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Takagi�s Class Field Theory
‐ From where? and to where? ‐

By

Katsuya MIYAKE *

§1. Introduction

After the publication of his doctoral thesis [T‐1903] in 1903, Teiji Takagi (1875‐
1960) had not published any academic papers until1914 when World War I started. In

the year he began his own investigation on class field theory. The reason was to stay
in the front line of mathematics still �after the cessation of scientific exchange between

Japan and Europe owing to World War I�; see [T‐1942, Appendix I Reminiscences and

Perspectives, pp.195196] or the quotation below from the English translation [T‐1973,
p.360] by Iyanaga.

The last important scientific message he received at the time from Europe should

be Fueter�s paper [Fu‐1914] which contained a remarkable result on Kronecker�s Ju‐

gendtraum (Kronecker�s dream in his young days):

Kronecker�s Jugendtraum The roots of an Abelian equation over an imagi‐

nary quadratic field k are contained in an extension field of k generated by the singular
moduli of elliptic functions with complex multiplication in k and values of such elliptic
functions at division points of their periods.

(See Subsections 3.2 and 3.3 in Section 3.)
K. Fueter treated Abelian extensions of k of odd degrees.

Theorem 1.1 (Fueter). Every abelian extension of an imaginary quadratic num‐

ber field k with an odd degree is contained in an extension of k generated by suitable

roots of unity and the singular moduli of elliptic functions with complex multiplication
in k.
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(See Subsection 6.2 in Section 6.)
It should be noted that Takagi proved Kronecker�s Jugendtraum for the Gaussian

field \mathbb{Q}(\sqrt{-1}) in his doctoral thesis. (See the next section.)
From 1897 to 98, H. Weber published a series of papers [Wb‐1897] to introduce his

concepts of congruence ideal class groups and congruence class fields, and proved the

following result:

Theorem 1.2 (Weber). Let k be an imaginary quadratic field, and  $\varphi$ an elliptic

function with complex multiplication in  k . Then the singular modulus of  $\varphi$ and the

values of  $\varphi$ at division points of its periods by an integral ideal \mathfrak{m} of k generate an

Abelian extension of k whose Galois group is isomorphic to the congruence ideal class

group modulo \mathfrak{m} of k.

(See Subsection 5.1 in Section 5.)
Hence to examine Kronecker�s Jugendtraum for k well farther, one should seek

some good criteria for an Abelian extension of k to be a congruence class field of k.

In 1897, apart from Weber�s works, D. Hilbert published a big scale report [Hi‐1897]
(frequently quoted as �the Bericht�) on the theory of algebraic numbers. It contained a

systematic treatment of Kummer extensions. In its §58, we see the first idea of his class

fields. The title is

§58. Der Fundamentalsatz von den relativ‐zyklischen Körpern mit der Relativdifferente

1. Die Bezeichnung dieser Körper als Klassenkörper. (The fundamental theorem of

relative‐cyclic extensions with relative difference 1. The characterization of these fields

as class fields.)

Then he developed his theory of relative quadratic number fields in [Hi‐1898, Hi‐1899b],
and announced a refined concept of his class fields by [Hi‐1899a] in 1899. (See Subsec‐

tion 5.2 below.) These works of Hilbert should have been very influential at least over

Takagi who wrote the following comment on his class field theory in the preface of his

textbook [T‐1948]:

The theory of Kummer extensions of the Bericht was, as Hilbert states, the

most advanced achievement at the time, although we have moved far ahead

now. It was Hilbert himself who set up in flames the general theory of Abelian

extensions with his penetrating insight into the theory of Kummer extensions.

His special class field theory was the first step of his program. Far beyond any

perspectives at the time, however, the general class field theory is established

and states that every Abelian extension is a class field. The theory of Abelian

extensions has now come to the end of its first stage. (English translation from
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Miyake [Mi‐2007, p.162163])

From the words of Takagi, �Far beyond any perspectives at the time, however,� it

seems probable that Takagi started his own investigation without any full scale overview

on his class field theory. Instead, he would have tried to find a good criterion for a cyclic
extension of odd prime degree over an algebraic number field to be a congruence class

field. In [T‐1942, Appendix I Reminiscences and Perspectives, pp.195196] he stated

the following comment:

