Non-existence of certain Galois representations with a uniform tame inertia weight: A resume

By

Yoshiyasu OZEKI*

Abstract

In this paper, we announce some results on the non-existence of certain semistable Galois representations. We apply them to a conjecture of Rasmussen and Tamagawa.

§1. Main results

Our main concern in this paper is the non-existence of certain semistable Galois representations of a number field. Let ℓ be a prime number and K a number field of degree d and discriminant d_K . Choose an algebraic closure \bar{K} of K. Fix nonnegative integers n, r and w, and a prime number $\ell_0 \neq \ell$. Put $\bullet := (n, \ell_0, r, w)$. Let $\operatorname{Rep}_{\mathbb{Q}_\ell}(G_K)^{\bullet}$ be the set of isomorphism classes of n-dimensional ℓ -adic representations V of the absolute Galois group $G_K = \operatorname{Gal}(\bar{K}/K)$ of K which satisfy the following four conditions:

(A) For any place λ of K above ℓ , the restriction of V to the decomposition group of (an extension to \overline{K} of) λ is semistable and has Hodge-Tate weights in [0, r].

(B) For some place λ_0 of K above ℓ_0 , the representation V is unramified at λ_0 and the characteristic polynomial det $(T - \operatorname{Fr}_{\lambda_0}|V)$ has rational integer coefficients. Furthermore, the roots of the above characteristic polynomial have complex absolute value $q_{\lambda_0}^{w/2}$ for every embedding $\overline{\mathbb{Q}}_{\ell}$ into \mathbb{C} . Here $\operatorname{Fr}_{\lambda_0}$ and q_{λ_0} are the arithmetic Frobenius and the order of the residue field of λ_0 , respectively.

Received March 23, 2010. Revised in final form November 29, 2010.

²⁰⁰⁰ Mathematics Subject Classification(s): 11G10, 11S99.

Key Words: abelian variety, semistable Galois representation, tame inertia weight. Supported by the JSPS Fellowships for Young Scientists.

^{*}Graduate School of Mathematics, Kyushu University, Fukuoka 812-8581, Japan. e-mail: y-ozeki@math.kyushu-u.ac.jp

(C) For any finite place v of K not above ℓ , the action of the inertia group at v on \bar{V} is unipotent. Here \bar{V} is a residual representation of V^1 .

(D) The representation \overline{V} has a filtration of G_K -modules

$$\{0\} = \bar{V}_0 \subset \bar{V}_1 \subset \cdots \subset \bar{V}_{n-1} \subset \bar{V}_n = \bar{V}$$

such that V_k has dimension k for each $0 \le k \le n$.

Furthermore, we denote by $\operatorname{Rep}_{\mathbb{Q}_{\ell}}(G_K)^{\bullet}_{\operatorname{cycl}}$ the subset of $\operatorname{Rep}_{\mathbb{Q}_{\ell}}(G_K)^{\bullet}$ whose elements V satisfy the additional property (E) below:

(E) For each $1 \leq k \leq n$, the G_K -action on the quotient $\overline{V}_k/\overline{V}_{k-1}$ is given by a power of the mod ℓ cyclotomic character χ_{ℓ} .

Example 1.1. Let X be a proper smooth scheme over K which has semistable reduction everywhere and has good reduction at some place of K above ℓ_0 . Let n be the w-th Betti number of $X(\mathbb{C})$ and $w \leq r$. Then the dual of $H^w_{\text{ét}}(X_{\bar{K}}, \mathbb{Q}_{\ell})$ satisfies the conditions (A), (B) and (C).

Our main results are the following:

Theorem 1.2 ([O], Theorem 3.10). Suppose that w is odd or w > 2r. Then there exists an explicit constant C depending only on d_K, n, ℓ_0, r and w such that $\operatorname{Rep}_{\mathbb{Q}_\ell}(G_K)^{\bullet}_{\operatorname{cycl}}$ is empty for any prime number $\ell > C$.

Theorem 1.3 ([O], Theorem 3.11). Suppose that w is odd or w > 2r. Then there exists an explicit constant C' depending only on K, n, ℓ_0, r and w such that $\operatorname{Rep}_{\mathbb{Q}_\ell}(G_K)^{\bullet}$ is empty for any prime number $\ell > C'$ which does not split in K.

The key of the proofs of the above Theorems is a relation between tame inertia weights and Frobenius weights. This relation is obtained by a result of Caruso [Ca] which gives an upper bound of tame inertia weights of semistable Galois representations.

