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Introduction to algebraic and arithmetic dynamics
a survey

By

\mathrm{S}\mathrm{h}\mathrm{u} KAWAGUCHI *

In this survey, we discuss some topics in algebraic and arithmetic dynamics. This

is based on my talk in a survey session of the RIMS workshop �Algebraic number

theory and related topics 2009.� In Section 1, we see how algebraic and arithmetic

dynamics are different from real and complex dynamics. Then we examine some number‐

theoretic aspects of the fields in Section 2, and some dynamical aspects in Section 3.

In Section 4, we briefly mention some interactions between arithmetic dynamics and

complex dynamics. For more complete and excellent accounts of the subjects (up to

2007), we refer the reader, for example, to Silverman [50] and Zhang [61].

§1. What are algebraic dynamics and arithmetic dynamics?

Let X be a set endowed with a self‐map f : X\rightarrow X . Roughly speaking, in a

discrete‐time dynamical system, one is interested in asymptotic properties of points
and subsets under successive iterations of f . For example, for x\in X ,

one is interested

in the behavior of the f‐orbit of x :

 x, f(x) , f(f(x)) , \cdots

Intuitively,  X is a phase space and x is an initial state of the system (at time t=0 ).
Then f(x) describes the state at t=1

,
and f(f(x)) describes the state at t=2

,
. . .

Many researchers have deeply studied asymptotic properties of the system (X, f)
when
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topological space continuous map

‐manifold ‐map

complex manifold holomorphic (or sometimes

meromorphic) map

measurable space measure‐preserving transformation

The ground field has generally been either \mathbb{R} or \mathbb{C} . In algebraic dynamics and

arithmetic dynamics, one usually works over

algebraic variety morphism (or sometimes

a rational map).

But the ground field is not \mathbb{R} nor \mathbb{C} , but such field as a finite field, a number field, \mathrm{a}

non‐Archimedean valuation field (and often on a Berkovich space) and a function field.

For example, let X be a variety over \mathbb{Q} and f : X\rightarrow X a morphism. In arithmetic

dynamics, one studies properties of rational points under the iterations by f.
It is rather recent that algebraic and arithmetic dynamics have attracted a number

of mathematicians. Of course, there are earlier studies. For example, in 1950, Northcott

[39] showed finiteness of rational periodic points for morphisms of \mathbb{P}^{N} over a number

field.

In the 2010 Mathematics Subject Classification (MSC2010), the codes

11\mathrm{S}82 Non‐Archimedean dynamical systems [See mainly 37\mathrm{P}\mathrm{x}\mathrm{x}]
37\mathrm{P}\mathrm{x}\mathrm{x} Arithmetic and non‐Archimedean dynamical systems

are added. We remark that �11Sxx� represents �Algebraic number theory: local and

p‐adic fields,� which may justify that this note be included in the proceedings of the

workshop �Algebraic number theory and related topics.�

Algebraic and arithmetic dynamics lie in the intersection of number theory, alge‐
braic geometry and dynamical systems. It remains to be seen how rich they are.

Acknowledgment. We would like to thank the referee for helpful comments.

§2. Number‐theoretic viewpoint

§2.1. Polarized dynamical system

Let K be a field. We denote by \overline{K} the algebraic closure of K . Let A be an abelian

variety over K
,

and [2] : A\rightarrow A the twice multiplication map. An ample line bundle L
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over X is said to be symmetric if [-1]^{*}(L)\simeq L . In this case, we have

[2]^{*}L\simeq L^{\otimes 4}

It is easy to see that, for x\in A(\overline{K}) ,
x is a torsion point if and only if \{[2]^{n}(x)|n\geq

 1\} is a finite set. Thus the property that x being torsion is expressed by a condition on

x under the iterations by [2]. As we will see in Subsections 2.32.5, some properties of

abelian varieties are expressed in the context of the dynamical system [2] : A\rightarrow A.

Polarized dynamical systems (cf. Zhang [61, §1.1]) are dynamical systems which

include abelian varieties together with the twice multiplication map.

Denition 2.1 (Polarized dynamical system). Let K be a field, X a projective

variety over K, L an ample line bundle over X
,

and f : X\rightarrow X a morphism. The triple

(X, f, L) is called a polarized dynamical system of degree d\geq 2 if

f^{*}L\simeq L^{\otimes d}

In fact, Zhang�s definition is more general, treating the case when X is a compact

Kähler variety over \mathbb{C} , i.e., an analytic variety which admits a finite map to a Kähler

manifold.

We give three examples of polarized dynamical systems.

Example 2.2 (Abelian variety). As we have seen, if A is an abelian variety over

a field K
, [2] : A\rightarrow A is the twice multiplication map, and L is a symmetric ample line

bundle, then the triple (A, [2], L) is a polarized dynamical system of degree 4.

Example 2.3 (Projective space). Let \mathbb{P}^{N} be projective space. Let f : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N}

be a morphism of (algebraic) degree d\geq 2 over a field K . By this, we mean that

there exist homogeneous polynomials F_{0} ,
. . .

, F_{N}\in K[X_{0}, . . . , X_{N}] of degree d with

coefficients in K whose common zero is only the origin (0, \ldots, 0) such that f=(F_{0} :

. . . : F_{N}) . Let \mathcal{O}_{\mathbb{P}^{N}}(1) be an ample line bundle associated to a hyperplane on \mathbb{P}^{N} . Then

we have

f^{*}\mathcal{O}_{\mathbb{P}^{N}}(1)\simeq \mathcal{O}_{\mathbb{P}^{N}}(d) .

Thus (\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1), f) is a polarized dynamical system of degree d.

Example 2.4 (Projective surface). Zhang [61, §2.3] classified projective surfaces

X over \mathbb{C} which admit polarized dynamical systems: X is either an abelian surface; a hy‐

perelliptic surface; a toric surface; or a ruled surface \mathbb{P}_{C}() over an elliptic curve C such

that either \mathcal{E}=\mathcal{O}_{C}\oplus \mathcal{M} with \mathcal{M} torsion of positive degree, or \mathcal{E} is not decomposable
and has odd degree.
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We remark that Fujimoto and Nakayama studied the structure of compact complex
varieties which admit non‐trivial surjective endomorphisms, not necessarily polarized
ones (cf. [21, 22, 23]).

