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Greenberg�s generalized conjecture and unramied

Galois groups over the cyclotomic \mathbb{Z}_{p}‐extensions

By

Satoshi Fujii *

Abstract

Let p be a fixed prime number and k a number field. Recently, the studies of the Galois

group G(k) of the maximal unramied pro‐p extension \mathcal{L}(k_{\infty})/k_{\infty} over the cyclotomic \mathbb{Z}_{p^{-}}
extension k_{\infty} of k are being developed. In this subject, to find number fields k such that G(k)
is a non‐abelian free pro‐p group is a very important problem. However, it seems that there is

no concrete such example of a number field k . In this article, we show roughly if Greenberg�s
generalized conjecture holds for p and k then G(k) can not be a non‐abelian free pro‐p group.

We also show some examples of imaginary abelian fields k.

§1. Introduction

This article is written as a report of the talk of the author at �Algebraic Number

Theory and Related Topics�. Around the subjects of this article are already submitted

([1] and [2]) and published as a report ([3], not refereed), so we will give a survey of the

topics about the talk specifically.
Let p be a fixed prime number, \mathbb{Z}_{p} the ring of all p‐adic integers and k/\mathbb{Q} a finite

extension. We call K/k\mathrm{a}\mathbb{Z}_{p}‐extension if K/k is a Galois extension such that its

Galois group \mathrm{G}\mathrm{a}1(K/k) is isomorphic to the additive group of \mathbb{Z}_{p} as topological groups.

From the theory of cyclotomic fields, there is a unique \mathbb{Z}_{p} ‐extension k_{\infty} contained in

the field k() obtained by adjoining all p‐power‐th roots of unity $\mu$_{p}\infty . We call

 k_{\infty} the cyclotomic \mathbb{Z}_{p} ‐extension of a number field k . Let \mathcal{L}(k_{\infty})/k_{\infty} be the maximal

unramified pro‐p extension and G(k_{\infty})=\mathrm{G}\mathrm{a}1(\mathcal{L}(k_{\infty})/k_{\infty}) its Galois group. For the

topics of G(k_{\infty}) ,
there is an excellent report by Mizusawa [9], so we concentrate to

discuss on the relationship between the freeness of G(k) and Greenberg�s generalized

conjecture.
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The problem considered in this article is as follows:

Problem. Is there a number field k such that G(k) is a non‐abelian free pro‐p

group?

If such k exists, then we can find interesting examples of p‐class field towers ([4]).
However, it seems that there is no concrete affirmative example of an answer to the

above problem yet. Further, it is considered that G(k) never be a non‐abelian free

pro‐p group. When the prime number p splits completely in k/\mathbb{Q} ,
as we will see later,

Greenberg�s generalized conjecture (see the following sections) ensures this.

Theorem 1.1. If the prime number p splits completely in a finite extension k/\mathbb{Q}
and if Greenberg�s generalized conjecture holds forp and k

,
then G(k) is not a non‐

abelian free pro‐p group.

Here we give some remarks.

\bullet The author must mention here that Ozaki [10] remarked that Greenberg�s generalized

conjecture for  p and an imaginary quadratic field k which is decomposed at p implies
that G(k) is not a non‐abelian free pro‐p group. Now, we obtain the same conclusion

for each number field k in which given prime number p splits completely.
\bullet Under the assumption of Theorem 1.1, more strictly, the maximal metabelian quotient
of  G(k) can not be a non‐abelian, free‐metabelian pro‐p group.

\bullet The author do not know a relationship between the structure of  G(k) as a pro‐

p group and Greenberg�s generalized conjecture when the prime number p does not

split completely in k/\mathbb{Q} . To find a connection between the structure of G(k) and

Greenberg�s generalized conjecture for general number fields seems an interesting and

important problem.

