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INTRODUCTION

We shall consider some analogy between the wall-crossing problem of moduli
schemes of stable sheaves on a surface, and the minimal model program of higher-
dimensional varieties. This article is a continuation of [10].

Let X be a non-singular projective surface over C, and H an ample line bundle
on X. Denote by M(H) (resp. M*(H)) the coarse moduli scheme of rank-two H-
semistable (resp. H-stable) sheaves on X with Chern class a = (¢1, ¢2) € Pic(X) X Z.

Let H_ and H, be a-generic polarizations such that just one a-wall W separates
them For a € [0, 1] one can define the a-semistability of sheaves on X and the coarse
moduli scheme M (a) (resp. M*(a)) of rank-two a-semistable (resp. a-stable) sheaves
with Chern classes « in such a way that M(¢) = M(H;) and M (1 —¢) = M(H_) if
¢ > 0 is sufficiently small. M (a) is projective over C. Let a_ < ay be minichambers
separated by only one miniwall ay, and denote M, = M(ay), M_ = M(a_) and
My = M(ag). There are natural morphisms ¢_ : M_ — My and ¢y : M, — M,
([1], [2], [8]). Omne may say they are morphisms of moduli schemes coming from
wall-crossing methods. Let ¢_ : V_ — V{ be a birational projective morphism such
that (1) V_ is normal, (2) —Ky_ is Q-Cartier and ¢_-ample, (3) the codimension
of the exceptional set Exc(¢_) is more than 1, and (4) the relative Picard number
p(V_/Vy) of ¢_ is 1. After the theory of minimal model program, we say a birational
projective morphism ¢4 : V, — Vyisa K-flipof ¢_ : V_ — V4 if (1) V. is normal, (2)
Ky, is Q-Cartier and ¢;-ample, (3) the codimension of the exceptional set Exc(¢-)
is more than 1, and (4) the relative Picard number p(V,/V;) of ¢, is 1.

Theorem 0.1. Fiz a closed, finite, rational polyhedral cone S C Amp(X) such that
SNOAmp(X) C Rsg - Kx. If ¢y is sufficiently large with respect to ¢, and S, then
for any a-generic polarizations H_ and Hy in S separated by just one a-wall W,
and for any adjacent minichambers a_ < a, separated by a miniwall ag we have the
following.

(i) My are normal and Q-factorial, Ky, are Cartier, M3 are l.c.i., and M_ and
M are isomorphic in codimension 1.

(ii) Suppose Kx does not lie in the a-wall, and that Kx and Hy lie in the same
connected components of NS(X)gr \ W. Then p(M_/My) =1 and ¢ : My — My is
a K-flip of ¢_ : M_ — My. This morphism ¢, (resp. ¢_) is the contraction of an
extremal ray of NE(M,) (resp. NE(M_)), which is described in moduli theory.

(iii) Suppose X is minimal and x(X) > 0, which means Kx 1is not numerically
equivalent to 0 and contained in Amp(X). Then there is a polarization, say Hy,
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contained in S such that no a-wall separates Hx and K, and the canonical divisor
of M(Hx) is nef.

The greater part of this result has already appeared in [10, Theorem 1.1.]. In
Section 1, we shall prove the remaining part of this theorem which has not appeared
in [10], that largely is the statement about the Q-factoriality of My and p(My/My).
The author was not aware of this part at the time of writing [10]. There is some
application; suppose X is minimal and x(X) > 0, and fix a polarization L on X.
If ¢y is sufficiently large with respect to ¢; and L, then one can observe a moduli-
theoretic analogue of the minimal model program of M (L). Here “analogue” means
that singularities of M (H ) are not considered. About this analogy, see Introduction
in [10] for detail. We remark that a K-flip differs from a Thaddeus-type flip in [8].

In Section 2, we give some notes about extremal faces of NE(M (H)) C Ny(M(H)),
where H is an a-generic polarization. We shall point out that some extremal faces
with dim > 2 can appear in NE(M (H)) when H gets closer to more than one a-wall.

Acknowledgment . The author would like to express gratitude to Prof. D. Matsushita
for valuable suggestions.

Notation. All schemes are locally of finite type over C or, more generally, an
algebraically closed field of characteristic zero. For a projective scheme V over C,
Num(V) means Pic(V') modulo numerically equivalence. For any coherent sheaf E
on V , Exti,(E, E)° means the kernel of trace map Ext, (E, F) — H'(Oy).

