K-FLIPS AND VARIATION OF MODULI SCHEME OF SHEAVES ON A SURFACE, II #### KIMIKO YAMADA ## Introduction We shall consider some analogy between the wall-crossing problem of moduli schemes of stable sheaves on a surface, and the minimal model program of higher-dimensional varieties. This article is a continuation of [10]. Let X be a non-singular projective surface over \mathbb{C} , and H an ample line bundle on X. Denote by M(H) (resp. $M^s(H)$) the coarse moduli scheme of rank-two H-semistable (resp. H-stable) sheaves on X with Chern class $\alpha = (c_1, c_2) \in \text{Pic}(X) \times \mathbb{Z}$. Let H_- and H_+ be α -generic polarizations such that just one α -wall W separates them For $a \in [0,1]$ one can define the a-semistability of sheaves on X and the coarse moduli scheme M(a) (resp. $M^s(a)$) of rank-two a-semistable (resp. a-stable) sheaves with Chern classes α in such a way that $M(\epsilon) = M(H_+)$ and $M(1-\epsilon) = M(H_-)$ if $\epsilon > 0$ is sufficiently small. M(a) is projective over \mathbb{C} . Let $a_- < a_+$ be minichambers separated by only one miniwall a_0 , and denote $M_+ = M(a_+)$, $M_- = M(a_-)$ and $M_0 = M(a_0)$. There are natural morphisms $\phi_- : M_- \to M_0$ and $\phi_+ : M_+ \to M_0$ ([1], [2], [8]). One may say they are morphisms of moduli schemes coming from wall-crossing methods. Let $\phi_- : V_- \to V_0$ be a birational projective morphism such that (1) V_- is normal, (2) $-K_{V_-}$ is \mathbb{Q} -Cartier and ϕ_- -ample, (3) the codimension of the exceptional set $\operatorname{Exc}(\phi_-)$ is more than 1, and (4) the relative Picard number $\rho(V_-/V_0)$ of ϕ_- is 1. After the theory of minimal model program, we say a birational projective morphism $\phi_+ : V_+ \to V_0$ is a K-flip of $\phi_- : V_- \to V_0$ if (1) V_+ is normal, (2) K_{V_+} is \mathbb{Q} -Cartier and ϕ_+ -ample, (3) the codimension of the exceptional set $\operatorname{Exc}(\phi_+)$ is more than 1, and (4) the relative Picard number $\rho(V_+/V_0)$ of ϕ_+ is 1. **Theorem 0.1.** Fix a closed, finite, rational polyhedral cone $S \subset \overline{\mathrm{Amp}}(X)$ such that $S \cap \partial \overline{\mathrm{Amp}}(X) \subset \mathbb{R}_{\geq 0} \cdot K_X$. If c_2 is sufficiently large with respect to c_1 and S, then for any α -generic polarizations H_- and H_+ in S separated by just one α -wall W, and for any adjacent minichambers $a_- < a_+$ separated by a minimal a_0 we have the following. - (i) M_{\pm} are normal and \mathbb{Q} -factorial, $K_{M_{\pm}}$ are Cartier, M_{\pm}^{s} are l.c.i., and M_{-} and M_{+} are isomorphic in codimension 1. - (ii) Suppose K_X does not lie in the α -wall, and that K_X and H_+ lie in the same connected components of $NS(X)_{\mathbb{R}} \setminus W$. Then $\rho(M_-/M_0) = 1$ and $\phi_+ : M_+ \to M_0$ is a K-flip of $\phi_- : M_- \to M_0$. This morphism ϕ_+ (resp. ϕ_-) is the contraction of an extremal ray of $\overline{NE}(M_+)$ (resp. $\overline{NE}(M_-)$), which is described in moduli theory. - (iii) Suppose X is minimal and $\kappa(X) > 0$, which means K_X is not numerically equivalent to 0 and contained in $\overline{\mathrm{Amp}}(X)$. Then there is a polarization, say H_X , contained in S such that no α -wall separates H_X and K_X , and the canonical divisor of $M(H_X)$ is nef. The greater part of this result has already appeared in [10, Theorem 1.1.]