K-FLIPS AND VARIATION OF MODULI SCHEME OF SHEAVES ON A SURFACE, II

KIMIKO YAMADA

Introduction

We shall consider some analogy between the wall-crossing problem of moduli schemes of stable sheaves on a surface, and the minimal model program of higher-dimensional varieties. This article is a continuation of [10].

Let X be a non-singular projective surface over \mathbb{C} , and H an ample line bundle on X. Denote by M(H) (resp. $M^s(H)$) the coarse moduli scheme of rank-two H-semistable (resp. H-stable) sheaves on X with Chern class $\alpha = (c_1, c_2) \in \text{Pic}(X) \times \mathbb{Z}$.

Let H_- and H_+ be α -generic polarizations such that just one α -wall W separates them For $a \in [0,1]$ one can define the a-semistability of sheaves on X and the coarse moduli scheme M(a) (resp. $M^s(a)$) of rank-two a-semistable (resp. a-stable) sheaves with Chern classes α in such a way that $M(\epsilon) = M(H_+)$ and $M(1-\epsilon) = M(H_-)$ if $\epsilon > 0$ is sufficiently small. M(a) is projective over \mathbb{C} . Let $a_- < a_+$ be minichambers separated by only one miniwall a_0 , and denote $M_+ = M(a_+)$, $M_- = M(a_-)$ and $M_0 = M(a_0)$. There are natural morphisms $\phi_- : M_- \to M_0$ and $\phi_+ : M_+ \to M_0$ ([1], [2], [8]). One may say they are morphisms of moduli schemes coming from wall-crossing methods. Let $\phi_- : V_- \to V_0$ be a birational projective morphism such that (1) V_- is normal, (2) $-K_{V_-}$ is \mathbb{Q} -Cartier and ϕ_- -ample, (3) the codimension of the exceptional set $\operatorname{Exc}(\phi_-)$ is more than 1, and (4) the relative Picard number $\rho(V_-/V_0)$ of ϕ_- is 1. After the theory of minimal model program, we say a birational projective morphism $\phi_+ : V_+ \to V_0$ is a K-flip of $\phi_- : V_- \to V_0$ if (1) V_+ is normal, (2) K_{V_+} is \mathbb{Q} -Cartier and ϕ_+ -ample, (3) the codimension of the exceptional set $\operatorname{Exc}(\phi_+)$ is more than 1, and (4) the relative Picard number $\rho(V_+/V_0)$ of ϕ_+ is 1.

Theorem 0.1. Fix a closed, finite, rational polyhedral cone $S \subset \overline{\mathrm{Amp}}(X)$ such that $S \cap \partial \overline{\mathrm{Amp}}(X) \subset \mathbb{R}_{\geq 0} \cdot K_X$. If c_2 is sufficiently large with respect to c_1 and S, then for any α -generic polarizations H_- and H_+ in S separated by just one α -wall W, and for any adjacent minichambers $a_- < a_+$ separated by a minimal a_0 we have the following.

- (i) M_{\pm} are normal and \mathbb{Q} -factorial, $K_{M_{\pm}}$ are Cartier, M_{\pm}^{s} are l.c.i., and M_{-} and M_{+} are isomorphic in codimension 1.
- (ii) Suppose K_X does not lie in the α -wall, and that K_X and H_+ lie in the same connected components of $NS(X)_{\mathbb{R}} \setminus W$. Then $\rho(M_-/M_0) = 1$ and $\phi_+ : M_+ \to M_0$ is a K-flip of $\phi_- : M_- \to M_0$. This morphism ϕ_+ (resp. ϕ_-) is the contraction of an extremal ray of $\overline{NE}(M_+)$ (resp. $\overline{NE}(M_-)$), which is described in moduli theory.
- (iii) Suppose X is minimal and $\kappa(X) > 0$, which means K_X is not numerically equivalent to 0 and contained in $\overline{\mathrm{Amp}}(X)$. Then there is a polarization, say H_X ,

contained in S such that no α -wall separates H_X and K_X , and the canonical divisor of $M(H_X)$ is nef.