§2. \mathbb{Z}_{p}^{d}‐extensions, Greenberg�s generalized conjecture and G(k)

§2.1. \mathbb{Z}_{p}^{d}‐extensions

At first, we give a summary of the theory of \mathbb{Z}_{p}^{d}‐extensions and Greenberg�s general‐
ized conjecture. We call k^{(d)}/k\mathrm{a}\mathbb{Z}_{p}^{d}‐extension if k^{(d)}/k is a Galois extension such that its

Galois group \mathrm{G}\mathrm{a}1(k^{(d)}/k) is isomorphic to the d‐copies \mathbb{Z}_{p}^{d} of the additive group of \mathbb{Z}_{p} as

topological groups. Let k^{(d)}/k be a \mathbb{Z}_{p}^{d}‐extension and let X(k^{(d)})=\mathrm{G}\mathrm{a}1(L(k^{(d)})/k^{(d)}) be

the Galois group of the maximal unramified abelian pro‐p extension L(k^{(d)})/k^{(d)} . The

maximality of L(k^{(d)}) shows that L(k^{(d)})/k is a Galois extension, hence \mathrm{G}\mathrm{a}1(k^{(d)}/k)
acts on X(k^{(d)}) via the inner automorphism. By extending this action linearly and
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continuously, the completed group ring

\mathbb{Z}_{p}[[\mathrm{G}\mathrm{a}1(k^{(d)}/k)]]= \displaystyle \lim_{\leftarrow} \mathbb{Z}_{p} [Gal (k'/k) ]
 k\subseteq k'\subseteq k(d) , [k':k]<\infty

acts also on  X(k^{(d)}) ,
the projective limit is taken with respect to the natural restriction

maps of Galois groups. Note that \mathbb{Z}_{p}[[\mathrm{G}\mathrm{a}1(k^{(d)}/k)]] is isomorphic to the formal power

series ring $\Lambda$_{d}=\mathbb{Z}_{p}[[T_{1}, . . . , T]] of d‐variables with coefficients in \mathbb{Z}_{p} non‐canonically.
Hence X(k^{(d)}) can be seen as a $\Lambda$_{d}‐module. Then it is known that X(k^{(d)}) is a finitely

generated torsion $\Lambda$_{d}‐module.

§2.2. Greenberg�s generalized conjecture

In what follows, for simplicity, we assume that Leopoldt�s conjecture holds for p

and k . It is well known that Leopoldt�s conjecture holds for each abelian field. Let

\tilde{k} be the composite of all \mathbb{Z}_{p} ‐extensions of k . Then \tilde{k}/k is a \mathbb{Z}_{p^{2}}^{r+1} ‐extension (under
the assumption that Leopoldt�s conjecture holds), where r_{2} is the number of complex

primes of k (see for example [12]). We show some examples:

\bullet If  k=\mathbb{Q} ,
then \tilde{k}=\mathbb{Q}_{\infty} ,

the cyclotomic \mathbb{Z}_{p} ‐extension of \mathbb{Q} . In general \tilde{k}=k_{\infty} for

totally real fields k.

\bullet If  k is a totally imaginary field, then \mathrm{G}\mathrm{a}1(\tilde{k}/k)\simeq \mathbb{Z}^{\frac{[k:\mathbb{Q}]}{p^{2}}+1} . In particular, if k is an

imaginary quadratic field then \tilde{k}/k is a \mathbb{Z}_{p}^{2} ‐extension.

Greenberg�s Generalized conjecture states that X(\tilde{k}) is not so big.

Conjecture. (Greenberg�s generalized Conjecture [6]) X(\tilde{k}) is a pseudo‐null $\Lambda$_{r_{2}+1^{-}}
module.

A $\Lambda$_{d}‐module M is called pseudo‐null if there are two relatively prime annihilators

in $\Lambda$_{d} of M . Original Greenberg�s conjecture [5] asserts that X(k) is finite for all

totally real fields k . It is known that a $\Lambda$_{1} ‐module is finite if and only if is pseudo‐
null. Since \tilde{k}=k_{\infty} for totally real fields k (under the assumption that Leopoldt�s

conjecture holds), Greenberg�s generalized conjecture is regarded as a generalization of

original Greenberg�s conjecture for all number fields. Here we show results concerning

Greenberg�s generalized conjecture for imaginary abelian fields. For a number field k

and a prime number p ,
let A(k) be the p‐part of the ideal class group of k and D(k)

the subgroup of A(k) which consists of all ideal classes in A(k) containing a power of

primes of k lying above p.