Fakhruddin [17, Corollary 2.2] showed that every polarized dynamical system is

embedded into projective space.

Theorem 2.5 (Fakhruddin [17]). Let (X, L, f) be a polarized dynamical system
over an innite field K. Then there exists m\geq 1 such that (X, L^{\otimes m}, f) can be extended

to a polarized dynamical system (\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1),\overline{f}) with N=\dim H^{0}(X, L^{\otimes m}) :

X \rightarrow^{f} X

$\varphi$_{|L\otimes m}|\downarrow \downarrow$\varphi$_{|L\otimes m}|
\mathbb{P}^{N}\rightarrow^{f\overline{}}\mathbb{P}^{N}.

Theorem 2.5 is sometimes used to deduce some properties of (X, L, f) from those

of (\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1),\overline{f}) .

§2.2. Heights, metrics and measures

This subsection is a preliminary to the following subsections. We briefly recall

some basic facts on heights. Then we recall NéronTate�s heights and cubic metrics on

abelian varieties, and we see how they are generalized in polarized dynamical systems.
For more details on heights, we refer the reader, for example, to [27] and [11].

Heights
Let K be a number field. We denote by M_{K} the set of places of K . For v\in M_{K},

let | |_{v} be the normalized v‐adic norm of K.

Denition 2.6 (Height). For x=(x_{0} :. . . : x_{N})\in \mathbb{P}^{N}(K) ,
the (logarithmic

naive) height is defined by

h(x):=\displaystyle \frac{1}{[K:\mathbb{Q}]}\sum_{v\in M_{K}}\log\max\{|x_{0}|_{v}, . . . |x_{N}|_{v}\}.
The value h(x) is well‐defined by the product formula, and gives rise to the function

h:\mathbb{P}^{N}(\overline{K})\rightarrow \mathbb{R}_{\geq 0}.

Suppose that x\in \mathbb{P}^{N}(\mathbb{Q}) . We write x=(x_{0} : : x_{N}) with x_{i}\in \mathbb{Z} and

\mathrm{g}\mathrm{c}\mathrm{d}(x_{0}, \ldots, x_{N})=1 . Then h(x)=\displaystyle \log\max\{|x_{0}|_{\infty}, . . . |x_{N}|_{\infty}\} . We see that, for any

M\in \mathbb{R},

\{x\in \mathbb{P}^{N}(\mathbb{Q})|h(x)\leq M\}
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is a finite set. Indeed, the cardinality is at most (2\lfloor\exp(M)\rfloor+1)^{N+1}.
This property is sometimes called Northcott�s finiteness property of heights, and

holds in general. (The above case is when K=\mathbb{Q} and D=1 in Proposition 2.7.)
Northcott�s property is rather easy to prove but quite useful.

Proposition 2.7 (Northcott�s finiteness property of heights). For any D\in \mathbb{Z}_{>0}
and M\in \mathbb{R},

\{x\in \mathbb{P}^{N}(\overline{K})|[K(x) : K]\leq D, h(x)\leq M\}
is a finite set.

Let X be a projective variety over K
,

and L a line bundle on X . We recall a height
function h_{L} : X(\overline{K})\rightarrow \mathbb{R} associated to L.

Assume first that L is very ample. Then, choosing a basis of H^{0}(X, L) ,
we have

an embedding $\varphi$_{|L|} : X\rightarrow \mathbb{P}^{N} with N=\dim H^{0}(X, L)-1 . We define a height function

h_{L}:X(\overline{K})\rightarrow \mathbb{R} by

h_{L}(x)=h($\varphi$_{|L|}(x)) .

The function h_{L} depends on the choice of a basis of H^{0}(X, L) . However, if we choose

another basis of H^{0}(X, L) and write the corresponding height function for h_{L}' ,
then the

difference h_{L}-h_{L}' is bounded on X(\overline{K}) . Thus, up to bounded functions on X(\overline{K}) , h_{L}

does not depend on the choice of a basis of H^{0}(X, L) .

In general, we write L=M_{1}\otimes M_{2}^{-1} with very ample M_{i} ,
and define h_{L}:=h_{M_{1}}-

h_{M_{2}} . Then, up to bounded functions on X(\overline{K}) , h_{L} is well‐defined, independent of the

choice of M_{1} and M_{2} . The function h_{L} is called a height function associated to L.

Abelian varieties: Néron‐Tate�s heights and cubic metrics

Let A be an abelian variety over a field K
,

and L a symmetric ample line bundle

on A.

First we let K be a number field. Néron‐Tate�s height function

\hat{h}_{NT}:A(\overline{K})\rightarrow \mathbb{R}_{\geq 0}

is a unique height function associated to L which satisfies \hat{h}_{NT} ([2](x)) =4\hat{h}_{NT}(x) . Note

that \hat{h}_{NT} depends on L . Indeed, let h_{L} be any height function associated to L . Then,
for x\in A(\overline{K}) , \hat{h}_{NT}(x) is given by \displaystyle \hat{h}_{NT}(x)=\lim_{n\rightarrow\infty}\frac{1}{4^{n}}h_{L}([2]^{n}(x)) . We have

\hat{h}_{NT}(x)=0\Leftrightarrow x is torsion.

Now we let K=\mathbb{C} ,
so that A is an abelian variety over \mathbb{C} . We fix an isomorphism

 $\alpha$ :  L^{\otimes 4}\simeq[2]^{*}L . Then a cubic metric \Vert \Vert_{cub} is a unique C^{\infty} ‐hermitian metric on L

over A satisfying ($\alpha$^{*}[2]^{*}\Vert \Vert_{cub})^{\frac{1}{4}}=\Vert \Vert_{cub} . Note that \Vert \Vert_{cub} depends on the choice of

 $\alpha$.
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The first Chern form c_{1}(L_{\mathbb{C}}, \Vert\cdot\Vert_{cub}) is a translation‐invariant (1, 1)‐form on A
,

and

 $\mu$:=\displaystyle \frac{1}{\deg_{L}(A)}c_{1}(L, \Vert \Vert_{cub})^{\dim A}
is the normalized Haar measure on A.

