,
from the definitions of a zigzag path and the equivalence of paths just as in Lemma

3.7, that the arrow a must be e_{0} . (Lemma 3.7 roughly states that one needs a small

cycle to deform a path across a zigzag path. Since b_{1} does not contain a small cycle,
the only way to deform it across C is to deform it by the equivalence relation at e_{0}.

Unfortunately, one cannot apply Lemma 3.7 directly in the present situation since C

may intersect \mathrm{z}\backslash C. )
Thus b_{1} contains p_{-}(e_{0}) (or p+(e_{0}) ) and is written as b_{1}=cp_{-}(e_{0})d (or b_{1}=

cp+(e_{0})d) ,
where c and d are paths from v_{1} to v_{2} . At least one of them (say, c) is not



A NOTE ON CONSISTENCY CONDITIONS ON DIMER MODELS 17

homotopic to the arrow e_{0} in \mathbb{R}^{2}\backslash C . Take a perfect matching D and count the number

|c\cap D| of edges of D which meet the path c.

If the number |c\cap D| is equal to |b_{1}\cap D| ,
then p_{-}(e_{0})d is a non‐trivial cyclic path

on the quiver which does not meet D at all. Note that for any given perfect matching,

equivalent paths have the same numbers of arrows meeting that perfect matching. Since

a small cycle meet any perfect matching at exactly one edge, the cyclic path p_{-}(e_{0})d
cannot be equivalent to any positive power of a small cycle.

If the number |c\cap D| is smaller than |b_{1}\cap D| ,
then we set b_{2}=c and repeat this

process. After finitely many steps, we obtain a path b^{\ovalbox{\tt\small REJECT}}=b_{n} such that

\ovalbox{\tt\small REJECT} b^{\ovalbox{\tt\small REJECT}} is not homotopic to e_{0} in \mathbb{R}^{2}\backslash C ,
and

\ovalbox{\tt\small REJECT} b^{\ovalbox{\tt\small REJECT}} is not equivalent to a path containing a small cycle, so that b � is minimal,

or a cyclic path which is not equivalent to any positive power of a small cycle.
To show that the path e_{0} is minimal, note that the arrow e_{0} can be equivalent to

another path only if the edge e_{0} is the first of several consecutive edges connected by
divalent nodes. Since \mathrm{z} has a self‐intersection at e_{0} ,

the number of consecutive edges
connected by divalent nodes must be odd and e_{0} can be equivalent only to arrows. This

shows that the path e_{0} is minimal.

It is clear that b � is a path of length greater than one. This shows that e_{0} is not

equivalent to b�, and Lemma 3.13 is proved. \square 

The following lemma can be shown in an analogous way:

Lemma 3.14. A_{\mathcal{S}\mathcal{S}}ume that a dimer model ha\mathcal{S} a perfect matching and a zigzag

path with the trivial homology cla\mathcal{S}\mathcal{S}
,

then there i_{\mathcal{S}} a cyclic path on the quiver which i_{\mathcal{S}}

weakly equivalent to \mathcal{S}ome power of a \mathcal{S}mall cycle but not equivalent.

Indeed, consider the path which goes around the zigzag path, and factor out all

the possible small cycles. Then one ends up with a path weakly equivalent to a power

of a small cycle but not equivalent to it.

For example, the path on the quiver shown in Figure 19 is weakly equivalent to a

small cycle as shown in Figure 20, although it is not equivalent; if we call the idempotent
element in the path algebra corresponding to the top‐left vertex and the path shown in

Figure 19 starting from the top‐left vertex as e and p respectively, then one has  p\neq e $\omega$
and  p $\omega$=e$\omega$^{2}

§4. Properly‐ordered dimer models

For a node in a dimer model, the set of zigzag paths going through the edges

adjacent to it has a natural cyclic ordering given by the directions of the outgoing paths
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Figure 20. Deforming a path on the quiver

from the node. On the other hand, the homology classes of these zigzag paths determine

another cyclic ordering if these classes are distinct.

