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Vojta�s Conjecture and Dynamics

By

Yu YASUFUKU *

Abstract

Vojta�s conjecture is a deep conjecture in Diophantine geometry, giving a quantitative

description of how the geometry of a variety controls the Diophantine approximation of its ra‐

tional points. This paper discusses some consequences of the conjecture to arithmetic dynamics
on \mathbb{P}^{n}

,
in particular on finiteness of integer points in an orbit of a point under a morphism.

Some unconditional results without assuming the conjecture are also mentioned.

§1. Introduction

In [12], Vojta formulated a precise dictionary between value distribution theory and

Diophantine approximations and used it to translate Griffiths� conjecture in complex

analysis to a powerful height inequality [12, Main Conjecture 3.4.3] for rational points
of smooth varieties. Vojta�s conjecture is a quantitative attempt at how the geometry
controls the arithmetic, and it is very deep: its special cases include Schmidt�s subspace
theorem (Schmidt [8] and Schlickewei [7]) and two of Faltings� well‐known theorems

(Mordell�s conjecture [2] for curves and Lang�s conjecture [3] for abelian varieties). The

conjecture also implies other profound conjectures, including the abc conjecture and the

BombieriLang conjecture. This article discusses the consequences of the conjecture to

arithmetic dynamics.
The arithmetic dynamics studies arithmetic properties of iteration of self‐maps.

That is, we let  $\phi$ :  X\rightarrow X where X is an algebraic variety defined over a number field,
and study n‐fold composition $\phi$^{(n)}= $\phi$\circ \circ $\phi$ . For example, if we define the orbit of

 P under  $\phi$ to be  0_{ $\phi$}(P)=\{P,  $\phi$(P) , $\phi$^{(1)}(P) ,
. . then one could ask how many points
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defined over \mathbb{Q} have finite orbits. This is a highly active field, but just as in complex

dynamics, most of the research has focused on maps on \mathbb{P}^{1} . The central result of this

article is on finiteness of integers in an orbit of a rational point under an endomorphism
of \mathbb{P}^{N}

, assuming Vojta�s conjecture.

Theorem 1.1. Let  $\phi$ be an endomorphism on \mathbb{P}^{N} dened over \mathbb{Q} of degree d,

namely $\phi$^{*}\mathscr{O}(1)\cong \mathscr{O}(d) . Fix a coordinate system on \mathbb{P}^{N} and let H be the divisor where

X_{0}=0 . Given a point P\in \mathbb{P}^{N} write P=[a_{0} :. . . : a_{N}] with a_{i}\in \mathbb{Z} having no

common divisors. Similarly, we write $\phi$^{(m)}(P)=[a_{0}^{(m)}:\cdots : a_{N}^{(m)}] . Assuming Vojta�s

conjecture, we have the following:

(a) If there exists an n with d^{n}>N+1 such that ($\phi$^{(n)})^{*}(H) is a normal crossings di‐

visor, and if P\in \mathbb{P}^{N}() is such that any innite subset of the orbit 0_{ $\phi$}(P) is Zariski

dense, then the orbit of P only contains finitely many integer points \mathbb{Z}(\mathbb{P}^{N}\backslash H) , that

is
, only finitely many m satises a_{0}^{(m)}=\pm 1.

(b) If the same condition holds for all n
,

then for P satisfy ing the property that any

innite subset of the orbit is dense, we have

\displaystyle \lim_{m\rightarrow\infty}\frac{\log|a_{0}^{(m)}|}{\log\max_{i}|a_{i}^{(m)}|}=1
We will explain the necessary background for this theorem in the following section.

As will be discussed there, an analogous theorem has already been proved by Silverman

[10] (Theorem 2.4 below) on \mathbb{P}^{1}
,
without assuming Vojta�s conjecture. Section 3 contains

the proof of Theorem 1.1, together with some examples and additional remarks. The

last section is devoted to special cases for which results like Theorem 1.1 can be proved
without assuming Vojta�s conjecture.