Theorem 2.1. (Minardi [8]) Let k be an imaginary quadratic field and p a prime
number. If A(k)=D(k) then X(\tilde{k}) is pseudo‐null.
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Theorem 2.2. (Itoh [7]) Let k be an imaginary abelian quartic field and p an

odd prime number which splits completely in k/\mathbb{Q} . Let k^{+} be the maximal totally real

subeld of k . Suppose that A(k)=0 and X(k_{\infty}^{+})=0 . Then X(\tilde{k}) is pseudo‐null.

Theorem 2.3. (Sharifi [11]) Let p be an odd prime number less than 1000 and

k=\mathbb{Q}($\mu$_{p}) the p‐th cyclotomic field. Then X(\tilde{k}) is pseudo‐null.

In the module theoretic view point, the method of deducing the pseudo‐nullity of

X(\tilde{k}) of the above results is finding a �good� \mathrm{s}\mathrm{u}\mathrm{b}-\mathbb{Z}_{p}^{d} ‐extension k^{(d)} of \tilde{k}/k . In Minardi�s

and Itoh�s results, they found a \mathbb{Z}_{p^{-}} or \mathbb{Z}_{p}^{2} ‐extension k^{(d)} (d=1 or 2) such that the

\mathrm{G}\mathrm{a}1(\tilde{k}/k^{(d)}) ‐coinvariant X(\tilde{k})_{\mathrm{G}\mathrm{a}1(\tilde{k}/k)}(d) of X(\tilde{k}) ,
the maximal quotient module on which

\mathrm{G}\mathrm{a}1(\tilde{k}/k^{(d)}) acts trivially, is pseudo‐null over $\Lambda$_{d} . This shows the pseudo‐nullity of X(\tilde{k})
over $\Lambda$_{r_{2}+1} . In Sharifi�s result, he found a \mathbb{Z}_{p}^{2} ‐extension k^{(2)} such that X(k^{(2)}) is a

finitely generated \mathbb{Z}_{p} ‐module. This also shows the pseudo‐nullity of X(\tilde{k}) . Of course,

showing the pseudo‐nullity of X(k^{(d)})_{\mathrm{G}\mathrm{a}1(\overline{k}/k)}(d) or the finitely generation of X(k^{(2)}) is

the most important part in their proofs.
On the other hand, the author found a new method showing the pseudo‐nullity of

X(k^{(2)}) for certain \mathbb{Z}_{p}^{2} ‐extensions k^{(2)}/k.

Theorem 2.4. (F[1]) Let p be an odd prime number and k an imaginary

quadratic field. Let s be the number of primes of k lying above p . Let k_{1} be an in‐

termediate field of \tilde{k}/k such that k_{1}/k is ramied at all primes of k lying above p and

that [k_{1} : k]=p . If \dim_{\mathrm{F}_{p}}D(k_{1})/p=s then X(\tilde{k}) has a non‐trivial pseudo‐null sub‐

module. Furthermore, if the non‐trivial part of the Iwasawa polynomial related to the

Kubota‐Leopoldt�s p‐adic L‐function of k is irreducible then X(\tilde{k}) is itself pseudo‐null.

Points of this result are looking up the existence of non‐trivial pseudo‐null submod‐

ules of X(\tilde{k}) ,
and using two independent \mathbb{Z}_{p} ‐extensions, one of which is the cyclotomic

\mathbb{Z}_{p} ‐extension k_{\infty} . We show keys of the proof.