Definition 4.1 (Gulotta [10, section 3.1]). A dimer model is properly ordered if

1. there is no homologically trivial zigzag path,

2. no zigzag path has a self‐intersection on the universal cover,

3. no pair of zigzag paths in the same homology class have a common node, and

4. for any node of the dimer model, the cyclic order on the set of zigzag paths going

through that node coincides with the cyclic order determined by their homology
classes.

Here, the homology group of the torus T=\mathbb{R}^{2}/\mathbb{Z}^{2} is identified with \mathbb{Z}^{2} in a natural

way. The \mathcal{S}lope of a zigzag path is

\displaystyle \frac{(u,v)}{\sqrt{u^{2}+v^{2}}}\in S^{1},
where (u, v)\in \mathbb{Z}^{2} is the homology class of the zigzag path. The lack of a self‐intersection

implies that (u, v) is a primitive element, so that a set of zigzag paths with distinct

homology classes has a well‐defined counter‐clockwise cyclic order.

A consistent dimer model is properly ordered:

Lemma 4.2. In a con\mathcal{S}i_{\mathcal{S}}tent dimer model the cyclic order of the zigzag path_{\mathcal{S}}
around any node of the dimer model i_{\mathcal{S}} compatible with the cyclic order determined by
their \mathcal{S}lope\mathcal{S}.

Proof. Let \mathrm{z}_{1}, \mathrm{z}_{2} and Z3 be a triple of zigzag paths passing through a node of the

dimer model along neighboring edges at the node whose cyclic order around the node
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does not respect the cyclic order determined by their slopes. Then two of them must

intersect more than once in the same direction on the universal cover. \square 

The converse is also true:

Lemma 4.3. A properly‐ordered dimer model i_{\mathcal{S}}con\mathcal{S}i_{\mathcal{S}}tent.

Proof. Assume for contradiction that a properly‐ordered dimer model has a pair

\mathrm{z}_{1}=(e_{k})_{k\in \mathbb{Z}} and \mathrm{z}_{2}=(f_{\ell})_{\ell\in \mathbb{Z}} of zigzag paths intersecting in the same direction more

than once on the universal cover. We show that there is an infinite sequence ( \mathrm{z}_{3} , z4, . . .)
of zigzag paths on the universal cover with distinct slopes, which contradicts the finite‐

ness of the set of slopes.
An intersection (e_{i}=f_{j+u}, e_{i+1}=f_{j+u-1}, \ldots, e_{i+u}=f_{j}) of \mathrm{z}_{1} and \mathrm{z}_{2} where

i, j\in \mathbb{Z} and u\in 2\mathbb{N} is called a la\mathcal{S}t intersection if (e_{k})_{k>i+u} does not intersect (f_{\ell})_{\ell>j+u}.
Another intersection (e_{i'}=f_{j'+u'}, e_{i'+1}=f_{j'+u'-1}, \ldots, e_{i'+u'}=f_{j'}) for i^{\ovalbox{\tt\small REJECT}}+u^{\ovalbox{\tt\small REJECT}}<i is

called the \mathcal{S}econdla\mathcal{S}t intersection along \mathrm{z}_{1} if (e_{k})_{i'+u'<k<i} does not intersect (f_{\ell})_{\ell<j}.
Although a last intersection may not be unique, and not all last intersections may

have the second last intersection, the assumption that \mathrm{z}_{1} and \mathrm{z}_{2} intersect in the same

direction more than once implies the existence of at least one last intersection having
the second last intersection.

Figure 21 shows a part of a pair of zigzag paths near a last and the second last

intersections. We have suppresed the rest of the paths, which may also intersect this

part. We choose the names \mathrm{z}_{1} and \mathrm{z}_{2} for these zigzag paths, so that the node  e_{i+u}\cap

 e_{i+u+1} at the last intersection is white as in Figure 22. Although the second last

intersection in this figure may be the one along \mathrm{z}_{2} instead of the one along \mathrm{z}_{1} ,
this does

not affect the discussion below.