§2. Preliminaries

Vojta�s conjecture is an inequality of local and global height functions, so we first

introduce heights. For more details, see [1, 5, 9].
Let k be a number field, M_{k} be the set of places of k

,
and for each v\in M_{k} ,

we

let | |_{v} to be the representative whose restriction to \mathbb{Q} is the \displaystyle \frac{[k_{v}:\mathbb{Q}_{v}]}{[k:\mathbb{Q}]} ‐th power of the

normalized absolute value. We will often use the additive notation, v(x)=-\log|x|_{v}
for x\neq 0 . For a Cartier divisor D on a projective variety X defined over k

,
we can

define a global (Weil) height function h_{D} : X(\overline{k})\rightarrow \mathbb{R} . The global height function is

geometric in the sense that for two linearly equivalent divisors D_{1} and D_{2} ,
the heights

h_{D_{1}} and h_{D_{2}} differ by a bounded function on X(\overline{k}) .
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The local height function $\lambda$_{D} v) on the other hand, is more arithmetic in nature

and it is the v‐adic part of the global height function. More specifically, it is a real‐

valued function on X(\overline{k})\backslash |D| such that \displaystyle \sum_{v\in M_{k}}$\lambda$_{D}(P, v)=h_{D}(P) up to a bounded

function when P\not\in|D| . When D is locally defined by a function f ,
the local height

$\lambda$_{D}(P, v) is roughly ‐ \log|f(P)|_{v} . Note that this blows up when P is on |D| ,
and it is

�big� when the point P is v‐adically �close� to the divisor D . One can make everything

precise by endowing the line bundle \mathscr{L}(D) corresponding to the divisor D a locally

M_{k} ‐bounded metric, and then defining the local height function as the absolute value

of a meromorphic section.

In this article, we will only need heights on projective space \mathbb{P}^{N} . The global height
function h_{D} when D has degree d is

h_{D}([x_{0} :. . . :x_{N}])=-d\displaystyle \sum_{v\in M_{k}}\min[v(x_{0}), . . . , v(x_{N})]
up to a bounded function. Since the global height is invariant under linear equivalence,
this only depends on the degree of the divisor. A local height function for the divisor

D=(X) is given by

$\lambda$_{(X_{0})} ([x_{0} :. . . : x_{N}], v)=v(x_{0})-\displaystyle \min[v(x_{0}), . . . , v(x_{N})],

and more generally for the divisor defined by a homogeneous polynomial f of degree d,

(2.1) $\lambda$_{(f)}([x_{0} :. . . : x_{N}], v)=v(f(x_{0}, \ldots, x_{N}))-d min[v(x), . . .

, v(x_{N}) ].

This greatly depends on v and the divisor. For example, on \mathbb{P}^{1},

$\lambda$_{[0:1]} ([2^{n}: 1], v_{2})=n log2 but $\lambda$_{[1:1]}([2^{n}: 1], v_{2})=0.

Vojta�s conjecture is an inequality of global and local heights, and so this can be

interpreted as a way geometric information contained in global heights controls the

arithmetic information contained in local heights. Before stating the conjecture, let us

recall that a normal crossings divisor D on a smooth variety is a divisor such that at

each point P, D is defined by f_{1}\cdots f_{l} where (fl, . . .

, f_{l} ) form a regular sequence at P.

In particular, a normal crossings divisor is by definition effective and has no multiple

components.

Vojta�s Conjecture. Let X be a smooth projective variety over a number field

k, K a canonical divisor of X, A an ample divisor and D a normal crossings divisor

dened over k . Fix height functions $\lambda$_{D} v ), h_{K} ,
and h_{A} . Let S be a finite subset of

M_{k} . Then given  $\epsilon$>0 ,
there exists a Zariski‐closed Z_{ $\epsilon$}\subseteq X and a bounded function

O(1) such that

(2.2) \displaystyle \sum_{v\in S}$\lambda$_{D}(P, v)+h_{K}(P)< $\epsilon$ h_{A}(P)+O(1)
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for P\in X(k) not on Z_{ $\epsilon$}.

Because of  $\epsilon$
,

the inequality (2.2) essentially says that the left hand side cannot

be too big. As mentioned earlier, a local height  $\lambda$_{D}(P, v) is big when the point P is

v‐adically close to D . Since the canonical divisor and its global height h_{K} is geometric

(it does not depend on the field k or S), the conjecture says that how close a point P

can be to D in the v‐adic sense is controlled by the geometry of X . In this sense, Vojta�s

conjecture is a Diophantine approximation with inputs from geometry, as shown in the

fundamental example below.