Example 2.8. Let Z=X+\sqrt{-1}Y be a symmetric g\times g matrix such that

the imaginary part Y is positive definite. Then A\simeq \mathbb{C}^{g}/(\mathbb{Z}^{g}+Z\mathbb{Z}^{g}) is a principally

polarized abelian variety over \mathbb{C} . For z=x+\sqrt{-1}y\in \mathbb{C}^{g} ,
let

 $\theta$(Z, z):=\displaystyle \sum_{n\in \mathbb{Z}g}\exp( $\pi$\sqrt{-1}{}^{t}nZn+2 $\pi$\sqrt{-1}{}^{t}nz)
be the theta function, and let  $\Theta$ denote the zero set of  $\theta$ in  A . Then the line bundle

\mathcal{O}_{A}( $\Theta$) associated to  $\Theta$ is symmetric and ample.
A cubic metric \Vert \Vert_{cub} on \mathcal{O}_{A}( $\Theta$) is given by

\Vert 1\Vert_{cub}(x+\sqrt{-1}y)=\det(Y)^{\frac{1}{4}}\cdot\exp(- $\pi$ yY^{-1}y) | $\theta$(Z, x+\sqrt{-1}y)|,

where 1 is the section of \mathcal{O}_{A}( $\Theta$) corresponding to  $\theta$ . The normalized Haar measure is

given by

 $\mu$=\displaystyle \frac{1}{\det(Y)}(\frac{\sqrt{-1}}{2})^{g}dz_{1}\wedge d\overline{z}_{1}\cdots dz_{g}\wedge d\overline{z}_{g},
where z={}^{t}(z_{1}, \ldots, z_{g}) \in \mathbb{C}^{g}.

Polarized dynamical systems: Canonical heights, canonical metrics and canon‐

ical measures

Let (X, f, L) be a polarized dynamical system of degree d\geq 2 over a field K.

First we let K be a number field. Let h_{L} be a height function associated to L.

Then, for x\in X(\overline{K}) ,
the limit

\displaystyle \hat{h}_{L,f}(x)=\lim_{n\rightarrow\infty}\frac{1}{d^{n}}h_{L}(f^{n}(x))
exists (cf. [12]). The function \hat{h}_{L,f} : X(\overline{K})\rightarrow \mathbb{R}_{\geq 0} does not depend on the choice of

h_{L} associated to L
,

and satisfies \hat{h}_{L,f}(f(x))=d\hat{h}_{L,f}(x) . It is called a canonical height

function for L . A point x\in X(\overline{K}) is said to be preperiodic under f if \{f^{n}(x)|n\geq 1\}
is a finite set. By CallSilverman [12],

\hat{h}_{L,f}(x)=0\Leftrightarrow x is preperiodic under f.
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Now we let K=\mathbb{C} ,
and let (X, f, L) be a polarized dynamical system of degree

d\geq 2 over \mathbb{C} . We fix an isomorphism  $\alpha$ :  L^{\otimes d}\simeq f^{*}L . Let \Vert\cdot\Vert be a  C^{0} ‐hermitian metric

of L . Then the limit

:= \displaystyle \lim

 n‐times

exists (cf. [59]). The metric \overline{||\cdot\Vert}_{f} is again a C^{0} ‐hermitian metric of L
,

does not depend

on the choice of an initial metric \Vert\cdot\Vert of  L
,

and satisfies \overline{||\Vert}_{f}=($\alpha$^{*}f^{*}\overline{||\cdot\Vert}_{f})^{\frac{1}{d}} . Note

that \Vert \Vert_{f} depends on the choice of  $\alpha$ . It is called a canonical metric of  L for f.
Since L is assumed to be ample, we can take an initial metric \Vert\cdot\Vert of  L such that \Vert\cdot\Vert

is  C^{\infty} and the first Chern form c_{1}(L, \Vert\cdot\Vert) is positive. Here, c_{1}(L, \Vert\cdot\Vert) is locally defined

by dd^{c}(-\log\Vert s\Vert^{2}) on X\backslash \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\mathrm{d}\mathrm{i}\mathrm{v}(s)) ,
where s is any non‐zero rational section s of

—2

L . It follows that ‐ \log\Vert s\Vert_{f} is continuous and pluri‐subharmonic on X\backslash Supp ( \mathrm{d}\mathrm{i}\mathrm{v}(s)) .

Then c_{1}(L,\overline{||\cdot\Vert}_{f}) is positive in the sense of currents, and one can take exterior products

of c_{1}(L,\overline{||\Vert}_{f}) (cf. [1, Theorem 2.1]) to define

$\mu$_{f}:=\displaystyle \frac{1}{\deg_{L}(X)}c_{1}(L,\overline{||\Vert}_{f})^{\dim X}
The normalized measure $\mu$_{f} on X is called the canonical measure associated to (X, f, L) .

Remark. For f : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N}
,

the canonical measure $\mu$_{f} is quite complicated in

general. It is known that Supp ( $\mu$_{f}) is equal to the N‐th Julia set for f ,
which is a

�fractal object� in \mathbb{P}^{N}() (cf. [47, Théorème 1.6.5]).

We summarize the content of this subsection:

abelian variety polarized dynamical system

torsion point
Néron‐Tate height

cubic metric

normalized Haar measure

preperiodic point
canonical height
canonical metric

canonical measure

§2.3. Dynamical equidistribution theorem and dynamical
Manin‐Mumford and Bogomolov conjectures

Some arithmetic properties on abelian varieties are interpreted in the context of

polarized dynamical systems. Then one can ask corresponding arithmetic properties of
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polarized dynamical systems. Some of them are theorems, but most of them are conjec‐
tural. In Subsections 2.32.5, let us explain some of them. This subsection is devoted to

a dynamical equidistribution theorem (proved by Yuan) and dynamical Manin‐Mumford

and Bogomolov conjectures.

Abelian varieties

We first recall deep results over abelian varieties which serve as models in polarized

dynamical systems.
Let A be an abelian variety over a number field K . Let \{x_{n}\}_{n=1}^{\infty} be a sequence of

points in A(\overline{K}) . Then \{x_{n}\}_{n=1}^{\infty} is said to be a generic sequence of small height points if

the following conditions are satisfied:

(i) For any closed subvariety Z\subseteq A_{\overline{K}} , there exists n_{0}\in \mathbb{N} such that for any n\geq n_{0}

one has x_{n}\not\in Z(\overline{K}) .