Now choose the third zigzag path Z3 =(g_{m})_{m\in \mathbb{Z}} as the one going in the direction

opposite to \mathrm{z}_{2} from the second last intersection as shown in dotted arrow in Figure 22,
so that g_{0}=f_{j'-1} . Note that \mathrm{z}_{2} and Z3 may not intersect at g_{0}=f_{j'-1} if the node

at g_{0}\cap g_{1} is divalent. The cyclic order on the set of zigzag paths, passing through
the node g_{-1}\cap g_{0} where \mathrm{z}_{1}, \mathrm{z}_{2} and Z3 meet, is given by (\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \cdots) . Since the

dimer model is properly‐ordered, the slopes of \mathrm{z}_{1}, \mathrm{z}_{2} and Z3 have this cyclic order.

The slope of a zigzag path determines the asymptotic behavior of the zigzag path
on the universal cover, so that the zigzag paths \mathrm{z}_{1}, \mathrm{z}_{2} and Z3 must have this cyclic
order outside of a compact set. Combined with the assumption that the intersection

(e_{i}=f_{j+u}, e_{i+1}=f_{j+u-1}, \ldots, e_{i+u}=f_{j}) is a last intersection of \mathrm{z}_{1} and \mathrm{z}_{2} ,
this implies

that

\ovalbox{\tt\small REJECT}(g_{m})_{m>0} intersects (e_{k})_{k>i'+u'} ,
or

\ovalbox{\tt\small REJECT}(g_{m})_{m>0} intersects (f_{\ell})_{\ell>j'+u'}.
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\ovalbox{\tt\small REJECT}\cdots\ldots.\blacksquare\cdots\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}
Figure 21. A pair of intersections of zigzag Figure 22. Z3 bending over to the left

paths

\mathrm{z}_{1} Z3 \mathrm{z}_{2}

j.\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}}}
Figure 23. Z3 bending over to the right
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Schematic pictures of examples of the former case and the latter case are shown in

Figure 22 and Figure 23. It may also happen that (g_{m})_{m>0} intersect both (e_{k})_{k>i'+u'}
and (f_{\ell})_{\ell>j'+u'}.

In the former case, the part (g_{m})_{m>0} of the zigzag path Z3 intersects the zigzag

path \mathrm{z}_{1} in the same direction more than once, and one can find a pair of a last and

the second last intersection as in Figure 21, where the solid arrow represents \mathrm{z}_{1} and the

gray arrow represents Z3 this time. Now we can repeat the same argument to obtain

another zigzag path \mathrm{z}_{4} such that

\ovalbox{\tt\small REJECT} the cyclic order of the slopes is (\mathrm{z}_{2}, Z3, \mathrm{z}_{4}, \mathrm{z}_{1}) ,
and

\ovalbox{\tt\small REJECT} \mathrm{z}_{4} intersects \mathrm{z}_{1} or Z3 in the same direction more than once.

In the latter case, the lack of self‐intersection of zigzag paths in a properly‐ordered
dimer model implies that the part (g_{m})_{m<0} of the zigzag path Z3 intersects the part

(f_{\ell})_{\ell>j'+u'} of the zigzag path \mathrm{z}_{2} ,
and one can find a pair of a last and the second last

intersections as in Figure 21, where the solid arrow represents Z3 and the gray arrow

represents \mathrm{z}_{2} this time. Now we can repeat the same argument to obtain another zigzag

path \mathrm{z}_{4} such that

\ovalbox{\tt\small REJECT} the cyclic order of the slopes is (\mathrm{z}_{2}, \mathrm{z}_{4}, Z3, \mathrm{z}_{1}) ,
and

\ovalbox{\tt\small REJECT} \mathrm{z}_{4} intersects \mathrm{z}_{2} or Z3 in the same direction more than once.

In both cases, we obtain a zigzag path \mathrm{z}_{4} whose slope is different from the slope
of any of \mathrm{z}_{1}, \mathrm{z}_{2} and Z3. By continuing this process, we obtain an infinite sequence

(\mathrm{z}_{5}, z6, . . .) of zigzag paths with distinct slopes, and Lemma 4.3 is proved.
\square 

By combining Lemma 4.2 with Lemma 4.3, one obtains the equivalence between

consistency condition in Definition 3.5 and Gulotta�s condition:

Proposition 4.4. A dimer model i_{\mathcal{S}}con\mathcal{S}i\mathcal{S}lent if and only if it i_{\mathcal{S}} properly‐
ordered.
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