Example 2.1. When X=\mathbb{P}^{1}
,

let  $\alpha$ be a real algebraic number not in \mathbb{Q} , and

let f be its minimal polynomial over \mathbb{Q} . We can take K=-2H and A=H for a

hyperplane H
,

so for k=\mathbb{Q} and S=\{\infty\} ,
the conjecture says that

-\displaystyle \log|f(p/q)|<(2+ $\epsilon$)\log\max(|p|, |q|)+C.

If p/q is close to  $\alpha$
,

then it is at least a fixed distance apart from all other roots of  f ,
so

adjusting constants, this is equivalent to

|\displaystyle \frac{p}{q}- $\alpha$|>\frac{C}{|q|^{2+ $\epsilon$}}.
This is exactly Roth�s theorem, and Vojta�s conjecture gives the justification of the

exponent 2: it comes from the degree of the canonical divisor of \mathbb{P}^{1} . In this example,
the exception Z_{ $\epsilon$} to the inequality (2.2) as specified in the conjecture is a set of finite

points, so we can remove it by adjusting the constant.

The restriction to normal crossings divisor is necessary. Since this hypothesis will

be important later, we will briefly discuss two examples which demonstrate how the

conjecture fails for non‐normal crossings divisors.

Example 2.2. When we include multiplicities in the divisor, the conjecture does

not hold. For example, let X=\mathbb{P}^{1}, D=2(0) +(\infty) , k=\mathbb{Q}, S=\{v_{\infty}, v_{2}\} . Since

$\lambda$_{(0)} ([x : 1], v)=\displaystyle \max(0, -\log|x|_{v}) and $\lambda$_{(\infty)}([x : 1], v)=\displaystyle \max(0, -\log|1/x|_{v}) ,
we have

\displaystyle \sum_{v\in S}$\lambda$_{(0)}([2^{n}:1], v)=\sum_{v\in S}$\lambda$_{(\infty)}([2^{n}:1], v)=n log2.

Thus the left hand side of (2.2) is 3n\log 2-2n log2, so for  $\epsilon$<1 ,
the conjecture will

not hold no matter what Z_{ $\epsilon$} we choose.

Example 2.3. We also cannot allow more than \dim X components of D to meet

at any point. Let X=\mathbb{P}^{2}, D=(X)+(Y)+(Y-X)+(Z) , k=\mathbb{Q} ,
and S=\{v_{\infty}, v_{2}\}.
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Using (2.1), we will calculate the local heights at [2^{n}:2^{m}:1], m>n . For v=v_{\infty} ,
the

coordinate with minimum v is 2^{m}
,

so

$\lambda$_{D}([2^{n}:2^{m}:1], v_{\infty})=(-\log 2^{n}+\log 2^{m})+(-\log(2^{m}-2^{n})+\log 2^{m})+\log 2^{m}

On the other hand, for v=v_{2} ,
the coordinate with minimum v is 1, so

$\lambda$_{D}([2^{n} : 2^{m} : 1], v_{2})=\log 2^{n}+\log 2^{m}+\log 2^{n}

Combining, we get 3 \log 2^{m}+\log 2^{n}+(\log 2^{m}-\log(2^{m}-2^{n}))\geq 3\log 2^{m}+\log 2^{n} . The

exception Z_{ $\epsilon$} can only cover finitely many lines of the form Y=2^{l}X
,

so if we look at

points with m large and  n>m $\epsilon$ ,
this will contradict the conjecture, as the degree of

the canonical divisor is -3.

We now discuss some preliminaries from arithmetic dynamics. For a more complete
overview of this field, see for example [11]. Here, we will introduce basic definitions and

concepts necessary for the main theorem. The field of dynamics studies behavior of self‐

maps  $\phi$ :  X\rightarrow X as we iterate. We will use $\phi$^{(m)} for the m‐fold composition  $\phi$\circ\cdots\circ $\phi$.
When P\in X ,

the (forward) orbit 0_{ $\phi$}(P) of P under  $\phi$ is the set \{P,  $\phi$(P), $\phi$^{(2)}(P), . . .\}
of points traversed via applications of  $\phi$ when we start from  P . When $\phi$^{(m)}(P)=P for

some m
,
then we say that P is a periodic point of  $\phi$ . If  P is a preimage of a periodic point

under some $\phi$^{(n)} ,
we say that P is preperiodic. It is easy to check that P is preperiodic

if and only if 0_{ $\phi$}(P) is finite. It is often helpful to analyze the family \{$\phi$^{(m)}\} around

(pre)periodic points in dynamics. In fact, using the information around the periodic

points, McMullen [6] constructed a finite‐to‐one cover of the moduli space of all rational

maps up to a change of coordinates on \mathbb{P}^{1}.