(ii) \displaystyle \lim_{n\rightarrow\infty}\hat{h}_{NT}(x_{n})=0 ,
where \hat{h}_{NT} is the NéronTate height corresponding to a

symmetric ample line bundle on A. (Note that the property \displaystyle \lim_{n\rightarrow\infty}\hat{h}_{NT}(x_{n})=0
does not depend on the choice of a symmetric ample line bundle on A . )

Example 2.9. As an illustration, let E be an elliptic curve over K
,
and x_{1}, x_{2} ,

. . . \in

 E(\overline{K}) be torsion points with x_{i}\neq x_{j}(i\neq j) . Then \{x_{n}\}_{n=1}^{\infty} is a generic sequence of

small height points.

For x\in A(\overline{K}) ,
let G(x) :=\{ $\sigma$(x)\in A(\overline{K})| $\sigma$\in \mathrm{G}\mathrm{a}1(\overline{K}/K)\} be the Galois orbit of

x . We fix an embedding \overline{K}\mapsto \mathbb{C} . Then G(x) is seen as a subset of A(\mathbb{C}) . We define the

Dirac measure $\delta$_{G(x)} on A() by

$\delta$_{G(x)}:=\displaystyle \frac{1}{\# G(x)} \sum $\delta$_{y}.
y\in G(x)

Let  $\mu$ be the normalized Haar measure on  A(\mathbb{C}) .

SzpiroUllmoZhang [53] proved the following equidistribution theorem.

Theorem 2.10 (Equidistribution on abelian varieties, SzpiroUllmoZhang [53]).
Let \{x_{n}\}_{n=1}^{\infty}\subset A(\overline{K}) be a generic sequence of small height points. Then $\delta$_{G(x_{n})} con‐

verges weakly to  $\mu$ on  A(\mathbb{C}) . Namely, for any complex‐valued continuous function f on

A(\mathbb{C}) ,
one has

\displaystyle \lim_{n\rightarrow\infty}\frac{1}{\# G(x_{n})} \sum f(y)=\int_{A(\mathbb{C})}fd $\mu$.y\in G(x_{n})

Example 2.11. As in Example 2.9, let E be an elliptic curve over a number

field K and we fix an embedding K\mapsto \mathbb{C} . Let x_{1}, x_{2} ,
. . . \in E(\overline{K}) be torsion points

with x_{i}\neq x_{j}(i\neq j) . Then Theorem 2.10 tells us that the Galois orbit G(X) of x_{n} is

asymptotically equidistributed on E(\mathbb{C})\simeq \mathbb{C}/(\mathbb{Z}+ $\tau$ \mathbb{Z}) as n tends to the infinity.
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The key to the proof of Theorem 2.10 is a height inequality

h_{\overline{L}(\in f)}(A)\displaystyle \leq \sup \inf h_{\overline{L}(\in f)}(x)
Z\infty\subset A_{\overline{K}}x\in(A\backslash Z)(\overline{K})

due to Zhang [58, Theorem (5.2)]. Here, L is a symmetric ample line bundle on A
,

and

h_{\overline{L}(\in f)} is the height associated to the metrized line bundle \overline{L}( $\epsilon$ f) in Arakelov geometry.

We recall the ManinMumford conjecture (proved by Raynaud) and the Bogomolov

conjecture (proved by Ullmo and Zhang).

Theorem 2.12 (ManinMumford conjecture, Raynaud [42]). Let A be an abelian

variety over a number field K. Let Y be a closed subvariety of A_{\overline{K}} . Suppose that

Y(\overline{K})\cap A_{tors}(=\{x\in Y(\overline{K})|\hat{h}_{NT}(x)=0\})

is Zariski dense in Y_{\overline{K}} . Then Y is a translate of an abelian subvariety of A_{\overline{K}} by a

torsion point.

If one replaces the condition \hat{h}_{NT}(x)=0 �

by a weaker condition \hat{h}_{NT}(x)< $\epsilon$ for

any positive number  $\epsilon$>0 then one has the Bogomolov conjecture.

Theorem 2.13 (Bogomolov conjecture, Ullmo [55] and Zhang [60]). Let A be an

abelian variety over a number field K. Let Y be a closed subvariety of A_{\overline{K}} . Suppose

that, for any positive number  $\epsilon$>0,

\{x\in Y(\overline{K})|\hat{h}_{NT}(x)< $\epsilon$\}

is Zariski dense in Y_{\overline{K}} . Then Y is a translate of an Abelian subvariety of A_{\overline{K}} by a

torsion point.

Ullmo proved the theorem when Y is a curve, and Zhang in general. The main

ingredients of the proof were SzpiroUllmoZhang�s equidistribution theorem (The‐
orem 2.10), and a geometric lemma for the map A^{m}\rightarrow A^{m-1}, (x_{1}, x_{2}, . . . , x_{m})\mapsto
(x_{1}-x_{2}, x_{2}-x_{3}, \ldots, x_{m-1}-x_{m}) .

Polarized dynamical systems
We go back to polarized dynamical systems. Let K be a number field and (X, f, L)

a polarized dynamical system over K.

Let \{x_{n}\}_{n=1}^{\infty} be a sequence of points in X(\overline{K}) . Exactly as in the case of abelian

varieties, the sequence is said to be a generic sequence of small height points if the

following conditions are satisfied:

(i) For any closed subvariety Z\subseteq X_{\overline{K}} , there exists n_{0}\in \mathbb{N} such that for any n\geq n_{0}

one has x_{n}\not\in Z(\overline{K}) .
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(ii) \displaystyle \lim_{n\rightarrow\infty}\hat{h}_{L}(x_{n})=0.
For x\in X(\overline{K}) ,

let G(x) :=\{ $\sigma$(x)\in X(\overline{K})| $\sigma$\in \mathrm{G}\mathrm{a}1(\overline{K}/K)\} be the Galois orbit of

x . We fix an embedding \overline{K}\mapsto \mathbb{C} . Then G(x) is seen as a subset of X() . We define

the Dirac measure $\delta$_{G(x)} on X() by

$\delta$_{C(x)}:=\displaystyle \frac{1}{\# G(x)} \sum $\delta$_{y}.
y\in G(x)

Let $\mu$_{f} be the canonical measure on X() associated to (X, f, L) .