. In Section 1, we shall prove the remaining part of this theorem which has not appeared in [10], that largely is the statement about the \mathbb{Q} -factoriality of M_{\pm} and $\rho(M_{\pm}/M_0)$. The author was not aware of this part at the time of writing [10]. There is some application; suppose X is minimal and $\kappa(X) > 0$, and fix a polarization L on X. If c_2 is sufficiently large with respect to c_1 and L, then one can observe a modulitheoretic analogue of the minimal model program of M(L). Here "analogue" means that singularities of $M(H_X)$ are not considered. About this analogy, see Introduction in [10] for detail. We remark that a K-flip differs from a Thaddeus-type flip in [8]. In Section 2, we give some notes about extremal faces of $\overline{\text{NE}}(M(H)) \subset N_1(M(H))$, where H is an α -generic polarization. We shall point out that some extremal faces with dim ≥ 2 can appear in $\overline{\text{NE}}(M(H))$ when H gets closer to more than one α -wall. Acknowledgment. The author would like to express gratitude to Prof. D. Matsushita for valuable suggestions. **Notation.** All schemes are locally of finite type over \mathbb{C} or, more generally, an algebraically closed field of characteristic zero. For a projective scheme V over \mathbb{C} , Num(V) means $\mathrm{Pic}(V)$ modulo numerically equivalence. For any coherent sheaf E on V, $\mathrm{Ext}_V^i(E,E)^0$ means the kernel of trace map $\mathrm{Ext}_V^i(E,E) \to H^i(\mathcal{O}_V)$. #### 1. Proof of Theorem There is a union of hyperplanes $W \subset \operatorname{Amp}(X)$ called α -walls in the ample cone $\operatorname{Amp}(X)$ such that $M(H) = M(H, \alpha)$ changes only when H passes through α -walls ([9]). A polarization on X is called α -generic if no α -wall contains it. Now fix a closed, finite, rational polyhedral cone $\mathcal{S} \subset \overline{\operatorname{Amp}}(X)$ as in Theorem 0.1. Refer to [1, Section 3] about the α -stability, minichambers and minimalls, which appeared in Introduction. **Lemma 1.1.** If c_2 is sufficiently large with respect to c_1 and S, then for any α -generic polarizations H_- and H_+ in S separated by just one α -wall W, and for any adjacent minichambers a_- and a_+ separated by a miniwall a_0 , (i) M_\pm are normal, (ii) K_{M_\pm} are Cartier, (iii) M_\pm^s are l.c.i., (iv) M_- and M_+ are isomorphic in codimension 4, and (v) our natural birational map $M_- \cdots > M_+$ induces $\operatorname{Pic}(M_+^s) \simeq \operatorname{Pic}(M_+^s)$. Proof. Fix a polarization $L \in \mathcal{S}$. If c_2 is sufficiently large w.r.t. c_1 and L, then M(L) is normal, $M^s(L)$ is of expected dimension, and the codimension of Sing'(M(L)) in M(L) is greater than 4 by [5] and [11], where Sing' $(M(L)) \subset M(L)$ is the closed subset consisting of sheaves E such that E is not L- μ -stable or that $\operatorname{Ext}_X^2(E,E)^0 \neq 0$. One can check (iv) in a similar way to [10, Lemma 2.4.]