\bullet Since  p is an odd prime number and since k is an imaginary quadratic field, it is

well known that X(k) has no non‐trivial finite submodules. From this fact, we

can prove that if X(\tilde{k}) has no non‐trivial pseudo‐null submodules, then the length
of a minimal free resolution of X(\tilde{k}) as a $\Lambda$_{2} ‐module is equal to or less than 1.

\bullet Let  k^{(1)} be a \mathbb{Z}_{p} ‐extension of k containing k_{1} . Then, from our assumption that

\dim_{\mathrm{F}_{p}}D(k_{1})/p=s ,
we can prove that X(\tilde{k})_{\mathrm{G}\mathrm{a}1(\tilde{k}/k)}(1) has a non‐trivial finite sub‐

module. This shows that the length of a minimal free resolution of X(\tilde{k}) is greater
than 1. Therefore, from the above fact and our assumption, we can conclude that

X(\tilde{k}) has a non‐trivial pseudo‐null submodule.
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\bullet From a property of Fitting ideals and the irreducibility of the polynomial related

to the  p‐adic L‐function of k
,

we can prove that the Fitting ideal of X(\tilde{k}) as a

module over $\Lambda$_{2} contains a prime element. Therefore, by using another property of

Fitting ideals, if X(\tilde{k}) has a non‐trivial pseudo‐null submodule then X(\tilde{k}) is itself

pseudo‐null.

Here we give examples of number fields for which Greenberg�s generalized conjecture
holds.

\bullet By Minardi�s result, for 9 imaginary quadratic fields with class number 1 and each

prime number  p , Greenberg�s generalized conjecture holds.

\bullet Combining the results of Minardi and the author, and computational results, in the

range of  1<m<1000 ,
for the prime number 3 and imaginary quadratic fields

k=\mathbb{Q}(\sqrt{-m}) with square‐free integers m such that m\equiv 2\mathrm{m}\mathrm{o}\mathrm{d} 3 ,
we see that X(\tilde{k})

is pseudo‐null except for four integers m=461 , 743, 971 and 974. The author do

not know even that X(\tilde{k}) has a non‐trivial pseudo‐null submodule or not for these

four integers.

§2.3. Greenberg�s generalized conjecture and G(k_{\infty}) —A sketch of the

proof of Theorem 1.1

Let p be a prime number and k/\mathbb{Q} a finite extension such that the prime number

p splits completely. For simplicity, we assume that k is abelian here. Then,
\bullet  G(k) is a finitely generated pro‐p group by FerreroWashington�s theorem and pro‐p

version of Burnside�s theorem,
\bullet Leopoldt�s conjecture holds for  p and k.

Suppose that Greenberg�s generalized conjecture holds for p and k
,

that is, X(\tilde{k}) is a

pseudo‐null $\Lambda$_{r_{2}+1} ‐module. We also assume here that X(\tilde{k})\neq 0 . Let  $\varphi$ :  F\rightarrow G(k)
be a minimal presentation of G(k) by a free pro‐p group F . We must show that  $\varphi$ is

not isomorphic. The story of the proof is as follows:

\bullet Since the prime number  p splits completely, the \mathbb{Z}_{p^{2}}^{r} ‐extension \tilde{k}/k_{\infty} is unramified at

each prime of k_{\infty} . When r_{2}=0 ,
we shall let \mathbb{Z}_{p}^{0} be the trivial group, hence \tilde{k}=k_{\infty}.

From the maximality of \mathcal{L}(k_{\infty}) , L(\tilde{k}) is a subfield of \mathcal{L}(k_{\infty}) ,
and hence G(\tilde{k})=

\mathrm{G}\mathrm{a}1(\mathcal{L}(k_{\infty})/\tilde{k}) is a subgroup of G(k_{\infty}) . Note that the abelianization G(\tilde{k})^{\mathrm{a}\mathrm{b}}=
G(\tilde{k})/[G(\tilde{k}), G(\tilde{k})] of G(\tilde{k}) is X(\tilde{k}) .