Then we can ask if a similar equidistribution property holds for polarized dynamical

systems as for abelian varieties. This is Yuan�s theorem.

Theorem 2.14 (Equidistribution for polarized dynamical systems, Yuan [56]). Let

\{x_{n}\}_{n=1}^{\infty}\subset X(\overline{K}) be a generic sequence of small height points. Then $\delta$_{G(x_{n})} converges

weakly to  $\mu$ on  X() . Namely, for any complex‐valued continuous function f on X

one has

\displaystyle \lim_{n\rightarrow\infty}\frac{1}{\# G(x_{n})} \sum f(y)=\int_{X(\mathbb{C})}fd $\mu$.y\in G(x_{n})

Yuan proved an arithmetic version of Siu�s theorem on big line bundles. Then, he

proved equidistribution for polarized dynamical systems using the idea of the proof of

Theorem 2.10 on abelian varieties.

Example 2.15. Let f:\mathbb{P}^{1}\rightarrow \mathbb{P}^{1}, (x_{0}:x_{1})\mapsto(x_{0}^{2}:x_{1}^{2}) . Then the canonical

height for f is nothing but the usual height h (see Definition 2.6), and the canonical

measure for f is the Haar measure on the unit circle. Let \{x_{n}\}_{n=1}^{\infty}\subset \mathbb{P}^{1}(\overline{\mathbb{Q}}) be a

sequence of points with x_{i}\neq x_{j}(i\neq j) and \displaystyle \lim_{n\rightarrow\infty}h(x_{n})=0 . Theorem 2.14 tells

us that the Galois orbit of x_{n} is asymptotically equidistributed on the unit circle as n

tends to the infinity.

The above example is the case of \mathbb{G}_{m} . Equidistribution for \mathbb{G}_{m}^{N} is proved by Bilu

[10]. Theorem 2.14 is also a generalization of Bilu�s theorem.

Zhang [59, Conjecture (2.5)], [61, Conjectures 1.2.1, 4.1.7] formulated a dynam‐
ical ManinMumford conjecture and a dynamical Bogomolov conjecture in polarized

dynamical systems, as natural generalizations from the case of abelian varieties.

Recently, Ghioca and Tucker gave a counterexample to this dynamical Manin‐

Mumford conjecture. Zhang [57] has reformulated dynamical ManinMumford conjec‐
tures.

§2.4. Dynamical Mordell{Lang problem

In this subsection, we explain a dynamical MordellLang problem due to Ghioca

and Tucker.
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We first recall Faltings�s celebrated theorem [18] on MordellLang conjecture for

abelian varieties. The following is its absolute form (cf. [26]).

Theorem 2.16 (MordellLang conjecture in the absolute form). Let A be an abelian

variety over \mathbb{C}, V a subvariety of A
,

and  $\Gamma$ a subgroup of finite rank in  A(\mathbb{C}) . Then

there are abelian subvarieties C_{1} ,
. . .

, C_{p} of A and $\gamma$_{1} ,
. . .

,  $\gamma$_{p}\in $\Gamma$ such that

\displaystyle \overline{V(\mathbb{C})\cap $\Gamma$}=\bigcup_{i=1}^{p}(C_{i}+$\gamma$_{i}) and V(\displaystyle \mathbb{C})\cap $\Gamma$=\bigcup_{i=1}^{p}(C_{i}(\mathbb{C})+$\gamma$_{i})\cap $\Gamma$.
Let A and V be as in Theorem 2.16. Let  $\gamma$\in A() be a non‐torsion point, and let

f_{ $\gamma$} : A\rightarrow A be the translation by  $\gamma$ . Consider the set

 I_{f_{ $\gamma$}}, v(0)=\{i\in \mathbb{Z}_{>0}|f_{ $\gamma$}^{i}(0)=i $\gamma$\in V(\mathbb{C})\}\subset \mathbb{Z}_{>0}.
Let  $\Gamma$ be the group of  A() generated by  $\gamma$ . If  I_{f_{ $\gamma$}V}(0) is infinite, then Theorem 2.16

implies that V contains the translate of an abelian subvariety of dimension \geq 1 by an

element of  $\gamma$ . Denis [15] considers an analogue of this problem for a morphism of \mathbb{P}^{N}.

Motivated by Faltings�s theorem (MordellLang conjecture), Ghioca and Tucker

asks the following dynamical MordellLang conjecture (cf. [24, 25, 5]).

Conjecture 2.17 (Dynamical MordellLang conjecture due to Ghioca and Tucker).
Let X be a variety defined over \mathbb{C} (not necessarily projective), V a closed subvariety of

X
,

and f : X\rightarrow X a morphism. Let P\in X Consider the set

I_{f^{V}},(P)=\{i\in \mathbb{Z}_{>0}|f^{i}(P)\in V(\mathbb{C})\}\subset \mathbb{Z}_{>0}.

Then I_{f,V}(P) is a union of at most finitely many arithmetic progressions and finitely

many other integers, i.e., there are (k_{1}, \ell_{1}) ,
. . .

, (k_{p}, \ell_{p})\in \mathbb{Z}_{\geq 0}\times \mathbb{Z}_{>0} such that

I_{f^{V}},(P)=\displaystyle \bigcup_{j=1}^{p}\{k_{j}n+\ell_{j}|n\geq 1\}.
BellGhiocaTucker [5] show that, if f is unramified, then the dynamical Mordell‐

Lang conjecture is true.

There is a version of dynamical MordellLang problem in which several morphisms

f_{1} ,
. . .

, f_{n} : X\rightarrow X are considered. This dynamical MordellLang problem for several

morphisms is not true in general, but there are some cases where this is known to

be true. The following theorem for two morphisms, due to GhiocaTuckerZieve [24,
Theorem 1.1], is one of them.