. Now we compare M(L) with M_+ . By (iv) and the deformation theory of simple sheaves, M_+^s is of expected dimension so it is l.c.i., and (1) $$\operatorname{codim}(\operatorname{Sing}'(M_+), M_+) > 4.$$ Thereby M_+^s is normal. Since H_\pm are α -generic and a_\pm are minichambers, if a rank-two sheaf E with Chern classes α is a_- -semistable and not a_+ -semistable, then E is H-semistable for any polarization H, and so our birational map $M_+ \cdots > M_-$ is isomorphic near $M_+ \setminus M_+^s$. Thus M_+ is normal near $M_+ \setminus M_+^s$, and accordingly M_+ itself is normal. Item (v) follows item (iv) and (1) because of Fact 1.3 below.Last, M_+ is the GIT quotient of an open subset R_+ of some Quot-scheme on X. Let \mathcal{E} be a universal family of R_+ on $X \times R_+$. Since a_+ is not a minimal, one can check that the line bundle det $R\mathcal{H}om_{p_2}(\mathcal{E},\mathcal{E})$ on R_+ descends to a line bundle on M_+ , that equals K_{M_+} . Next we recall a fact concerning $\operatorname{Pic}(M_+^s)$ from [6]. For a moment we assume M_+^s has a universal family \mathcal{E} on $X \times M_+^s$. Let K be the Grothendieck group of $X \times X$ and let \tilde{K} be the kernel of $\xi : K \to \mathbb{Z}$, that is defined by $\xi(C) = \chi(C \boxtimes \pi_1^* \mathcal{E} \boxtimes \pi_2^* \mathcal{E})$. Here \boxtimes denotes the tensor product of complexes. Let $\sigma : X \times X \to X \times X$ be the map exchanging factor and let $\operatorname{Pic}(X \times X)^{\sigma}$ be the subgroup consisting of line bundles invariant under σ . The map $\psi : \tilde{K} \to \operatorname{Pic}(M_+)$ defined by (2) $$\psi(C) = \det((p_1)_! (p_{23}^*(C) \boxtimes p_{12}^* \mathcal{E} \boxtimes p_{13}^* \mathcal{E})) \qquad (C \in \tilde{K})$$ induces a homomorphism (3) $$\Phi_{\pm} : \operatorname{Pic}(X \times X)^{\sigma} \oplus \mathbb{Z} \longrightarrow \operatorname{Pic}(M_{\pm}^{s}) \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{12}],$$ as explained in [6, p. 132]. One can define Φ also when M_+^s do not necessarily admit a universal family. **Proposition 1.2.** Let a_{\pm} be a minichamber satisfying assumptions in Lemma 1.1. If c_2 is sufficiently large with respect to c_1 and S, then (4) $$\Phi_{\pm} \otimes \mathbb{Q} : \operatorname{Pic}(X \times X)^{\sigma} \otimes \mathbb{Q} \oplus \mathbb{Q} \to \operatorname{Pic}(M_{\pm}^{s}) \otimes \mathbb{Q}$$ is isomorphic. *Proof.* One can verify this from Lemma 1.1 (v) and by reading [6] (especially Lemma 3.10.) carefully. \Box Before the proof of Theorem 0.1, recall a useful fact at [SGA2, p.132]. Fact 1.3. Let W be any quasi-projective and l.c.i. scheme with $\operatorname{codim}(\operatorname{Sing}(W), W) \geq$ 4. Then for any closed subset $\Lambda \subset W$ of codimension at least two, the restriction map $\operatorname{Pic}(W) \to \operatorname{Pic}(W \setminus \Lambda)$ is an isomorphism. Now we shall prove two propositions; those and [10] end the proof of Theorem 0.1. **Proposition 1.4.** Let a_{+} be a minichamber satisfying assumptions in Lemma 1.1. Suppose c_{2} is so large with respect to c_{1} and S that M_{\pm} are normal, M_{\pm}^{s} are l.c.i., $\operatorname{codim}(\operatorname{Sing}(M_{\pm}^{s}), M_{\pm}^{s}) \geq 4$, $\operatorname{codim}(M_{\pm} \setminus M_{\pm}^{s}, M_{\pm}) \geq 2$, and the homomorphisms at (4) are isomorphic. Then M_{\pm} are \mathbb{Q} -factorial. *Proof.