If P\in X(k) and  $\phi$ is defined over  k
,

then  $\phi$(P)\in X(k) . So for non‐preperiodic

P, 0_{ $\phi$}(P) contains infinitely many rational points. On the other hand, if we look

at a subset of the set of rational points, we will not know how frequently the orbit

intersects with this subset. One natural arithmetic candidate for such a subset is a

set of integral points, i.e. points with coordinates in O_{k} on X minus an ample divisor

(in some affine coordinates). Even if we start from an integral point P,  $\phi$(P) is not

necessarily integral, and it is natural to ask how frequently integral points appear in

an orbit. The following theorem describes the situation in the case of X=\mathbb{P}^{1}
,

where

integral points are \{[x:1] : x\in \mathbb{Z}\}.

Theorem 2.4 (Silverman [10]). Let  $\phi$\in \mathbb{Q}(z) be a rational map of degree \geq 2.

Then if $\phi$^{(2)} is not a polynomial (i.e. not in \mathbb{Q}[z] ), then the number of integers in an

orbit 0_{ $\phi$}(P) is finite for any P\in \mathbb{P}^{1} () . Moreover, if P is not preperiodic and if we let

$\phi$^{(m)}(P)=a_{m}/b_{m} in a reduced form, then unless $\phi$^{(2)} or \displaystyle \frac{1}{$\phi$^{(2)}(1/z)} is not a polynomial,
we must have

\displaystyle \lim_{m\rightarrow\infty}\frac{\log|a_{m}|}{\log|b_{m}|}=1.
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We will make several remarks about this theorem, as a preparation for proving
Theorem 1.1. First, the finiteness of integers in an orbit also holds for a general number

field. Secondly, the hypothesis that $\phi$^{(2)} is not a polynomial is necessary, as we obviously

get infinitely many integers if $\phi$^{(2)}\in \mathbb{Z}[z] and P\in \mathbb{Z} . Thirdly, one of the most elementary
but powerful tools that we have for maps on \mathbb{P}^{1} is the RiemannHurwitz formula, and

this is at play in this theorem as well. For one, we can only have two totally ramified

fixed point, so one can show that if $\phi$^{(m)} is a polynomial for some m
,

then $\phi$^{(2)} is

already a polynomial. This is the reason we only need to assume information about $\phi$^{(2)}
in the above theorem. For two, the RiemannHurwitz formula together with purely
combinatorial arguments show that $\phi$^{(4)} has to have at least 3 preimage points of \infty

unless $\phi$^{(2)} is a polynomial. This allows us to use Siegel�s theorem and prove the first

part of the theorem. The second part is much more subtle. If the numerator grows

much more rapidly than the denominator, then $\phi$^{(m)}(P) approximates \infty very well.

By employing RiemannHurwitz and some case‐by‐case ramification analyses, one can

show that $\phi$^{(m-n)}(P) must well‐approximate one of the preimages of \infty under $\phi$^{(n)},
contradicting Roth�s theorem if one chooses m and n appropriately.

§3. Theorem 1.1

We first start by noting some challenges for generalizing Silverman�s theorem to

higher dimensions. These explain the hypotheses in the statement of Theorem 1.1. In

\mathbb{P}^{N}
,

we do not have results like RiemannHurwitz which greatly controls ramification.

So rather than dealing with all maps, we restrict to \mathrm{a} (relatively large) subset of maps

where the ramification behavior is under control. This is the normal crossings conditions

on ($\phi$^{(n)})^{*}(H) in Theorem 1.1. Moreover, Roth�s theorem on \mathbb{P}^{1} describes everything
one needs to know about approximating a divisor by a rational point, since divisors on

\mathbb{P}^{1} are sum of points. On \mathbb{P}^{N}
, Roth�s theorem has a natural generalization in the form

of Schmidt�s subspace theorem, but this still only covers the linear divisors. For Dio‐

phantine approximation to general non‐linear divisors, one naturally comes to Vojta�s

conjecture. These explain why normal crossings condition and Vojta�s conjecture were

used in the statement of Theorem 1.1. We are now ready to prove the theorem.