\bullet By an identification \mathbb{Z}_{p}[[\mathrm{G}\mathrm{a}1(\tilde{k}/k_{\infty})]]\simeq$\Lambda$_{r_{2}} ,
we consider the $\Lambda$_{r_{2}} ‐module structure

of X(\tilde{k}) . When r_{2}=0 ,
we let $\Lambda$_{0}=\mathbb{Z}_{p} . It is known that if X(\tilde{k}) is pseudo‐null over

$\Lambda$_{r_{2}+1} then X(\tilde{k}) is torsion over $\Lambda$_{r_{2}}.
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\bullet Put  H=$\varphi$^{-1}(G(\tilde{k})) . Then, the abelianization H^{\mathrm{a}\mathrm{b}}=H/\overline{[H,H]} of H is a $\Lambda$_{r_{2}}-
module of finitely generated and $\Lambda$_{r_{2}} ‐torsion free. Note that the minimal presenta‐

tion  $\varphi$ induces a surjective morphism  $\varphi$|_{H}^{\mathrm{a}\mathrm{b}}:H^{\mathrm{a}\mathrm{b}}\rightarrow X(\tilde{k}) of $\Lambda$_{r_{2}} ‐modules. If  $\varphi$ is an

isomorphism then  $\varphi$|_{H}^{\mathrm{a}\mathrm{b}} is also an isomorphism.

Combining the above, we give the conclusion.

X(\tilde{k}) is pseudo‐null over $\Lambda$_{r_{2}+1} \Rightarrow  X(\tilde{k}) is torsion over $\Lambda$_{r_{2}}
\Rightarrow  $\varphi$|_{H}^{\mathrm{a}\mathrm{b}}:H^{\mathrm{a}\mathrm{b}}\rightarrow X(\tilde{k}) is not an isomorphism
\Rightarrow  $\varphi$ :  F\rightarrow G(k) is not an isomorphism.

This completes the proof of Theorem 1.1. \square 

For an imaginary abelian quartic field k in which a given prime number p splits

completely, the \mathbb{Z}_{p} ‐rank of X(k) is greater than 1. Hence G(k) is not isomorphic to

1 or \mathbb{Z}_{p} . Therefore, if A(k)=0 and X(k_{\infty}^{+})=0 then G(k) is not a non‐abelian free

pro‐p group by Itoh�s result.

Let k=\mathbb{Q}(\sqrt{-m}) be an imaginary quadratic field with a positive square‐free integer
m such that m\equiv 2\mathrm{m}\mathrm{o}\mathrm{d} 3 ,

then the prime 3 splits in k . As a consequence of Theorem

1.1, 2.4, 2.1 and the computational result (see the previous subsection), for p=3 and

1<m<1000 except for four integers m=461 , 743, 971 and 974, G(k) is not a non‐

abelian free pro‐3 group. For exceptional these integers m
,

we only know that G(k)
is non‐abelian.

§3. Problems

Against the expectation of the problem in section 1, we shall raise a problem.

Problem 1. For every prime number p and finite extension k/\mathbb{Q} ,
is not G(k_{\infty})\mathrm{a}

non‐abelian free pro‐p group?

When the prime number p splits completely in k/\mathbb{Q} , Greenberg�s generalized con‐

jecture ensures this problem. (However, it seems that there is no theory which ensures

Greenberg�s generalized conjecture As mentioned in section 1, at least, the author

does not know a relationship between G(k) and Greenberg�s generalized conjecture
when the prime number p does not split completely. So, we shall raise again the follow‐

ing problem, which weakened problem 1 from the view point of Greenberg�s generalized

conjecture.

Problem 2. Find a connection between the structure of G(k) and Greenberg�s
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generalized conjecture for general finite extensions k/\mathbb{Q}.

As discussed in [4] (see also the Remark in [4]), it seems that there is a connec‐

tion between G(k) and Greenberg�s generalized conjecture when k is an imaginary

quadratic field in which p does not necessary split. However, the author could not

formulate explicitly such connections.
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