Theorem 2.18 (GhiocaTuckerZieve [24]). Let f, g\in \mathbb{C}[x] be polynomials of

degree at least 2. Let P, Q\in \mathbb{C} . If

\{f^{k}(P)|k\geq 1\}\cap\{g^{k}(Q)|k\geq 1\}
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is innite, then there exists positive integers m and n such that f^{m}=g^{n}.

§2.5. Uniform boundedness conjecture

Let K be a number field, and f : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N} a morphism of (algebraic) degree
d\geq 2 over K . Recall that a preperiodic point is nothing but a point with zero canonical

height. Northcott�s finiteness property (Proposition 2.7) then implies the following.

Proposition 2.19. The set

\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(f;K) := { x\in \mathbb{P}^{N}(K)|x is a preperiodic point under f }

is finite.

MortonSilverman�s uniform boundedness conjecture concerns \#\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(f;K) .

Conjecture 2.20 (Uniform boundedness conjecture, MortonSilverman [38]). For

all positive integers D, N, d with d\geq 2 ,
there exists a constant  $\kappa$(D, N, d) depending

only on D, N, d with the following property: For any number field K with [K : \mathbb{Q}]=D,
and any morphism f : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N} of degree d\geq 2 over K

,
one has

\#\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(f;K)\leq $\kappa$(D, N, d) .

Conjecture 2.20 is considered to be very difficult, because, by Theorem 2.5, it will

imply the corresponding uniform boundedness of torsion points on abelian varieties.

(The case of elliptic curves is celebrated results by Mazur and Merel.)

Poonen [41] has refined the uniform boundedness conjecture for quadratic polyno‐
mials over \mathbb{Q} . For c\in \mathbb{Q} ,

we consider a quadratic polynomial

f_{c}(X)=X^{2}+c.

We still denote by f_{c} its extension to \mathbb{P}^{1} :

f_{c}:\mathbb{P}^{1}\rightarrow \mathbb{P}^{1}, (x_{0}:x_{1})\mapsto(x_{0}^{2}+cx_{1}^{2}:x_{1}^{2}) .

Let x\in \mathbb{P}^{1} () be a periodic point under f_{c} . The exact period of x is the smallest

positive integer m with f_{c}^{m}(x)=x.

Conjecture 2.21 (Quardratic polynomials over \mathbb{Q} , refined by Poonen). For any

c\in \mathbb{Q} ,
one has the following.

(a) If x\in \mathbb{P}^{1} () is a periodic point under f_{c} ,
then the exact period of x is at most 3.

(b) \#\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(f_{c};\mathbb{Q})\leq 9.
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Poonen [41] showed that (a) implies (b).

Example 2.22 ([41, p. 17 Let c=-\displaystyle \frac{29}{16} and consider f_{-\frac{29}{16}}(X)=X^{2}-\displaystyle \frac{29}{16}.
Then we have the following figure. This example shows that the conditions (a) and (b)
are optimal.

We list some results related to the uniform boundedness conjecture for quadratic

polynomials over \mathbb{Q}.

Theorem 2.23 (Morton, FlynnPoonenSchaefer, Stoll, Benedetto, . . . ). Let  c\in

\mathbb{Q}, f_{c}:\mathbb{P}^{1}\rightarrow \mathbb{P}^{1} be the morphism dened by (x_{0}:x_{1})\mapsto(x_{0}^{2}+cx_{1}^{2} : x_{1}^{2}) ,
and x\in \mathbb{P}^{1} ()

a periodic point under f_{c}.

(a) The exact period of x is not 4 (Morton [37]).

(b) The exact period of x is not 5 (FlynnPoonenSchaefer [20]).

(c) Assuming the Birch and Swinnerton‐Dyer conjecture for the Jacobian of a certain

curve. Then the exact period of x is not 6 (Stoll [52]).

(d) Let s be the number of primes of bad reduction of f_{c} . Then \#\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(f_{c};\mathbb{Q})=
O(s\log s) (Benedetto [8]).

Both FlynnPoonenSchaefer�s proof and Stoll�s proof use Chabauty�s method.

Benedetto�s proof is based on careful analysis of the p‐adic filled‐in Julia sets.

§2.6. Other dynamical systems

There are interesting dynamical systems (X, f) that do not fall in polarized dy‐
namical systems. For example, some arithmetic properties are studied for the following
classes.

\bullet Certain K3 surfaces with two involutions (Silverman [48]).
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\bullet  X is a smooth projective surface and f is an automorphism of positive topological

entropy (Kawaguchi [30]).

\bullet Certain automorphisms of \mathrm{A}^{N} (Silverman [49], Denis [16], Marcello [34, 35], Kawaguchi

[29, 31], Lee [33]).

§3. Dynamical viewpoint

In this section, we would like to touch on more dynamical aspects of algebraic and

arithmetic dynamics. We restrict ourselves to morphisms of \mathbb{P}^{N} . In Subsection 3.1,
we recall some basic properties of complex dynamics for later comparison. In Subsec‐

tions 3.2 and 3.3, we present some results on non‐Archimedean dynamics over \mathbb{C}_{p} and

on Berkovich spaces. For details on complex dynamics, we refer the reader, for example,
to Milnor [36] (in dimension one) and Sibony [47] (in higher dimension). For details

on dynamics on Berkovich \mathrm{P}^{1}
,

we refer the reader, for example, to the recent book of

BakerRumely [4].

§3.1. The case \mathbb{C}

For x= (x0, . . . , x_{N})\in \mathbb{C}^{N+1} ,
we set \Vert x\Vert=\Vert x\Vert_{\infty}:=\sqrt{|x_{0}|_{\infty}^{2}++|x_{N}|_{\infty}^{2}} . For

x= (x_{0} :. . . : x_{N}) , y=(y_{0} :. . . : y_{N})\in \mathbb{P}^{N} the chordal metric on \mathbb{P}^{N}() is defined

by

 $\rho$(x, y)=\displaystyle \frac{\max_{i<j}\{|x_{i}y_{j}-x_{j}y_{i}|_{\infty}\}}{||x||_{\infty}\Vert y\Vert_{\infty}}.
Here, by slight abuse of notation, we write the same x= (x0, . . . , x_{N}) for a point in

\mathbb{C}^{N+1} satisfying x= (x_{0} :. . . : x_{N})\in \mathbb{P}^{N}

Fatou and Julia sets

Let f : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N} be a morphism over \mathbb{C} , and let x= (x0:. . . : x_{N})\in \mathbb{P}^{N}() . We

say that f is equicontinuous at x if the family \{f^{n}\}_{n\geq 1} is equicontinuous at x :

\forall $\epsilon$>0\exists $\delta$>0\forall y\in \mathbb{P}^{N}(\mathbb{C})\forall n\in \mathbb{N}( $\rho$(x, y)< $\delta$\rightarrow $\rho$(f^{n}(x), f^{n}(y))< $\epsilon$) .