1. PROOF OF THEOREM

There is a union of hyperplanes W C Amp(X) called a-walls in the ample cone
Amp(X) such that M(H) = M(H,«) changes only when H passes through a-walls
([9]). A polarization on X is called a-generic if no a-wall contains it. Now fix a
closed, finite, rational polyhedral cone S € Amp(X) as in Theorem 0.1. Refer to
[1, Section 3] about the a-stability, minichambers and miniwalls, which appeared in
Introduction.

Lemma 1.1. If ¢y is sufficiently large with respect to ¢y and S, then for any a-
generic polarizations H_ and H, in S separated by just one a-wall W, and for any
adjacent minichambers a_ and a separated by a miniwall ag, (1) M+ are normal, (ii)
Ky are Cartier, (iii) M3 arel.c.i., (iv) M_ and M, are isomorphic in codimension
4, and (v) our natural birational map M_ --- > M, induces Pic(M?) ~ Pic(M3).

Proof. Fix a polarization L € S. If ¢, is sufficiently large w.r.t. ¢; and L, then M (L)
is normal, M*(L) is of expected dimension, and the codimension of Sing’(M (L)) in
M(L) is greater than 4 by [5] and [11], where Sing’(M (L)) C M(L) is the closed
subset consisting of sheaves E such that E is not L-u-stable or that Ext3, (E, E)° # 0.
One can check (iv) in a similar way to [10, Lemma 2.4.]. Now we compare M (L)
with M. By (iv) and the deformation theory of simple sheaves, M? is of expected
dimension so it is l.c.i., and

(1) codim(Sing’ (M), M) > 4.

Thereby M3 is normal. Since Hy are a-generic and a4 are minichambers, if a rank-
two sheaf E' with Chern classes « is a_-semistable and not a-semistable, then E
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is H-semistable for any polarization H, and so our birational map M, --- > M_ is
isomorphic near M, \ M#%. Thus M, is normal near M, \ M3, and accordingly M,
itself is normal. Item (v) follows item (iv) and (1) because of Fact 1.3 below.Last,
M, is the GIT quotient of an open subset R, of some Quot-scheme on X. Let £
be a universal family of R, on X x R,. Since a, is not a miniwall, one can check
that the line bundle det RHom,, (£,€) on R, descends to a line bundle on M, that
equals Ky, . O

Next we recall a fact concerning Pic(M3$) from [6]. For a moment we assume M3
has a universal family & on X x M3. Let K be the Grothendieck group of X x X

and let K be the kernel of € : K — 7Z, that is defined by £(C) = x(C K7t R msE).
Here X denotes the tensor product of complexes. Let ¢ : X x X — X x X be
the map exchanging factor and let Pic(X x X)? be the subgroup consisting of line
bundles invariant under o. The map ¢ : K — Pic(M,) defined by

(2) $(C) = det (1)) (p53(C) BpL,E ®pi€))  (C € K)

induces a homomorphism

1

"

as explained in [6, p. 132]. One can define ® also when M?$ do not necessarily admit
a universal family.

(3) &, : Pic(X x X)° ®Z — Pic(M3) ®y Z|

Proposition 1.2. Let ay be a minichamber satisfying assumptions in Lemma 1.1.
If ¢co is sufficiently large with respect to ¢; and S, then

(4) ¢, ®Q:Pic(X x X)"®Q®Q — Pic(M)®Q

s 1somorphic.

Proof. One can verify this from Lemma 1.1 (v) and by reading [6] (especially Lemma
3.10.) carefully. O

Before the proof of Theorem 0.1, recall a useful fact at [SGA2, p.132].

Fact 1.3. Let W be any quasi-projective and l.c.i. scheme with codim(Sing(W), W) >
4. Then for any closed subset A C W of codimension at least two, the restriction
map Pic(W) — Pic(W \ A) is an isomorphism.

Now we shall prove two propositions; those and [10] end the proof of Theorem
0.1.

Proposition 1.4. Let a, be a minichamber satisfying assumptions in Lemma 1.1.
Suppose cy s so large with respect to ¢y and S that My are normal, M3 are l.c.i.,
codim(Sing(M3), M$) > 4, codim(My \ M3, M.) > 2, and the homomorphisms at
(4) are isomorphic. Then M are Q-factorial.

Proof. First remark that assumptions in this proposition holds for ¢y > 0 from
Lemma 1.1, Proposition 1.2, [11], and [3, Theorem 9.1.2.]. We shall verify this only

for M. Let U be the open set M, \ Sing(M) in M, . If CI(M,) means its divisor
class group generated by Weil divisors, then we have

Cl(My) — CIU) ~ Pic(U) — Pic(M3),
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where the first map is restriction, the second map is isomorphism since U is smooth,
and the third map is an extension map, which is assured by Fact 1.3. Next, we have
the following diagram.