The greater part of this result has already appeared in [10, Theorem 1.1.]. In Section 1, we shall prove the remaining part of this theorem which has not appeared in [10], that largely is the statement about the \mathbb{Q} -factoriality of M_{\pm} and $\rho(M_{\pm}/M_0)$. The author was not aware of this part at the time of writing [10]. There is some application; suppose X is minimal and $\kappa(X) > 0$, and fix a polarization L on X. If c_2 is sufficiently large with respect to c_1 and L, then one can observe a modulitheoretic analogue of the minimal model program of M(L). Here "analogue" means that singularities of $M(H_X)$ are not considered. About this analogy, see Introduction in [10] for detail. We remark that a K-flip differs from a Thaddeus-type flip in [8].

In Section 2, we give some notes about extremal faces of $\overline{\text{NE}}(M(H)) \subset N_1(M(H))$, where H is an α -generic polarization. We shall point out that some extremal faces with dim ≥ 2 can appear in $\overline{\text{NE}}(M(H))$ when H gets closer to more than one α -wall.

Acknowledgment. The author would like to express gratitude to Prof. D. Matsushita for valuable suggestions.

Notation. All schemes are locally of finite type over \mathbb{C} or, more generally, an algebraically closed field of characteristic zero. For a projective scheme V over \mathbb{C} , Num(V) means $\mathrm{Pic}(V)$ modulo numerically equivalence. For any coherent sheaf E on V, $\mathrm{Ext}_V^i(E,E)^0$ means the kernel of trace map $\mathrm{Ext}_V^i(E,E) \to H^i(\mathcal{O}_V)$.

1. Proof of Theorem

There is a union of hyperplanes $W \subset \operatorname{Amp}(X)$ called α -walls in the ample cone $\operatorname{Amp}(X)$ such that $M(H) = M(H, \alpha)$ changes only when H passes through α -walls ([9]). A polarization on X is called α -generic if no α -wall contains it. Now fix a closed, finite, rational polyhedral cone $\mathcal{S} \subset \overline{\operatorname{Amp}}(X)$ as in Theorem 0.1. Refer to [1, Section 3] about the α -stability, minichambers and minimalls, which appeared in Introduction.

Lemma 1.1. If c_2 is sufficiently large with respect to c_1 and S, then for any α -generic polarizations H_- and H_+ in S separated by just one α -wall W, and for any adjacent minichambers a_- and a_+ separated by a miniwall a_0 , (i) M_\pm are normal, (ii) K_{M_\pm} are Cartier, (iii) M_\pm^s are l.c.i., (iv) M_- and M_+ are isomorphic in codimension 4, and (v) our natural birational map $M_- \cdots > M_+$ induces $\operatorname{Pic}(M_+^s) \simeq \operatorname{Pic}(M_+^s)$.

Proof. Fix a polarization $L \in \mathcal{S}$. If c_2 is sufficiently large w.r.t. c_1 and L, then M(L) is normal, $M^s(L)$ is of expected dimension, and the codimension of Sing'(M(L)) in M(L) is greater than 4 by [5] and [11], where Sing' $(M(L)) \subset M(L)$ is the closed subset consisting of sheaves E such that E is not L- μ -stable or that $\operatorname{Ext}_X^2(E,E)^0 \neq 0$. One can check (iv) in a similar way to [10, Lemma 2.4.]. Now we compare M(L) with M_+ . By (iv) and the deformation theory of simple sheaves, M_+^s is of expected dimension so it is l.c.i., and

(1)
$$\operatorname{codim}(\operatorname{Sing}'(M_+), M_+) > 4.$$

Thereby M_+^s is normal. Since H_\pm are α -generic and a_\pm are minichambers, if a rank-two sheaf E with Chern classes α is a_- -semistable and not a_+ -semistable, then E

is H-semistable for any polarization H, and so our birational map $M_+ \cdots > M_-$ is isomorphic near $M_+ \setminus M_+^s$. Thus M_+ is normal near $M_+ \setminus M_+^s$, and accordingly M_+ itself is normal. Item (v) follows item (iv) and (1) because of Fact 1.3 below.Last, M_+ is the GIT quotient of an open subset R_+ of some Quot-scheme on X. Let \mathcal{E} be a universal family of R_+ on $X \times R_+$. Since a_+ is not a minimal, one can check that the line bundle det $R\mathcal{H}om_{p_2}(\mathcal{E},\mathcal{E})$ on R_+ descends to a line bundle on M_+ , that equals K_{M_+} .