Hilbert considered only unramified class fields. From the standpoint of the

theory of algebraic functions which are defined by Riemann surfaces, it is natu‐

ral to limit considerations to unramified cases. I do not know precisely whether

Hilbert himself stuck to this constraint, but anyway what he had written in‐

duced me to think so. However, after the cessation of scientific exchange be‐

tween Japan and Europe owing to World War I, [I started my own investigation,]
was freed from that idea and [soon found, that every Abelian exten‐

sion might be a class field, if the latter is not limited to the unramified case. I

thought at first this could not be true. Were this to be false, the idea should

contain some error. I tried my best to find this error. At that period, I almost

suffered from a nervous breakdown. I dreamt often that I had resolved the

question. I woke up and tried to recover the reasoning, but in vain. I made my

utmost effort to find a counterexamp le (English translation is from [T‐1973,
p.360] with [supplemented translation] from the original Japanese text added

by the author.)

In the next section, we review Iwasawa�s article [T‐1973, Appendix 1] or [Iw‐1990]
on Takagi�s main works [T‐1903, T‐1920a] and [T‐1922].

In Section 3, we pick up two keywords (reciprocity law� and �Kronecker�s Jugend‐

traum�; each of them will be discussed in Subsections 3.1 and 3.2; in the former, we

also review the process, how the theory of algebraic numbers has been formulated; in

the latter, Kronecker�s Jugendtraum will be discussed in connection with complex mul‐

tiplication of elliptic functions; in the last Susection 3.3, we prepared a mathematical

review on complex multiplication, especially to show its effect on arithmetic of imagi‐

nary quadratic number field, for the convenience of readers who are not much familiar

with it.

Then a brief note on analytic method created by Dirichlet will be commented in

Section 4.

In Section 5, the independent contributions of Weber and Hilbert on concepts of
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class fields are investigated in two subsections. Then the works of Ph. Furtwängler and

K. Fueter will be reviewed in the succeeding Section 6.

Section 7 is a short comment on Takagi�s works in the historical context.

The main theme of Section 8 is the general reciprocity law of E. Artin. Subsection

8.1 is for Tschebotareff�s Density Theorem; it is very important in its content, and

further the method of the proof gave an essential effect on the proof of Artin�s general

reciprocity law. Then follows Subsection 8.2 where Artin�s general reciprocity law is

discussed. It reduced the Principal Ideal Theorem to a proposition on the transfer of a

metabelian group to its commutator subgroup; and Furtwängler proved it in [Fw‐1930].
These are discussed in the last Subsection 8.3 of this section.

In the last Section 9 of this article, some relevant topics will be discussed. Subsec‐

tion 9.1 contains comments on local class field theory and algebraic proof of class field

theory. The second and the third subsections are devoted to �idele� and �idele version�

of the main theorem of class field theory.
The final Subsection 9.4 is a glimpse of non‐Abelian world, especially on p‐extensions

of algebraic number fields, the gate of which was widely opened by Shafarevich and Iwa‐

sawa. To close this paper, we add the most recent and brilliant results of M. Ozaki in

[Oz‐2009] on the Galois groups of the maximal unramified p‐extensions of algebraic num‐

ber fields. He showed that an arbitrary finite p‐group is realized as the Galois group

of the maximal unramied p‐extension of an algebraic number field, and the similar

proposition of pro‐p‐groups with countably many generators (Theorems 9.3 and 9.4 in

Subsection 9.4).

§2. From Iwasawa�s article on Takagi�s major works

Kenkichi Iwasawa reviewed Takagi�s works [T‐1903, T‐1920a, T‐1922] in a clear

way in his article, �On papers of Takagi in number theory� [Iw‐1990] (or [T‐1973, 2nd

edit., Appendix I, pp.342351]).
In its Section 1, Iwasawa gives a brief description of Takagi�s thesis [T‐1903], Über

die im Bereiche der rationalen komplexen Zahlen Abelscher Zahlkörper. (On Abelian

number fields over the rational complex number field.)

In a paper [22] [= [Kr‐1853] in our bibliography] of 1853, Kronecker an‐

nounced that every abelian extension of the rational field \mathbb{Q} is a subfield of a

cyclotomic field. He also stated that all abelian extensions of the quadratic field

\mathbb{Q}(\sqrt{-1}) can be obtained similarly by dividing the lemniscate instead of the cir‐

cle. This is the origin of what is now called Kronecker�s Jugendtraum, namely,
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his conjecture that all abelian extensions of an imaginary quadratic field k can

be generated by the singular values of the elliptic modular function j(u) and

the division values of elliptic functions which have complex multiplication in

k . In this thesis 6 [= [T‐1903] in our bibliography], Takagi proved Kronecker�s

statement on \mathbb{Q}(\sqrt{-1}) .