Proof of Theorem 1.1. We will begin by proving (b) first. Assume on the contrary,
then there exists  $\epsilon$>0 such that there exists an infinite set I with

(3.1) \underline{\log|a_{0}^{(m)}|}<1- $\epsilon$ for  m\in I.

\displaystyle \log\max_{i}|a_{i}^{(m)}|
Rearranging terms and using (2.1), we have

(3.2)

 $\epsilon$ h($\phi$^{(m)}(P))= $\epsilon$\displaystyle \log\max_{i}|a_{i}^{(m)}|< (\displaystyle \log\max_{i}|a_{i}^{(m)}|)-\log|a_{0}^{(m)}|=$\lambda$_{H}($\phi$^{(m)}(P), v_{\infty}) .
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Fix n large enough so that  $\epsilon$ d^{n}>N+1 . By assumption, ($\phi$^{(n)})^{*}(H) is a normal

crossings divisor. Then by Vojta�s conjecture, given $\epsilon$'>0 ,
there exists Z_{$\epsilon$'} such that

$\lambda$_{($\phi$^{(n)})^{*}(H)}($\phi$^{(m-n)}(P), v_{\infty})+h_{(-N-1)H}($\phi$^{(m-n)}(P))<$\epsilon$'h_{H}($\phi$^{(m-n)}(P))+C
for $\phi$^{(m-n)}(P) outside of Z_{$\epsilon$'} . Combining (3.2) and using functoriality of local heights,
we have

 $\epsilon$ h($\phi$^{(m)}(P))<(N+1+$\epsilon$')h($\phi$^{(m-n)}(P))+C'
Since  $\phi$ is a morphism, there exists a constant  C'' such that h($\phi$^{n}(Q))\geq d^{n}h(Q)+C''
for all Q ,

so

 $\epsilon$[d^{n}h($\phi$^{(m-n)}(P))+C'']<(N+1+$\epsilon$')h($\phi$^{(m-n)}(P))+C'
We now choose $\epsilon$' small enough so that  $\epsilon$ d^{n}>N+1+$\epsilon$' . For each m\in I with m>n,

either $\phi$^{(m-n)}(P) is in Z_{$\epsilon$'} or it has a bounded height. Since any infinite subset of the

orbit was assumed to be Zariski‐dense, this is a contradiction.

For (a), if on the contrary there are infinitely many integers in an orbit, then a_{0}^{(m)} is

equal to 1 for infinitely many m' \mathrm{s}
,

so (3.1) has to hold for  $\epsilon$ arbitrarily close to 1. Then

as long as there is one  n with d^{n}>N+1 such that ($\phi$^{(n)})^{*}(H) is normal crossings, we

choose  $\epsilon$<1 with  $\epsilon$ d^{n}>N+1 and then choose $\epsilon$'=\displaystyle \frac{ $\epsilon$ d^{n}-(N+1)}{2} ,
we get a contradiction

by the same argument as above. \square 

Example 3.1. We discuss some examples of the theorem. Let  $\phi$ be the mor‐

phism [X^{2}+Y^{2}+Z^{2} : Y^{2} : Z^{2}] on \mathbb{P}^{2} . We prove by induction that ($\phi$^{(n)})^{*}(X=0) is a

smooth divisor, so in particular a normal crossings divisor. Let $\phi$^{(n)}=[F_{n}:G_{n}:H_{n}],
and let us assume that P=[x:y:z] is a singular point on F_{n}=0 . By the Jacobian

criterion,

(3.3) F_{n}(P)=0 that is, F_{n-1}(x^{2}+y^{2}+z^{2}, y^{2}, z^{2})=0

(3.4) \displaystyle \frac{\partial}{\partial x}F_{n}(P)=0 that is, \displaystyle \frac{\partial}{\partial x}F_{n-1}( $\phi$(P))\cdot 2x=0
(3.5) \displaystyle \frac{\partial}{\partial y}F_{n}(P)=0 that is, \displaystyle \frac{\partial}{\partial x}F_{n-1}( $\phi$(P))\cdot 2y+\frac{\partial}{\partial y}F_{n-1}( $\phi$(P))\cdot 2y=0
(3.6) \displaystyle \frac{\partial}{\partial z}F_{n}(P)=0 that is, \displaystyle \frac{\partial}{\partial x}F_{n-1}( $\phi$(P))\cdot 2z+\frac{\partial}{\partial z}F_{n-1}( $\phi$(P))\cdot 2z=0
By inductive hypothesis, F_{n-1}=0 is smooth, so at  $\phi$(P) ,