Denition 3.1 (Fatou and Julia sets). The Fatou set \mathcal{F}(f) is the maximal open

subset of \mathbb{P}^{N}() on which f is equicontinuous. The Julia set \mathcal{J}(f) is the complement
of \mathcal{F}(f) in \mathbb{P}^{N}() .

The Julia set of f(X)=X^{2} is the unit circle, but the Julia sets are quite compli‐
cated in general. See Figure 1 for the Julia set for some quadratic polynomials (drawn
by H. Inou).

We collect some basic facts on Julia and Fatou sets. For a morphism f : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N}

of degree d\geq 2 over \mathbb{C} , the followings are known.
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Figure 1. The Julia set of f_{c}(X)=X^{2}+c . The top‐left figure is when c=\displaystyle \frac{-21}{16} . The

top‐right figure is when c=\displaystyle \frac{1}{4} . The bottom figure is when c=\displaystyle \frac{-29}{16}.

\bullet The Julia set is always nonempty: \mathcal{J}(f)\neq\emptyset.

\bullet The Fatou set can be empty: for a certain  f, \mathcal{F}(f)=\emptyset.

Suppose now that N=1
,

and let x\in \mathbb{P}^{1} () be a periodic point under f : \mathbb{P}^{1}\rightarrow \mathbb{P}^{1}

with exact period n . Then x is said to be repelling if |(f^{n})'(x)|_{\infty}>1 . The followings
are known.

\bullet Except for finitely many periodic points, periodic points are repelling.
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\bullet \overline{\{\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\}}=\mathcal{J}(f) . (Here \overline{A} denotes the closure of A. )

We also recall Montel�s theorem, which is useful when studying f : \mathbb{P}^{1}\rightarrow \mathbb{P}^{1}.

Theorem 3.2 (Montel�s theorem). Let f : \mathbb{P}^{1}\rightarrow \mathbb{P}^{1} be a morphism of degree
d\geq 2 over \mathbb{C} . Let U be an open set of \mathbb{P}^{1} () . If \displaystyle \bigcup_{n\geq 1}f^{n}(U) omits at least three points,
then U\subset \mathcal{F}(f) .

Green function

Let f= (F_{0} :. . . : F_{N}) : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N} be a morphism of degree d\geq 2 over \mathbb{C} . We

set F=(F_{0}, \cdots, F_{N}) : \mathrm{A}^{N+1}\rightarrow \mathrm{A}^{N+1} and call a lift of f . Given f ,
a lift F of f is

determined up to a nonzero constant.

For x=(x_{0}, \ldots, x_{N})\in \mathbb{C}^{N+1} ,
the Green function is defined by

G_{F}:\displaystyle \mathbb{C}^{N+1}\rightarrow \mathbb{R}, G_{F}(x)=\lim_{n\rightarrow\infty}\frac{1}{d^{n}}\log\Vert F^{n}(x)\Vert_{\infty}.
We set  g_{F}=G_{F}-\log\Vert \Vert_{\infty} . Then g_{F} is seen as a function on \mathbb{P}^{N}

The construction of Green functions resembles those of canonical heights and canon‐

ical metrics. Indeed, fixing an isomorphism  $\alpha$ : \mathcal{O}(d)\simeq f^{*}\mathcal{O}(1) amounts to choosing a

lift F of f . Then one has \log\Vert \Vert_{f}(x)=-g_{F}(x) .

The Green current T_{f} for f is defined by T_{f}=dd^{c}(2g_{F})=c_{1}(\mathcal{O}(1),\overline{||\Vert}_{f}) . The

canonical measure $\mu$_{f} is nothing but $\mu$_{f}:=c_{1} (\mathcal{O}(1), \Vert \Vert_{f})^{N}=\wedge^{N}T_{f}.
Theorem 3.3 (cf. [54], [47, Théorème 1.6.5]). \mathcal{J}(f)=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(T) . In other words,

\mathcal{F}(f)= { x\in \mathbb{P}^{N} () |g_{F} is pluri‐harmonic at x }.

§3.2. The case \mathbb{C}_{p}

Now we consider non‐Archimedean dynamics over \mathbb{C}_{p} . For x= (x0, . . . , x_{N})\in
\mathbb{C}_{p}^{N+1} ,

we set \displaystyle \Vert x\Vert_{p}:=\max\{|x_{0}|_{p}, . . . , |x_{N}|_{p}\} . For x= (x_{0} :. . . : x_{N}) , y=(y_{0} :. . . :

y_{N})\in \mathbb{P}^{N} the chordal metric on \mathbb{P}^{N}() is defined by

 $\rho$(x, y)=\displaystyle \frac{\max_{i<j}\{|x_{i}y_{j}-x_{j}y_{i}|_{p}\}}{\Vert x||_{p}\Vert y\Vert_{p}}.
Here, by slight abuse of notation, we write the same x= (x0, . . . , x_{N}) for a point in

\mathbb{C}_{p}^{N+1} satisfying x= (x_{0} :. . . : x_{N})\in \mathbb{P}^{N}

Fatou and Julia sets

One is interested in how similar (or how different) are dynamics over \mathbb{C} and dy‐
namics over \mathbb{C}_{p}.
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Denition 3.4. The equicontinuous locus \mathcal{F}(f) is the maximal open subset of

\mathbb{P}^{N}() on which f is equicontinuous (with respect to the chordal metric). The non‐

equicontinuous locus \mathcal{J}(f) is the complement of \mathcal{F}(f) in \mathbb{P}^{N}() .