P, ®Q:Pic(X x X)?®Q®Q —Pic(M;)®Q

| |

P, ®Q:Pic(X x X)”®Q & Q — Pic(M]) ® Q,

where ®, is defined at the equation (1.13) in [6] since H. are a-generic and a,
is not a miniwall, and the second column is a restriction map. Proposition 1.2
implies that the second column is surjective. On the other hand, the assumptions
in this proposition implies that the second column is injective. As a result we get a
homomorphism Cl(M,) — Pic(M,) ® Q. Thus we end the proof. 0

For a projective morphism f, we define Ny (f) and NE(f) according to [4, Example
2.16], an extremal ray or extremal face of NE(f) according to [4, Definition 1.15],
and the contraction of an extremal ray or face according to [4, Definition 1.25].

Proposition 1.5. Let aq be minichambers as in Theorem 0.1. Suppose co is suf-
ficiently so large with respect to ¢y and S that conclusions in Lemma 1.1 and
Proposition 1.2 hold good. Then we have the following. Let t be any point in
¢4 (Exec(¢y)) C My, and let | ~ P be any line in ¢ (t) ~ PN. Then R - 1
is an extremal ray of NE(M,), and ¢ is the contraction of this extremal ray. In
particular p(M, /My) = 1. The similar statement holds also for ¢p_ : M_ — M.

Proof. We check it for ay; the proof is the same for a_. For simplicity suppose that
M? has a universal family £ on X x M, , but the proof goes in a similar way for
general case. The set

(5) M, D P, = {[E] | E is not a_-semistable}

is contained in M3 since we consider rank-two case. Take a point ¢ € ¢, (P;). By
Proposition 2.1. in [10], it holds that ¢;'(t) ~ P¥, and there is a nontrivial exact
sequence on X x PV

(6) 0 — 7F ® Opn(1) —>€|¢J—rl(t)®7r§L—>7TIG—>0,

where F' and G are coherent sheaves on X, which depends on the choice of ¢, and
L is a line bundle on ¢ (). Let [ ~ P! be a line in ¢ '(¢). Then (6) implies that
ch(&|)) = ch(E)+Oy(1)-ch(F) in A(X x 1), where F is a rank-two sheaf with Chern
classes . Let C be a class in K. Because of the definition of K and the G.R.R.
theorem, we have

deg(¥(C) - 1) = [p1« (ch (p33C W pioE)i W pisE1) - pastd(X x X))]l,lxXxX -Oi(1)
= [p1s (P23ch(C) - {p3ch(E) + p1Oi(1) - poch(F)} -
[PAeh(E) + piO4(1) - pieh(F)} - pigtd(X x X))y - Orl1)
= [ch(C) - td(X x X) - {mjch(F)r5ch(E) + 7r§ch(F)7TIch(E)}]07XxX
=X X xX,CR(mFRmE+n,FXR71E)).
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By the projection formula and again by the definition of K, the last term equals

XX xX,CR{M(F+G+F-GQ) Ry (E)+m(F+G+ F—-G)X7i(E)}) /2
=x(X x X, CR{m(F—G)RK7y(E)+7m5(F —G)Xr{(E)}) /2 =
[Titd(X) - m3td(X) - ch(C) - {mjch(F — G) - mych(E) + n3ch(F — G) - wich(E)}, /2 =
{714 (ch(C) - 75 (td(X )ch(E))) + mau (ch(C) - 7} (td(X)ch(E)))} - td(X)ch(F — G)], /2

From [1, Section 3], if we denote & = ¢;(F) — ¢1(G) € NS(X), n = ¢»(F) and
m = co(G), then Wé& = {H € Amp(X)|H - £ = 0} equals W and one can check that
td(X) - ch(F —G) = (0,&,(ap — 1)(Hy — H_) - £). Thereby one can verify that

(7)  deg(¥(C) - 1) = [{m1.(C - m3td(X)) + m2.(C - witd (X))} +
(a0 — 1) {m1.(C - w5td(X)) + w2, (C - witd(X)} - (Hy — H-)] - £ /2.

Now we shall show that rkNy(M, /M) = 1. If we pick two points t; and ¢y in
¢4 (Py), then ¢ (t;) ~ PYi for i = 1,2. Fix lines [; C ¢ ' (¢;). Then there are exact
sequences on X X [;

0 — mF,®0pn~(l) — &, @My L; — 7 G; — 0,

where F; and G; are coherent sheaves on X, and L; is a line bundle on [;, for i = 1, 2.
Since the wall defined by & = ¢1(F;)—c1(G;) equals W for i = 1,2, there is a rational
number 7 such that § = r& in Num(X). Then (4) and (7) imply that I, =r -l in
Ni(M,/My). As a result, we have NE(¢,) = Rsg - [.