one of the partial derivatives

of F_{n-1} is nonzero. So by (3.4)(3.6), xyz=0 . If x=0 ,
then F_{n}(P)=y^{2^{n}}+z^{2^{n}},

so by (3.5) and (3.6), y=z=0 ,
contradiction. So assume x\neq 0 and assume y=

0 . If in addition z=0 ,
then F_{n} becomes a pure power of x

,
so (3.4) gives x=0,

contradiction. If z\neq 0 ,
then (3.4) and (3.6) show \displaystyle \frac{\partial}{\partial x}F_{n-1} and \displaystyle \frac{\partial}{\partial z}F_{n-1} are both zero at
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 $\phi$(P) , contradicting smoothness of F_{n-1}=0 . The case x\neq 0 and z=0 is similar, so

we prove that F_{n}=0 is smooth.

So this  $\phi$ satisfies the normal crossings condition appearing in part (b) of the

theorem. However, this particular  $\phi$ has the property that the  x‐coordinate is larger
than the y or the z‐coordinate after the second iterate, so we will trivially have finitely

many points in the orbit in (\mathbb{P}^{2}\backslash (X=0))(\mathbb{Z}) . If we try  $\psi$=[X^{2}-Y^{2}+Z^{2} : Y^{2}+Z^{2} : Z^{2}],
then the argument in the above paragraph carries over and shows that ($\psi$^{(n)})^{*}(X=0)
is normal crossings for all n . But for an orbit of [1 : 2 : 4], the first coordinate is

always odd, so again it is trivial to show finiteness of integers in the orbit. We can

argue similarly for other initial points. Of course, if we allow mixed terms like XY in

the map, then a simple size argument or a modular arithmetic argument usually will

not immediately give us finiteness of integers. On the other hand, for these maps, it

becomes harder to show normal crossings condition for all n.

Regarding the orbit density, at least for \mathbb{P}^{2}
,

there is often an ad hoc argument to

show that a curve cannot contain infinitely many points in the orbit. For example,
for maps of the form  $\phi$ or  $\psi$ above, the  z‐coordinate is a pure power, so every point
in the orbit is an S‐integer in \mathbb{P}^{2}\backslash (Z=0) for an appropriately chosen finite set S of

primes. Thus, a curve containing infinitely many of the points has geometric genus 0,
and we can write the x and the y coordinate as some Laurent polynomials in S‐units.

By numerically analyzing the asymptotic ratios of the coordinates of the points in the

orbit, one then often derives a contradiction.

In the examples of  $\phi$ and  $\psi$ above, it is easier to show finiteness of integers than

to show denseness. In general, in fact, it is a well‐known conjecture by Zhang [14,
Conjecture 4.1.6] that a polarized endomorphism on a projective variety has a rational

point over a number field whose orbit is Zariski‐dense.

We make several additional remarks about Theorem 1.1. As in Silverman�s theorem,

(a) generalizes to arbitrary number fields directly. (b) actually holds for any embedding
of the number field into \mathbb{C} , because all we are using is (3.2).

The normal crossings condition in the theorem is certainly geometric, and inde‐

pendent of P . In this sense, the situation is analogous to Silverman�s theorem: on \mathbb{P}^{1},
being a polynomial is a geometric property about existence of a totally ramified fixed

point, and once we remove this possibility, the orbit is finite for all points P . Moreover,
d^{2} is already greater than 1 + 1, so Theorem 1.1 (a) on \mathbb{P}^{1} is also a condition on the

second iterate. On the other hand, the hypothesis of Theorem 1.1 in the case of \mathbb{P}^{1} is

stronger than what Silverman required. Indeed, normal crossings divisor on \mathbb{P}^{1} means

no multiplicity, while non‐polynomial means no total ramification (multiplicity d). So

a more appropriate weaker hypothesis is desirable for Theorem 1.1.