* First remark that assumptions in this proposition holds for $c_2 \gg 0$ from Lemma 1.1, Proposition 1.2, [11], and [3, Theorem 9.1.2.]. We shall verify this only for M_+ . Let U be the open set $M_+ \setminus \operatorname{Sing}(M_+)$ in M_+ . If $\operatorname{Cl}(M_+)$ means its divisor class group generated by Weil divisors, then we have $$Cl(M_+) \longrightarrow Cl(U) \simeq Pic(U) \longrightarrow Pic(M_+^s),$$ where the first map is restriction, the second map is isomorphism since U is smooth, and the third map is an extension map, which is assured by Fact 1.3. Next, we have the following diagram. $$\bar{\Phi}_{+} \otimes \mathbb{Q} : \operatorname{Pic}(X \times X)^{\sigma} \otimes \mathbb{Q} \oplus \mathbb{Q} \longrightarrow \operatorname{Pic}(M_{+}) \otimes \mathbb{Q}$$ $$\downarrow \qquad \qquad \downarrow$$ $$\Phi_{+} \otimes \mathbb{Q} : \operatorname{Pic}(X \times X)^{\sigma} \otimes \mathbb{Q} \oplus \mathbb{Q} \longrightarrow \operatorname{Pic}(M_{+}^{s}) \otimes \mathbb{Q},$$ where $\bar{\Phi}_+$ is defined at the equation (1.13) in [6] since H_\pm are α -generic and a_+ is not a miniwall, and the second column is a restriction map. Proposition 1.2 implies that the second column is surjective. On the other hand, the assumptions in this proposition implies that the second column is injective. As a result we get a homomorphism $Cl(M_+) \to Pic(M_+) \otimes \mathbb{Q}$. Thus we end the proof. For a projective morphism f, we define $N_1(f)$ and $\overline{\text{NE}}(f)$ according to [4, Example 2.16], an extremal ray or extremal face of $\overline{\text{NE}}(f)$ according to [4, Definition 1.15], and the contraction of an extremal ray or face according to [4, Definition 1.25]. **Proposition 1.5.** Let a_{\pm} be minichambers as in Theorem 0.1. Suppose c_2 is sufficiently so large with respect to c_1 and S that conclusions in Lemma 1.1 and Proposition 1.2 hold good. Then we have the following. Let t be any point in $\phi_{+}(\operatorname{Exec}(\phi_{+})) \subset M_0$, and let $l \simeq \mathbf{P}^1$ be any line in $\phi_{+}^{-1}(t) \simeq \mathbf{P}^{N_t}$. Then $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\operatorname{NE}}(M_+)$, and ϕ_{+} is the contraction of this extremal ray. In particular $\rho(M_+/M_0) = 1$. The similar statement holds also for $\phi_{-}: M_{-} \to M_0$. *Proof.* We check it for a_+ ; the proof is the same for a_- . For simplicity suppose that M_+^s has a universal family \mathcal{E} on $X \times M_+$, but the proof goes in a similar way for general case. The set (5) $$M_{+} \supset P_{+} = \{ [E] \mid E \text{ is not } a_{-}\text{-semistable} \}$$ is contained in M_+^s since we consider rank-two case. Take a point $t \in \phi_+(P_+)$. By Proposition 2.1. in [10], it holds that $\phi_+^{-1}(t) \simeq \mathbf{P}^N$, and there is a nontrivial exact sequence on $X \times \mathbf{P}^N$ (6) $$0 \longrightarrow \pi_1^* F \otimes \mathcal{O}_{\mathbf{P}^N}(1) \longrightarrow \mathcal{E}|_{\phi_+^{-1}(t)} \otimes \pi_2^* L \longrightarrow \pi_1^* G \longrightarrow 