§2. Rasmussen-Tamagawa Conjecture

We describe an application, which is a special case of the Rasmussen-Tamagawa conjecture ([RT]) related with the finiteness of the set of isomorphism classes of abelian varieties with constrained prime power torsion. Our work is motivated by this conjecture. We denote by \tilde{K}_{ℓ} the maximal pro- ℓ extension of $K(\mu_{\ell})$ which is unramified away from ℓ .

¹A residual representation \bar{V} is not uniquely defined (it depends on the choice of a G_K -stable lattice), but the validity of conditions (C), (D) or (E) does not depend on the choice of \bar{V} .

(1) $K(A[\ell^{\infty}]) \subset \tilde{K}_{\ell};$

(2) The abelian variety A has good reduction outside ℓ and $A[\ell]$ admits a filtration

$$\{0\} = \overline{V}_0 \subset \overline{V}_1 \subset \cdots \subset \overline{V}_{2g-1} \subset \overline{V}_{2g} = A[\ell]$$

such that \bar{V}_k has dimension k for each $0 \le k \le 2g$. Furthermore, for each $1 \le k \le 2g$, the G_K -action on the space \bar{V}_k/\bar{V}_{k-1} is given by a power of the mod ℓ cyclotomic character χ_{ℓ} .

The equivalence of (1) and (2) follows from the criterion of Néron-Ogg-Shafarevich and Lemma 3 of $[\mathrm{RT}]^2$. The set $\mathcal{A}(K, g, \ell)$ is a finite set because of the Shafarevich conjecture proved by Faltings. Rasmussen and Tamagawa conjectured that this set is in fact empty for any ℓ large enough:

Conjecture 2.2 ([RT], Conjecture 1). The set $\mathcal{A}(K, g, \ell)$ is empty for any prime ℓ large enough.

It is known that this conjecture holds under the following conditions:

(i) $K = \mathbb{Q}$ and g = 1 ([RT], Theorem 2);

(ii) K is a quadratic number field other than the imaginary quadratic fields of class number one and g = 1 ([RT], Theorem 4).

We consider the semistable reduction case of Conjecture 2.2.

Definition 2.3. (1) We denote by $\mathcal{A}(K, g, \ell)_{st}$ the set of K-isomorphism classes of abelian varieties in $\mathcal{A}(K, g, \ell)$ with everywhere semistable reduction.

(2) We denote by $\mathcal{A}(K, g, \ell_0, \ell)_{st}$ the set of K-isomorphism classes of abelian varieties A over K with everywhere semistable reduction, of dimension g, which satisfy the following condition: The abelian variety A has good reduction at some place of K above ℓ_0 and $A[\ell]$ admits a filtration of G_K -modules

$$\{0\} = \bar{V}_0 \subset \bar{V}_1 \subset \cdots \subset \bar{V}_{2g-1} \subset \bar{V}_{2g} = A[\ell]$$

such that \overline{V}_k has dimension k for each $0 \le k \le 2g$.

We have $\mathcal{A}(K, g, \ell)_{st} \subset \mathcal{A}(K, g, \ell_0, \ell)_{st}$. We can show the following easily as corollaries of Theorems 1 and 2^3 :

²Lemma 3 of [RT] is stated in the setting $K = \mathbb{Q}$. However, an easy argument allows us to extend this setting to any number field K.

³Rasmussen and Tamagawa have shown the emptiness of the set $\mathcal{A}(K, g, \ell)_{st}$ for ℓ large enough by using the result of [Ra] instead of [Ca] (unpublished).

Yoshiyasu Ozeki

Corollary 2.4 ([O], Corollary 4.5). There exists an explicit constant D depending only on d_K and g such that the set $\mathcal{A}(K, g, \ell)_{st}$ is empty for any prime number $\ell > D$.

Corollary 2.5 ([O], Corollary 4.6). There exists an explicit constant D' depending only on K, g and ℓ_0 such that the set $\mathcal{A}(K, g, \ell_0, \ell)_{st}$ is empty for any prime number $\ell > D'$ which does not split in K.

References

- [Ca] Xavier Caruso, Représentations semi-stables de torsion dans le cas er , J. Reine Angew. Math.**594**, 35–92 (2006).
- [O] Yoshiyasu Ozeki, Non-existence of certain Galois representations with a uniform tame inertia weight, to appear in Int. Math. Res. Not.
- [RT] Christopher Rasmussen and Akio Tamagawa, A finiteness conjecture on abelian varieties with constrained prime power torsion, Math. Res. Lett. 15, 1223–1231 (2008).
- [Ra] Michel Raynaud, Schémas en groupes de type (p, \ldots, p) , Bulletin de la Société Mathématique de France **102**, 241–280 (1974).