On the other hand, �most�  $\phi$ do satisfy the hypothesis given in (a) of the theorem.
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For example, if one looks at a map [F_{0} :. . . F_{N}] with F_{i} homogeneous of degree at least

N+2 ,
then the hypothesis of (a) is satisfied if the hypersurface F_{0}=0 is smooth.

Such a collection of maps form a nonempty Zariski‐open set among maps of the same

degree. Even when the degree of F_{i} is lower than N+2 ,
we could look at the first n

such that d^{n}>N+1 . The smooothness of the 0‐th coordinate of $\phi$^{(n)} can be detected

by a rank of an appropriate Jacobian matrix, which can be described by polynomials
in the coefficients of Fi�s. So again, for most  $\phi$ of this degree, ($\phi$^{(n)})^{*}(H) is smooth, in

particular normal crossings. Similarly, for a fixed  $\phi$, ($\phi$^{(n)})^{*}(H) will be normal crossings
for the first n with d^{n}>N+1 for most choices of H.

§4. Some Unconditional Results

We now discuss some results that are related to Theorem 1.1, without assuming

Vojta�s conjecture. The first example involves morphisms on \mathbb{P}^{2} of lowest nontrivial

degree, i.e.  $\phi$=[F_{0}: F_{1}: F_{2}] with F_{i} homogeneous of degree 2.

Theorem 4.1. Let  $\phi$ be a morphism on \mathbb{P}^{2} of degree 2 dened over a number

field such that it fixes a line, i.e. there exists a line L with  $\phi$(L)=L (as a point set).
If  $\phi$ does not fix any other line, then for any  P\in \mathbb{P}^{2} 0_{ $\phi$}(P)\cap \mathbb{Z}(\mathbb{P}^{2}\backslash L) is finite.

If  $\phi$ fixes another line, then  $\phi$ restricted to this line could behave like an integer‐
coefficient polynomial on \mathbb{P}^{1}

, creating many integer points in an orbit. So this hypothesis
is necessary. A complete proof of this theorem is in [13], but we discuss the general
ideas of the proof here. Since  $\phi$(L)=L , by an appropriate change of coordinate, we

can assume that L is the line X_{2}=0 and F_{2}=X_{1}X_{2} . Because  $\phi$ is assumed to be

a morphism,  h($\phi$^{(n)}(P)) is roughly 2^{n}h(P) . Since each F_{i} is a degree‐2 polynomial,
this means that the common divisors of the coordinates are fairly small. That is, if

$\phi$^{(n-1)}(P)=[a : b : c] with a, b, c\in \mathbb{Z} with no common divisors (call this the reduced

form), then common divisor of F_{0}(a, b, c) , F_{1}(a, b, c) , F_{2}(a, b, c) is not too big. So in order

to get many integer points (points with the last coordinate equal to 1 in the reduced

form), neither the X_{1} nor the X_{2} coordinates of $\phi$^{(n)}(P) can grow. This forces the

height of $\phi$^{(n)}(P) to come solely from X_{0} . This is a contradiction unless F_{1} has X_{0}X_{1}
and X_{0}X_{2} terms just in the right ratio to cancel each other out when we plug in P.

This corresponds to having a second fixed line, ending the proof. The idea is straight‐

forward, but as in any Diophantine approximations, we need some delicacy in handling
various height inequalities.

The second example is an example more in spirit, because the maps involved are

rational maps rather than morphisms. We introduce several results from the joint work

[4] with Areyh Gregor. We analyze maps on \mathbb{P}^{2} having very simple forms, namely those

whose F_{0}, F_{1}, F_{2} are all monomials. These are rarely defined on all of \mathbb{P}^{2}
,

so this is
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not an example of Theorem 1.1. In fact, in the proof of Theorem 1.1, we use a height

inequality (h($\phi$^{(n)}(P))\geq d^{n}h(P)+C that requires  $\phi$ to be a morphism, so the same

result does not have to hold. On the other hand, these monomial maps provide nice

special cases where finiteness of integers in an orbit can be explored directly. Note that

the only points where  $\phi$ is undefined are [0:0:1], [0:1 : 0], [1 : 0:0] ,
and away from

these three points, a forward orbit is well‐defined. Moreover, the pullback of Z=0 by

$\phi$^{(n)} is just the triangle XYZ albeit with high multiplicities. So monomial maps are

rational maps, but points with bad behavior are very well‐contained.