0,$$ where F and G are coherent sheaves on X, which depends on the choice of t, and L is a line bundle on $\phi_+^{-1}(t)$. Let $l \simeq \mathbf{P}^1$ be a line in $\phi_+^{-1}(t)$. Then (6) implies that $ch(\mathcal{E}|_l) = ch(E) + \mathcal{O}_l(1) \cdot ch(F)$ in $A(X \times l)$, where E is a rank-two sheaf with Chern classes α . Let C be a class in \tilde{K} . Because of the definition of \tilde{K} and the G.R.R. theorem, we have $$\deg(\psi(C) \cdot l) = [p_{1*} \left(ch \left(p_{23}^* C \boxtimes p_{12}^* \mathcal{E} |_l \boxtimes p_{13}^* \mathcal{E} |_l \right) \cdot p_{23}^* td(X \times X) \right)]_{1,l \times X \times X} \cdot \mathcal{O}_l(1)$$ $$= [p_{1*} \left(p_{23}^* ch(C) \cdot \{ p_2^* ch(E) + p_1^* \mathcal{O}_l(1) \cdot p_2^* ch(F) \} \cdot \{ p_3^* ch(E) + p_1^* \mathcal{O}_l(1) \cdot p_3^* ch(F) \} \cdot p_{23}^* td(X \times X) \right)]_{1,l \times X \times X} \cdot \mathcal{O}_l(1)$$ $$= [ch(C) \cdot td(X \times X) \cdot \{ \pi_1^* ch(F) \pi_2^* ch(E) + \pi_2^* ch(F) \pi_1^* ch(E) \}]_{0,X \times X}$$ $$= \chi \left(X \times X, C \boxtimes (\pi_1^* F \boxtimes \pi_2^* E + \pi_2^* F \boxtimes \pi_1^* E) \right).$$ By the projection formula and again by the definition of \tilde{K} , the last term equals $$\chi\left(X\times X,C\boxtimes\{\pi_{1}^{*}(F+G+F-G)\boxtimes\pi_{2}^{*}(E)+\pi_{2}^{*}(F+G+F-G)\boxtimes\pi_{1}^{*}(E)\}\right)/2\\ =\chi\left(X\times X,C\boxtimes\{\pi_{1}^{*}(F-G)\boxtimes\pi_{2}^{*}(E)+\pi_{2}^{*}(F-G)\boxtimes\pi_{1}^{*}(E)\}\right)/2=\\ \left[\pi_{1}^{*}td(X)\cdot\pi_{2}^{*}td(X)\cdot ch(C)\cdot\{\pi_{1}^{*}ch(F-G)\cdot\pi_{2}^{*}ch(E)+\pi_{2}^{*}ch(F-G)\cdot\pi_{1}^{*}ch(E)\}\right]_{0}/2=\\ \left[\{\pi_{1*}\left(ch(C)\cdot\pi_{2}^{*}(td(X)ch(E))\right)+\pi_{2*}\left(ch(C)\cdot\pi_{1}^{*}(td(X)ch(E))\right)\}\cdot td(X)ch(F-G)\right]_{0}/2.\\ \text{From [1, Section 3], if we denote }\xi=c_{1}(F)-c_{1}(G)\in\text{NS}(X),\ n=c_{2}(F)\ \text{and }m=c_{2}(G),\ \text{then }W^{\xi}=\{H\in\text{Amp}(X)|H\cdot\xi=0\}\ \text{equals }W\ \text{and one can check that }td(X)\cdot ch(F-G)=(0,\xi,(a_{0}-1)(H_{+}-H_{-})\cdot\xi).\ \text{Thereby one can verify that}$$ (7) $$\deg(\psi(C) \cdot l) = \left[\left\{ \pi_{1*}(C \cdot \pi_2^* t d(X)) + \pi_{2*}(C \cdot \pi_1^* t d(X)) \right\}^1 + (a_0 - 1) \left\{ \pi_{1*}(C \cdot \pi_2^* t d(X)) + \pi_{2*}(C \cdot \pi_1^* t d(X)) \right\}^0 \cdot (H_+ - H_-) \right] \cdot \xi / 2.$$ Now we shall show that $\operatorname{rk} N_1(M_+/M_0) = 1$. If we pick two points t_1 and t_2 in $\phi_+(P_+)$, then $\phi_+^{-1}(t_i) \simeq \mathbf{P}^{N_i}$ for i = 1, 2. Fix lines $l_i \subset \phi_+^{-1}(t_i)$. Then there are exact sequences on $X \times l_i$ $$0 \longrightarrow \pi_1^* F_i \otimes \mathcal{O}_{\mathbf{P}^N}(1) \longrightarrow \mathcal{E}|_{l_i} \otimes \pi_2^* L_i \longrightarrow \pi_1^* G_i \longrightarrow 0,$$ where F_i and G_i are coherent sheaves on X, and L_i is a line bundle on l_i , for i = 1, 2. Since the wall defined by $\xi_i = c_1(F_i) - c_1(G_i)$ equals W for i = 1, 2, there is a rational number r such that $\xi_1 = r\xi_2$ in Num(X). Then (4) and (7) imply that $l_1 \equiv r \cdot l_2$ in $N_1(M_+/M_0)$. As a result, we have $\overline{NE}(\phi_+) = \mathbb{R}_{>0} \cdot l$. Now $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\mathrm{NE}}(M_+)$. Indeed, let $u_i \in \overline{\mathrm{NE}}(M_+)$ (i = 1, 2) satisfy that $u_1 + u_2 \in \mathbb{R}_{\geq 0} \cdot l$. Then, for any $H \in \mathrm{Amp}(M_0)$, $0 = (u_1 + u_2) \cdot \phi_+^*(H) = u_1 \cdot \phi_+^*(H) + u_2 \cdot \phi_+^*(H)$. Since $u_i \in \overline{\mathrm{NE}}(M_+)$, we have $u_i \cdot \phi_+^*(H) \geq 0$, and hence $u_i \cdot \phi_+^*(H) = 0$ for i = 1, 2. Recall that, by Example-Exercise 3-5-1 in [7], a natural inclusion $N_1(\phi_+) \subset N_1(M_+)$ identifies $\overline{\mathrm{NE}}(\phi_+)$ with $$\{z \in \overline{\mathrm{NE}}(M_+) \mid z \cdot \phi_+^*(H) = 0 \text{ for any } H \in \mathrm{Amp}(M_0)\}.$$ Thereby $u_i \in \overline{NE}(\phi_+) = \mathbb{R}_{\geq 0} \cdot l$. Last, ϕ_+ is the contraction of $\mathbb{R}_+ \cdot l$. Indeed, for any irreducible curve $C \subset M_+$, one can verify that $\phi_+(C)$ is a point if and only if $C \in \mathbb{R}_+ \cdot l$ by using arguments above. Also it holds that $\phi_{+*}(\mathcal{O}_{M_+}) \simeq \mathcal{O}_{M_0}$, since one can show that M_0 is normal from conclusions in Lemma 1.1 and Serre's criterion of normality, and so we conclude the proof of this proposition. ## 2. Some extremal faces of M(H) Now we suppose that a polarization H_+ is α -generic and contained in an α -chamber \mathcal{C} , with which two different α -walls W_1 and W_2 contact, that a polarization H_0 is contained in $W_1 \cap W_2 \cap \overline{\mathcal{C}}$, and that no α -wall except W_1 and W_2 contains H_0 . Similarly to [1, Section 3], for $a \in [0, 1]$ one can define the a-stability of a coherent sheaf on X and the moduli scheme M(a) of a-semistable rank-two sheaves on X with fixed Chern classes in such a way that $M(1) = M(H_0)$ and $M(\epsilon) = M(H_+)$ if $\epsilon \geq 0$ is sufficiently small. Let a_{\pm} be minichambers separated by just one minimall a_0 . Then Proposition 2.1 below says that $\rho(M_+/M_0)$ can be greater than 1, $\overline{\text{NE}}(M_+)$ can have an extremal face with dim ≥ 2 , and so $\overline{\text{NE}}(M_+)$ can admit a "polyhedral-like part". Let $P_+ \subset M_+^s$ be the set defined at (5). Every member $E \in P_+$ has a Harder-Narasimhan filtration with respect to a_- , that is given by a nontrivial exact sequence $$0 \longrightarrow F \longrightarrow E \longrightarrow G \longrightarrow 0$$, and then one can check that the wall defined by $\xi(E) := c_1(F) - c_1(G) \in NS(X)$ equals W_1 or W_2 because of the way to derive a_{\pm} from H_{\pm} . For j = 1, 2, we define a set $P_+ \supset P_+^{(j)} = \{ [E] \in P_+ \mid \text{the wall defined by } \xi(E) \text{ equals } W_j \}.$ Then, from the uniqueness of a_- -HNF, $P_+^{(j)}$ is a union of some connected components of P_+ , and it holds that $P_+^{(1)} \cap P_+^{(2)} = \emptyset$. **Proposition 2.1.