Next we recall a fact concerning $\operatorname{Pic}(M_+^s)$ from [6]. For a moment we assume M_+^s has a universal family \mathcal{E} on $X \times M_+^s$. Let K be the Grothendieck group of $X \times X$ and let \tilde{K} be the kernel of $\xi : K \to \mathbb{Z}$, that is defined by $\xi(C) = \chi(C \boxtimes \pi_1^* \mathcal{E} \boxtimes \pi_2^* \mathcal{E})$. Here \boxtimes denotes the tensor product of complexes. Let $\sigma : X \times X \to X \times X$ be the map exchanging factor and let $\operatorname{Pic}(X \times X)^{\sigma}$ be the subgroup consisting of line bundles invariant under σ . The map $\psi : \tilde{K} \to \operatorname{Pic}(M_+)$ defined by

(2)
$$\psi(C) = \det((p_1)_! (p_{23}^*(C) \boxtimes p_{12}^* \mathcal{E} \boxtimes p_{13}^* \mathcal{E})) \qquad (C \in \tilde{K})$$

induces a homomorphism

(3)
$$\Phi_{\pm} : \operatorname{Pic}(X \times X)^{\sigma} \oplus \mathbb{Z} \longrightarrow \operatorname{Pic}(M_{\pm}^{s}) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{12}],$$

as explained in [6, p. 132]. One can define Φ also when M_+^s do not necessarily admit a universal family.

Proposition 1.2. Let a_{\pm} be a minichamber satisfying assumptions in Lemma 1.1. If c_2 is sufficiently large with respect to c_1 and S, then

(4)
$$\Phi_{\pm} \otimes \mathbb{Q} : \operatorname{Pic}(X \times X)^{\sigma} \otimes \mathbb{Q} \oplus \mathbb{Q} \to \operatorname{Pic}(M_{\pm}^{s}) \otimes \mathbb{Q}$$

is isomorphic.

Proof. One can verify this from Lemma 1.1 (v) and by reading [6] (especially Lemma 3.10.) carefully. \Box

Before the proof of Theorem 0.1, recall a useful fact at [SGA2, p.132].

Fact 1.3. Let W be any quasi-projective and l.c.i. scheme with $\operatorname{codim}(\operatorname{Sing}(W), W) \geq$ 4. Then for any closed subset $\Lambda \subset W$ of codimension at least two, the restriction map $\operatorname{Pic}(W) \to \operatorname{Pic}(W \setminus \Lambda)$ is an isomorphism.

Now we shall prove two propositions; those and [10] end the proof of Theorem 0.1.

Proposition 1.4. Let a_{+} be a minichamber satisfying assumptions in Lemma 1.1. Suppose c_{2} is so large with respect to c_{1} and S that M_{\pm} are normal, M_{\pm}^{s} are l.c.i., $\operatorname{codim}(\operatorname{Sing}(M_{\pm}^{s}), M_{\pm}^{s}) \geq 4$, $\operatorname{codim}(M_{\pm} \setminus M_{\pm}^{s}, M_{\pm}) \geq 2$, and the homomorphisms at (4) are isomorphic. Then M_{\pm} are \mathbb{Q} -factorial.