Dividing by F_{2} and using x=X/Z and y=Y/Z ,
we can write a monomial map

as (x^{i}y^{j}, x^{k}y^{l}) for i, j, k, l\in \mathbb{Z} . So we could look at these maps as algebraic group

morphisms on \mathbb{G}_{m}\times \mathbb{G}_{m} ,
but since we are interested in integral points of \mathbb{P}^{2}\backslash \{Z=0\},

we will not pursue this. For P\in \mathbb{P}^{2}(\mathbb{Q}) ,
we would like to know if the orbit 0_{ $\phi$}(P)

contains only finitely many integers, i.e. points of the form [a : b : 1] with a, b\in \mathbb{Z}.

Just as in the \mathbb{P}^{1} case, when we have a polynomial (i.e. i, j, k, l\geq 0 ), we trivially get

infinitely many integers by starting from integral points. On \mathbb{P}^{1}
,

we only needed to

check to see if the second iterate was a polynomial. The following describes the analog
for monomial maps on \mathbb{P}^{2}.

Theorem 4.2 (AY [4]). Let  $\phi$ be a monomial map on \mathbb{P}^{2} . If $\phi$^{(n)} is a polynomial

for some n
,

then first such n is 1, 2, 3, 4, 6, 8, 12.

So we can check $\phi$^{(24)} to see if we ever get a polynomial and thus trivially obtain

infinitely many integers in some orbit. The proof uses linear algebra together with some

Galois theory. If we write the exponents of  $\phi$ in a matrix format  A=\left(\begin{array}{l}
ji\\
kl
\end{array}\right) ,
then the

exponent matrix for $\phi$^{(n)} is A^{n} . Perron�s theorem in linear algebra provides necessary

conditions for non‐negative matrices: there exists a positive real eigenvalue which is

bigger than or equal to the absolute value of all other eigenvalues. After some algebraic

manipulations, we show that for the first n making $\phi$^{(n)} a polynomial, the cyclotomic
extension \mathbb{Q}($\zeta$_{n})/\mathbb{Q} has Galois group which is a subgroup of a Klein 4 group, proving
the theorem.

In [4], we then completely characterize when there exists a point P whose orbit

0_{ $\phi$}(P) contains infinitely many integers. Because monomial maps are rational maps,

unlike Theorem 1.1, one can often actually get infinitely many integers in an orbit. We

state two representative cases here.

Theorem 4.3 (AY [4]). Let  $\phi$=(x^{i}y^{j}, x^{k}y^{l}) and let A as above.

(a) If A has two real eigenvalues and the two coordinates of an eigenvector of the bigger

eigenvalue have opposite signs, then all orbits contain just finitely many integers.
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(b) If A has complex eigenvalues, then there exists P\in \mathbb{P}^{2}() such that 0_{ $\phi$}(P) contains

innitely many integers.

An example for (a) is  $\phi$=(y/x, x) ,
and in this case exponents appearing in $\phi$^{(n)} are

Fibonacci numbers. An example for (b) is  $\phi$=(x/y , xy2 ) . To determine finiteness of

integers, we only need asymptotic analyses of A^{n}
,

so eigenvalues and eigenvectors play

important roles. In the situation of (a), we also have an analog of Theorem 1.1 (b): if

$\phi$^{(m)}(P)=($\alpha$_{m}/$\beta$_{m}, $\gamma$_{m}/$\delta$_{m}) in a reduced form, then the ratio of \displaystyle \log\max($\alpha$_{m}, $\gamma$_{m}) and

\displaystyle \log\max($\beta$_{m}, $\delta$_{m}) goes toward some finite number as  m\rightarrow\infty
,

but not necessarily to 1.

We have now described two very special examples in the direction of finiteness

of integers in an orbit, without assuming Vojta�s conjecture. Generalizing these even

slightly already seems to be tricky. In fact, an analog of Theorem 4.2 is not apparent

from computer calculations when we analyze monomial maps on \mathbb{P}^{3}
,

and an analog of

Theorem 4.1 for \mathbb{P}^{3} or d\geq 3 cannot be proved by the same methods. So we need much

more further research in this direction.
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