Now Rsg - [ is an extremal ray of NE(M,). Indeed, let u; € NE(M,) (i = 1,2
satisfy that u; +us € R>g-1. Then, for any H € Amp(My), 0 = (u1 +us) - ¢ (H) =
uy - @5 (H) + ug - ¢ (H). Since u; € NE(M, ), we have u; - ¢* (H) > 0, and hence
u; - ¢F (H) =0 for i = 1,2. Recall that, by Example-Exercise 3-5-1 in [7], a natural
inclusion Ni(¢4) C Ni(M,) identifies NE(¢, ) with

{z € NE(M,) | z- ¢t (H) =0 for any H € Amp(MO)} .

Thereby u; € NE(¢, ) = R - [

Last, ¢, is the contraction of R, -[. Indeed, for any irreducible curve C C M.,
one can verify that ¢, (C) is a point if and only if C' € R, - by using arguments
above. Also it holds that ¢;.(O, ) ~ Ou,, since one can show that M, is normal
from conclusions in Lemma 1.1 and Serre’s criterion of normality, and so we conclude
the proof of this proposition. O

2. SOME EXTREMAL FACES OF M (H)

Now we suppose that a polarization H, is a-generic and contained in an «-
chamber C, with which two different a-walls W, and W5 contact, that a polarization
H, is contained in Wy N W, NC, and that no a-wall except W, and W, contains H,.
Similarly to [1, Section 3], for a € [0, 1] one can define the a-stability of a coherent
sheaf on X and the moduli scheme M (a) of a-semistable rank-two sheaves on X with
fixed Chern classes in such a way that M (1) = M (Hy) and M(¢) = M(H;)ife > 0is
sufficiently small. Let a4 be minichambers separated by just one miniwall ag. Then
Proposition 2.1 below says that p(M,. /M;) can be greater than 1, NE(M,) can have

an extremal face with dim > 2, and so NE(M ) can admit a “polyhedral-like part”.
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Let Py C M be the set defined at (5). Every member E € P, has a Harder-
Narasimhan filtration with respect to a_, that is given by a nontrivial exact sequence

0—F —F—G—0,

and then one can check that the wall defined by &(E) := ¢1(F) — ¢1(G) € NS(X)
equals Wi or Wy because of the way to derive a4 from H.. For j = 1,2, we define
a set

Py > PY = {[E] € P, | the wall defined by ¢(E) equals W; }.

Then, from the uniqueness of a_-HNF, PJ(rj ) is a union of some connected components
of Py, and it holds that P" 0 PP = 0.

Proposition 2.1. Suppose that both PJ(FD and Pf) are non-empty. Then NE(M,)
has a two-dimensional extremal face spanned by Rso -l and Rxq - Iz, where [; ~ P?
is a line contained in ¢ (t;) ~ PNi with some t; € ¢+(PJ(FJ)), for j = 1,2. The
morphism ¢ is the contraction of this extremal face.

Proof. 1f a sheaf E; € M? is a member of [; C Py, then one can check that R-£(Ey)
does not contain {(F2) in Num(X) since Wy # Wy, Thus it follows from (7) that
the ray Rs¢ - 1 does not contain Iy in Nyj(M,). In a similar way to the proof of
Proposition 1.5, we can check that (i) NE(¢y) = Rxo - I + Rxq - Iy, (ii) this is a
two-dimensional extremal face of NE(M, ), and (iii) ¢, is the contraction of this
extremal face. O

Similarly, suppose that different a-walls W; (1 < j < N) contact with an a-
chamber C containing H and satisfy that N7, W,;NC is non-empty. Then p(M, /M)
can be N or more, and NE(M,) can have an extremal face with dim > N

Remark 2.2. There does exist an example of a surface X, a class a with 4c, —
c? > 0, an a-chamber C, two a-walls W, and Ws, an a-generic polarization H,, a

polarization Hy, a minichamber a, and a miniwall ag such that both PJ(FD and Pf)
are non-empty. We leave it to the reader to find such examples. In rank-two case,
the definition of a-walls is rather numerical. Hence if one grasps the structure of
Amp(X), then it may be just a calculating exercise to find such an example. Remark
that, when X is an Abelian surface, Amp(X) is just a connected component of the
big cone of X.
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