Proof. First remark that assumptions in this proposition holds for $c_2 \gg 0$ from Lemma 1.1, Proposition 1.2, [11], and [3, Theorem 9.1.2.]. We shall verify this only for M_+ . Let U be the open set $M_+ \setminus \operatorname{Sing}(M_+)$ in M_+ . If $\operatorname{Cl}(M_+)$ means its divisor class group generated by Weil divisors, then we have

$$Cl(M_+) \longrightarrow Cl(U) \simeq Pic(U) \longrightarrow Pic(M_+^s),$$

where the first map is restriction, the second map is isomorphism since U is smooth, and the third map is an extension map, which is assured by Fact 1.3. Next, we have the following diagram.

$$\bar{\Phi}_{+} \otimes \mathbb{Q} : \operatorname{Pic}(X \times X)^{\sigma} \otimes \mathbb{Q} \oplus \mathbb{Q} \longrightarrow \operatorname{Pic}(M_{+}) \otimes \mathbb{Q}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Phi_{+} \otimes \mathbb{Q} : \operatorname{Pic}(X \times X)^{\sigma} \otimes \mathbb{Q} \oplus \mathbb{Q} \longrightarrow \operatorname{Pic}(M_{+}^{s}) \otimes \mathbb{Q},$$

where $\bar{\Phi}_+$ is defined at the equation (1.13) in [6] since H_\pm are α -generic and a_+ is not a miniwall, and the second column is a restriction map. Proposition 1.2 implies that the second column is surjective. On the other hand, the assumptions in this proposition implies that the second column is injective. As a result we get a homomorphism $Cl(M_+) \to Pic(M_+) \otimes \mathbb{Q}$. Thus we end the proof.

For a projective morphism f, we define $N_1(f)$ and $\overline{\text{NE}}(f)$ according to [4, Example 2.16], an extremal ray or extremal face of $\overline{\text{NE}}(f)$ according to [4, Definition 1.15], and the contraction of an extremal ray or face according to [4, Definition 1.25].

Proposition 1.5. Let a_{\pm} be minichambers as in Theorem 0.1. Suppose c_2 is sufficiently so large with respect to c_1 and S that conclusions in Lemma 1.1 and Proposition 1.2 hold good. Then we have the following. Let t be any point in $\phi_{+}(\operatorname{Exec}(\phi_{+})) \subset M_0$, and let $l \simeq \mathbf{P}^1$ be any line in $\phi_{+}^{-1}(t) \simeq \mathbf{P}^{N_t}$. Then $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\operatorname{NE}}(M_+)$, and ϕ_{+} is the contraction of this extremal ray. In particular $\rho(M_+/M_0) = 1$. The similar statement holds also for $\phi_{-}: M_{-} \to M_0$.

Proof. We check it for a_+ ; the proof is the same for a_- . For simplicity suppose that M_+^s has a universal family \mathcal{E} on $X \times M_+$, but the proof goes in a similar way for general case. The set

(5)
$$M_{+} \supset P_{+} = \{ [E] \mid E \text{ is not } a_{-}\text{-semistable} \}$$

is contained in M_+^s since we consider rank-two case. Take a point $t \in \phi_+(P_+)$. By Proposition 2.1. in [10], it holds that $\phi_+^{-1}(t) \simeq \mathbf{P}^N$, and there is a nontrivial exact sequence on $X \times \mathbf{P}^N$

(6)
$$0 \longrightarrow \pi_1^* F \otimes \mathcal{O}_{\mathbf{P}^N}(1) \longrightarrow \mathcal{E}|_{\phi_+^{-1}(t)} \otimes \pi_2^* L \longrightarrow \pi_1^* G \longrightarrow 0,$$

where F and G are coherent sheaves on X, which depends on the choice of t, and L is a line bundle on $\phi_+^{-1}(t)$. Let $l \simeq \mathbf{P}^1$ be a line in $\phi_+^{-1}(t)$. Then (6) implies that $ch(\mathcal{E}|_l) = ch(E) + \mathcal{O}_l(1) \cdot ch(F)$ in $A(X \times l)$, where E is a rank-two sheaf with Chern classes α . Let C be a class in \tilde{K} . Because of the definition of \tilde{K} and the G.R.R. theorem, we have

$$\deg(\psi(C) \cdot l) = [p_{1*} \left(ch \left(p_{23}^* C \boxtimes p_{12}^* \mathcal{E} |_l \boxtimes p_{13}^* \mathcal{E} |_l \right) \cdot p_{23}^* td(X \times X) \right)]_{1,l \times X \times X} \cdot \mathcal{O}_l(1)$$