The loci \mathcal{F}(f) and \mathcal{J}(f) correspond to Fatou and Julia sets over \mathbb{C} . On Berkovich

\mathrm{P}^{1}
,

there are other definitions of Fatou and Julia sets (cf. [4]). Here, for clarity, we call

\mathcal{F}(f) the equicontinuous locus instead of the Fatou set, and similarly for \mathcal{J}(f) .

Let us consider corresponding properties of \mathcal{F}(f) and \mathcal{J}(f) over \mathbb{C}_{p} . For a morphism

f : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N} of degree d\geq 2 over \mathbb{C}_{p} ,
the followings are known.

\bullet \mathcal{F}(f)\neq\emptyset.

\bullet For a certain  f, \mathcal{J}(f)=\emptyset.

Compared with \mathbb{C} , these are exactly the opposite. However, if we work on Berkovich

\mathrm{P}^{1}, \mathcal{J}(f) is always nonempty.

Suppose now that N=1
,

and let f : \mathbb{P}^{1}\rightarrow \mathbb{P}^{1} be a morphism of degree d\geq 2

over \mathbb{C}_{p} . let x\in \mathbb{P}^{1} () be a periodic point with exact period n . Then x is said to be

repelling if |(f^{n})'(x)|_{p}>1.

Theorem 3.5 (Bézivin [9]). If there is at least one repelling periodic point, then

there are innitely many repelling periodic points, and

\overline{\{repelling}periodic point} =\mathcal{J}(f) .

Conjecture 3.6 (Hsia [28, Conjecture 4.3]). Does \overline{\{\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\}} =

\mathcal{J}(f) hold without any assumption? By Theorem 3.5, this means that, if \mathcal{J}(f)\neq\emptyset,
then does there exist at least one repelling periodic point?

A Montel type theorem over \mathbb{C}_{p} is obtained by Hsia.

Theorem 3.7 (Hsia [28, Theorem 2.4]). Let \overline{D}(x, r)=\{y\in \mathbb{P}^{1} () | $\rho$(x, y)\leq
 r\}. If \displaystyle \bigcup_{n\geq 1}f^{n}(\overline{D}(x, r)) omits at least two points, then \overline{D}(x, r)\subset \mathcal{F}(f) .

Wandering domains in \mathbb{P}^{1}()
For a polynomial map f over \mathbb{C} , a deep result of Sullivan [51] is that there is no

wandering domain, i.e., every Fatou component is preperiodic under f.
Benedetto [7] showed that there does exist a wandering domain if a polynomial

map f is defined over \mathbb{C}_{p} . He also showed that, if f is defined over \mathbb{Q}_{p} ,
then with some

conditions on f there is no wandering domain (see [6]).

Green function

Let f= (F_{0} :. . . : F_{N}) : \mathbb{P}^{N}\rightarrow \mathbb{P}^{N} be a morphism of degree d\geq 2 over \mathbb{C}_{p} . Let

F=(F_{0}, \cdots, F_{N}) : \mathrm{A}^{N+1}\rightarrow \mathrm{A}^{N+1} be alift of f.
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For x=(x_{0}, \ldots, x_{N})\in \mathbb{C}_{p}^{N+1} ,
the p ‐adic Green function is defined by

G_{F}:\displaystyle \mathbb{C}_{p}^{N+1}\rightarrow \mathbb{R}, G_{F}(x)=\lim\underline{1}\log\Vert F^{n}(x)\Vert_{p}.n\rightarrow\infty d^{n}

We set  g_{F}=G_{F}-\log\Vert \Vert_{p} . Then g_{F} is seen as a function on \mathbb{P}^{N}() .

Theorem 3.8 ([32]). \mathcal{F}(f)= { x\in \mathbb{P}^{N}() |g_{F} is locally constant at x }.

§3.3. Berkovich space

The field \mathbb{C}_{p} is complete and algebraically closed, but is totally disconnected and

not locally compact. People now prefer to work over Berkovich spaces (especially in

dimension 1). Dynamical properties on Berkovich \mathrm{P}^{1} are studied deeply by Rivera‐

Letelier in a series of papers (cf. [43, 44, 45, 46]). See also [4].
In this note, let us only mention equidistribution of small height points on Berkovich

spaces. Let (X, f, L) be a polarized dynamical system over a number field K . Let v be

a finite place of K
,

and let X_{\mathbb{C}_{v}}^{an} denote the Berkovich space associated to X.

Chambert‐Loir [13] has defined the canonical measure for f on X_{\mathbb{C}_{v}}^{an} . Yuan [56]
proved equidistribution of small height points in this context.

Let X=\mathbb{P}^{1} . Prior to [56], equidistribution of small height points on Berkovich \mathrm{P}^{1}

is obtained by Chambert‐Loir [13], BakerRumely [3] and FavreRivera‐Letelier [19].

§4. Interactions between arithmetic dynamics and complex dynamics

Some problems in complex dynamics are solved by passing to \mathbb{C}_{p} and Berkovich

spaces. Let us just mention a few topics. Each topic is about a statement over \mathbb{C} , but

its proof uses non‐Archimedean dynamics.

\bullet DeMarcoRumely [14] obtain the transfinite diameter of the filled‐in Julia set of a

regular polynomial map  F : \mathbb{C}^{N}\rightarrow \mathbb{C}^{N} in terms of the resultant of F.

\bullet Let (X, f, L) and (X, g, L) be polarized dynamical systems over \mathbb{C} (or any field of

characteristic zero). Yuan and Zhang [57] showed that

(4.1) \mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(f)=\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(g)\Leftrightarrow \mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(f)\cap \mathrm{P}\mathrm{r}\mathrm{e}\mathrm{P}\mathrm{e}\mathrm{r}(g) is Zariski dense in X.

When X=\mathbb{P}^{1} and f, g are defined over a number field, PetscheSzpiroTucker [40]
showed among other things that the above conditions are also equivalent to the

condition that the canonical heights of f and g are the same.

\bullet BakerDeMarco [2] showed that for any fixed  a, b\in \mathbb{C} and d\geq 2 ,
the set of complex

numbers c for which both a and b are preperiodic for z^{d}+c is infinite if and only if

a^{d}=b^{d}
, answering a question of Zannier in the affirmative. They also showed (4.1)

independently when X=\mathbb{P}^{1}.
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