** Suppose that both $P_+^{(1)}$ and $P_+^{(2)}$ are non-empty. Then $\overline{\text{NE}}(M_+)$ has a two-dimensional extremal face spanned by $\mathbb{R}_{\geq 0} \cdot l_1$ and $\mathbb{R}_{\geq 0} \cdot l_2$, where $l_j \simeq \mathbf{P}^1$ is a line contained in $\phi_+^{-1}(t_j) \simeq \mathbf{P}^{N_j}$ with some $t_j \in \phi_+(P_+^{(j)})$, for j = 1, 2. The morphism ϕ_+ is the contraction of this extremal face. Proof. If a sheaf $E_j \in M_+^s$ is a member of $l_j \subset P_+$, then one can check that $\mathbb{R} \cdot \xi(E_1)$ does not contain $\xi(E_2)$ in $\operatorname{Num}(X)$ since $W_1 \neq W_2$. Thus it follows from (7) that the ray $\mathbb{R}_{\geq 0} \cdot l_1$ does not contain l_2 in $N_1(M_+)$. In a similar way to the proof of Proposition 1.5, we can check that (i) $\overline{\operatorname{NE}}(\phi_+) = \mathbb{R}_{\geq 0} \cdot l_1 + \mathbb{R}_{\geq 0} \cdot l_2$, (ii) this is a two-dimensional extremal face of $\overline{\operatorname{NE}}(M_+)$, and (iii) ϕ_+ is the contraction of this extremal face. Similarly, suppose that different α -walls W_j $(1 \leq j \leq N)$ contact with an α -chamber \mathcal{C} containing H_+ and satisfy that $\bigcap_{j=1}^N W_j \cap \overline{\mathcal{C}}$ is non-empty. Then $\rho(M_+/M_0)$ can be N or more, and $\overline{\mathrm{NE}}(M_+)$ can have an extremal face with dim $\geq N$. Remark 2.2. There does exist an example of a surface X, a class α with $4c_2 - c_1^2 \gg 0$, an α -chamber \mathcal{C} , two α -walls W_1 and W_2 , an α -generic polarization H_+ , a polarization H_0 , a minichamber a_+ and a minimall a_0 such that both $P_+^{(1)}$ and $P_+^{(2)}$ are non-empty. We leave it to the reader to find such examples. In rank-two case, the definition of α -walls is rather numerical. Hence if one grasps the structure of $\mathrm{Amp}(X)$, then it may be just a calculating exercise to find such an example. Remark that, when X is an Abelian surface, $\mathrm{Amp}(X)$ is just a connected component of the big cone of X. ### References - [1] G. Ellingsrud and L. Göttsche, Variation of moduli spaces and Donaldson invariants under change of polarization, J. Reine Angew. Math. 467 (1995), 1–49. - [2] R. Friedman and Z. Qin, Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces, Comm. Anal. Geom. 3 (1995), no. 1-2, 11–83. - [3] D. Huybrechts and M. Lehn, *The geometry of moduli spaces of sheaves*, Friedr. Vieweg & Sohn, 1997. - [4] J. Kollár and S. Mori, *Birational geometry of algebraic varieties*, vol. 134, Cambridge University Press, 1998. - [5] J. Li, Kodaira dimension of moduli space of vector bundles on surfaces, Invent. Math. 115 (1994), no. 1, 1–40. - [6] ______, Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 129–146. - [7] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002. - [8] K. Matsuki and R. Wentworth, Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Internat. J. Math. 8 (1997), no. 1, 97–148. - [9] Z. Qin, Birational properties of moduli spaces of stable locally free rank-2 sheaves on algebraic surfaces, Manuscripta Math. 72 (1991), no. 2, 163–180. - [10] K. Yamada, Flips and variation of moduli scheme of sheaves on a surface, J. Math. Kyoto Univ. 49 (2009), no. 2, 419–425, arXiv:0811.3522. - [11] K. Zuo, Generic smoothness of the moduli spaces of rank two stable vector bundles over algebraic surfaces, Math. Z. **207** (1991), no. 4, 629–643. E-mail address: kyamada@math.kyoto-u.ac.jp DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, JAPAN