$$= [p_{1*} \left(p_{23}^* ch(C) \cdot \{ p_2^* ch(E) + p_1^* \mathcal{O}_l(1) \cdot p_2^* ch(F) \} \cdot \{ p_3^* ch(E) + p_1^* \mathcal{O}_l(1) \cdot p_3^* ch(F) \} \cdot p_{23}^* td(X \times X) \right)]_{1,l \times X \times X} \cdot \mathcal{O}_l(1)$$

$$= [ch(C) \cdot td(X \times X) \cdot \{ \pi_1^* ch(F) \pi_2^* ch(E) + \pi_2^* ch(F) \pi_1^* ch(E) \}]_{0,X \times X}$$

$$= \chi \left(X \times X, C \boxtimes (\pi_1^* F \boxtimes \pi_2^* E + \pi_2^* F \boxtimes \pi_1^* E) \right).$$

By the projection formula and again by the definition of \tilde{K} , the last term equals

$$\chi\left(X\times X,C\boxtimes\{\pi_{1}^{*}(F+G+F-G)\boxtimes\pi_{2}^{*}(E)+\pi_{2}^{*}(F+G+F-G)\boxtimes\pi_{1}^{*}(E)\}\right)/2\\ =\chi\left(X\times X,C\boxtimes\{\pi_{1}^{*}(F-G)\boxtimes\pi_{2}^{*}(E)+\pi_{2}^{*}(F-G)\boxtimes\pi_{1}^{*}(E)\}\right)/2=\\ \left[\pi_{1}^{*}td(X)\cdot\pi_{2}^{*}td(X)\cdot ch(C)\cdot\{\pi_{1}^{*}ch(F-G)\cdot\pi_{2}^{*}ch(E)+\pi_{2}^{*}ch(F-G)\cdot\pi_{1}^{*}ch(E)\}\right]_{0}/2=\\ \left[\{\pi_{1*}\left(ch(C)\cdot\pi_{2}^{*}(td(X)ch(E))\right)+\pi_{2*}\left(ch(C)\cdot\pi_{1}^{*}(td(X)ch(E))\right)\}\cdot td(X)ch(F-G)\right]_{0}/2.\\ \text{From [1, Section 3], if we denote }\xi=c_{1}(F)-c_{1}(G)\in\text{NS}(X),\ n=c_{2}(F)\ \text{and }m=c_{2}(G),\ \text{then }W^{\xi}=\{H\in\text{Amp}(X)|H\cdot\xi=0\}\ \text{equals }W\ \text{and one can check that }td(X)\cdot ch(F-G)=(0,\xi,(a_{0}-1)(H_{+}-H_{-})\cdot\xi).\ \text{Thereby one can verify that}$$

(7)
$$\deg(\psi(C) \cdot l) = \left[\left\{ \pi_{1*}(C \cdot \pi_2^* t d(X)) + \pi_{2*}(C \cdot \pi_1^* t d(X)) \right\}^1 + (a_0 - 1) \left\{ \pi_{1*}(C \cdot \pi_2^* t d(X)) + \pi_{2*}(C \cdot \pi_1^* t d(X)) \right\}^0 \cdot (H_+ - H_-) \right] \cdot \xi / 2.$$

Now we shall show that $\operatorname{rk} N_1(M_+/M_0) = 1$. If we pick two points t_1 and t_2 in $\phi_+(P_+)$, then $\phi_+^{-1}(t_i) \simeq \mathbf{P}^{N_i}$ for i = 1, 2. Fix lines $l_i \subset \phi_+^{-1}(t_i)$. Then there are exact sequences on $X \times l_i$

$$0 \longrightarrow \pi_1^* F_i \otimes \mathcal{O}_{\mathbf{P}^N}(1) \longrightarrow \mathcal{E}|_{l_i} \otimes \pi_2^* L_i \longrightarrow \pi_1^* G_i \longrightarrow 0,$$

where F_i and G_i are coherent sheaves on X, and L_i is a line bundle on l_i , for i = 1, 2. Since the wall defined by $\xi_i = c_1(F_i) - c_1(G_i)$ equals W for i = 1, 2, there is a rational number r such that $\xi_1 = r\xi_2$ in Num(X). Then (4) and (7) imply that $l_1 \equiv r \cdot l_2$ in $N_1(M_+/M_0)$. As a result, we have $\overline{NE}(\phi_+) = \mathbb{R}_{>0} \cdot l$.

Now $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\mathrm{NE}}(M_+)$. Indeed, let $u_i \in \overline{\mathrm{NE}}(M_+)$ (i = 1, 2) satisfy that $u_1 + u_2 \in \mathbb{R}_{\geq 0} \cdot l$. Then, for any $H \in \mathrm{Amp}(M_0)$, $0 = (u_1 + u_2) \cdot \phi_+^*(H) = u_1 \cdot \phi_+^*(H) + u_2 \cdot \phi_+^*(H)$. Since $u_i \in \overline{\mathrm{NE}}(M_+)$, we have $u_i \cdot \phi_+^*(H) \geq 0$, and hence $u_i \cdot \phi_+^*(H) = 0$ for i = 1, 2. Recall that, by Example-Exercise 3-5-1 in [7], a natural inclusion $N_1(\phi_+) \subset N_1(M_+)$ identifies $\overline{\mathrm{NE}}(\phi_+)$ with

$$\{z \in \overline{\mathrm{NE}}(M_+) \mid z \cdot \phi_+^*(H) = 0 \text{ for any } H \in \mathrm{Amp}(M_0)\}.$$

Thereby $u_i \in \overline{NE}(\phi_+) = \mathbb{R}_{\geq 0} \cdot l$.

Last, ϕ_+ is the contraction of $\mathbb{R}_+ \cdot l$. Indeed, for any irreducible curve $C \subset M_+$, one can verify that $\phi_+(C)$ is a point if and only if $C \in \mathbb{R}_+ \cdot l$ by using arguments above. Also it holds that $\phi_{+*}(\mathcal{O}_{M_+}) \simeq \mathcal{O}_{M_0}$, since one can show that M_0 is normal from conclusions in Lemma 1.1 and Serre's criterion of normality, and so we conclude the proof of this proposition.

2. Some extremal faces of M(H)

Now we suppose that a polarization H_+ is α -generic and contained in an α -chamber \mathcal{C} , with which two different α -walls W_1 and W_2 contact, that a polarization H_0 is contained in $W_1 \cap W_2 \cap \overline{\mathcal{C}}$, and that no α -wall except W_1 and W_2 contains H_0 . Similarly to [1, Section 3], for $a \in [0, 1]$ one can define the a-stability of a coherent sheaf on X and the moduli scheme M(a) of a-semistable rank-two sheaves on X with fixed Chern classes in such a way that $M(1) = M(H_0)$ and $M(\epsilon) = M(H_+)$ if $\epsilon \geq 0$ is sufficiently small. Let a_{\pm} be minichambers separated by just one minimall a_0 . Then Proposition 2.1 below says that $\rho(M_+/M_0)$ can be greater than 1, $\overline{\text{NE}}(M_+)$ can have an extremal face with dim ≥ 2 , and so $\overline{\text{NE}}(M_+)$ can admit a "polyhedral-like part".

Let $P_+ \subset M_+^s$ be the set defined at (5). Every member $E \in P_+$ has a Harder-Narasimhan filtration with respect to a_- , that is given by a nontrivial exact sequence

$$0 \longrightarrow F \longrightarrow E \longrightarrow G \longrightarrow 0$$
,

and then one can check that the wall defined by $\xi(E) := c_1(F) - c_1(G) \in NS(X)$ equals W_1 or W_2 because of the way to derive a_{\pm} from H_{\pm} . For j = 1, 2, we define a set

 $P_+ \supset P_+^{(j)} = \{ [E] \in P_+ \mid \text{the wall defined by } \xi(E) \text{ equals } W_j \}.$

Then, from the uniqueness of a_- -HNF, $P_+^{(j)}$ is a union of some connected components of P_+ , and it holds that $P_+^{(1)} \cap P_+^{(2)} = \emptyset$.

Proposition 2.1. Suppose that both $P_+^{(1)}$ and $P_+^{(2)}$ are non-empty. Then $\overline{\text{NE}}(M_+)$ has a two-dimensional extremal face spanned by $\mathbb{R}_{\geq 0} \cdot l_1$ and $\mathbb{R}_{\geq 0} \cdot l_2$, where $l_j \simeq \mathbf{P}^1$ is a line contained in $\phi_+^{-1}(t_j) \simeq \mathbf{P}^{N_j}$ with some $t_j \in \phi_+(P_+^{(j)})$, for j = 1, 2. The morphism ϕ_+ is the contraction of this extremal face.

Proof. If a sheaf $E_j \in M_+^s$ is a member of $l_j \subset P_+$, then one can check that $\mathbb{R} \cdot \xi(E_1)$ does not contain $\xi(E_2)$ in $\operatorname{Num}(X)$ since $W_1 \neq W_2$. Thus it follows from (7) that the ray $\mathbb{R}_{\geq 0} \cdot l_1$ does not contain l_2 in $N_1(M_+)$. In a similar way to the proof of Proposition 1.5, we can check that (i) $\overline{\operatorname{NE}}(\phi_+) = \mathbb{R}_{\geq 0} \cdot l_1 + \mathbb{R}_{\geq 0} \cdot l_2$, (ii) this is a two-dimensional extremal face of $\overline{\operatorname{NE}}(M_+)$, and (iii) ϕ_+ is the contraction of this extremal face.

Similarly, suppose that different α -walls W_j $(1 \leq j \leq N)$ contact with an α -chamber \mathcal{C} containing H_+ and satisfy that $\bigcap_{j=1}^N W_j \cap \overline{\mathcal{C}}$ is non-empty. Then $\rho(M_+/M_0)$ can be N or more, and $\overline{\mathrm{NE}}(M_+)$ can have an extremal face with dim $\geq N$.

Remark 2.2. There does exist an example of a surface X, a class α with $4c_2 - c_1^2 \gg 0$, an α -chamber \mathcal{C} , two α -walls W_1 and W_2 , an α -generic polarization H_+ , a polarization H_0 , a minichamber a_+ and a minimall a_0 such that both $P_+^{(1)}$ and $P_+^{(2)}$ are non-empty. We leave it to the reader to find such examples. In rank-two case, the definition of α -walls is rather numerical. Hence if one grasps the structure of $\mathrm{Amp}(X)$, then it may be just a calculating exercise to find such an example. Remark that, when X is an Abelian surface, $\mathrm{Amp}(X)$ is just a connected component of the big cone of X.

References

- [1] G. Ellingsrud and L. Göttsche, Variation of moduli spaces and Donaldson invariants under change of polarization, J. Reine Angew. Math. 467 (1995), 1–49.
- [2] R. Friedman and Z. Qin, Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces, Comm. Anal. Geom. 3 (1995), no. 1-2, 11–83.
- [3] D. Huybrechts and M. Lehn, *The geometry of moduli spaces of sheaves*, Friedr. Vieweg & Sohn, 1997.
- [4] J. Kollár and S. Mori, *Birational geometry of algebraic varieties*, vol. 134, Cambridge University Press, 1998.
- [5] J. Li, Kodaira dimension of moduli space of vector bundles on surfaces, Invent. Math. 115 (1994), no. 1, 1–40.
- [6] ______, Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 129–146.

- [7] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002.
- [8] K. Matsuki and R. Wentworth, Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Internat. J. Math. 8 (1997), no. 1, 97–148.
- [9] Z. Qin, Birational properties of moduli spaces of stable locally free rank-2 sheaves on algebraic surfaces, Manuscripta Math. 72 (1991), no. 2, 163–180.
- [10] K. Yamada, Flips and variation of moduli scheme of sheaves on a surface, J. Math. Kyoto Univ. 49 (2009), no. 2, 419–425, arXiv:0811.3522.
- [11] K. Zuo, Generic smoothness of the moduli spaces of rank two stable vector bundles over algebraic surfaces, Math. Z. **207** (1991), no. 4, 629–643.

E-mail address: kyamada@math.kyoto-u.ac.jp

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, JAPAN