And Iwasawa explains the method of Takagi. Here we extract the technical essence to

cast a glance at the idea.

Since the class number of this specific quadratic number field is equal to 1, Takagi
could use the method of Hilbert to prove Kronecker‐Weber Theorem (p.135 in Subsec‐

tion 3.2). Takagi constructed two extensions L(p^{h},  $\mu$) and M(p^{h}) of the quadratic field

for every power of a prime number p by evaluating Jacobi�s elliptic function sn(u) and

Weierstrass� function \wp(u)=su(u)^{-2};L(p^{h},  $\mu$) is cyclic of degree p^{h} and ramifies only
at the prime element  $\mu$ with \mathrm{N}( $\mu$)\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} p^{h} or \mathrm{m}\mathrm{o}\mathrm{d} 2^{h+2} if p=2;M(p^{h}) is an

abelian extension of type p^{h}\times p^{h} and ramifies only at the prime factors of p . Then

Takagi generalized the method by which Hilbert proved Kronecker‐Weber Theorem in

[Hi‐1896] utilizing so‐called Hilbert Theory of [Hi‐1894]. (Here Hilbert used values of

exponential function at division points of the period 2 $\pi$\sqrt{-1} : $\zeta$_{p^{h}}=e^{2 $\pi$\sqrt{-1}/p^{h}}. )

In Section 2, Iwasawa reviewed Weber�s works [Wb‐1897] on congruence ideal

groups and class fields.

Let k be an arbitrary algebraic number field k of finite degree, \mathfrak{m} an integral ideal

in k and I_{\mathfrak{m}} the group of those ideals of k which are relatively prime to \mathfrak{m} . Weber

defined a congruence ideal group H_{\mathfrak{m}}\mathrm{m}\mathrm{o}\mathrm{d} \mathfrak{m} as a subgroup of I_{\mathfrak{m}} which contains the

Strahl subgroup S_{\mathfrak{m}}\mathrm{m}\mathrm{o}\mathrm{d} \mathfrak{m},

S_{\mathfrak{m}}:=\{( $\xi$)| $\xi$\in k,  $\xi$\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} \mathfrak{m}\}

where (  $\xi$ ) is the principal ideal generated by  $\xi$\in K ; hence we have a series of abelian

groups

S_{\mathfrak{m}}\subseteq H_{\mathfrak{m}}\subseteq I_{\mathfrak{m}} ;

the indices of the subgroups of I_{\mathfrak{m}} are finite; the quotient group I_{\mathfrak{m}}/H_{\mathfrak{m}} is called a

congruence ideal class group. Suppose that such a group I_{\mathfrak{m}}/H_{\mathfrak{m}} is given. Weber called

a finite extension K of k a class field over k for I_{\mathfrak{m}}/H_{\mathfrak{m}} if a prime ideal \mathfrak{p} of absolute

degree 1 in I_{\mathfrak{m}} is completely decomposed in K exactly when \mathfrak{p} belongs to the subgroup

H_{\mathfrak{m}} . Following the idea of Dirichlet, Weber then proved by using analytic properties of

L‐series that

[I_{\mathfrak{m}}:H_{\mathfrak{m}}]\leq[K:k]
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for such a class field K.

Iwasawa further states, �Although Weber did not prove the existence of a class

field K over k for a given congruence ideal class group I_{\mathfrak{m}}/H_{\mathfrak{m}} ,
he showed that if such

K exists, it is unique for I_{\mathfrak{m}}/H_{\mathfrak{m}} and that the existence of K implies the existence

of infinitely many prime ideals of absolute degree 1 in each coset of the factor group

I_{\mathfrak{m}}/H_{\mathfrak{m}} ,
a generalization of the classical theorem of Dirichlet on prime numbers in an

arithmetic progression.� (On Weber�s works, also see Subsection 5.1 below.)
In Section 3, Takagi�s paper [T‐1920a], Über eine Theorie des relativ Abel�schen

Zahlkörpers (On a theory of relative Abelian number fields), on his class field theory is

discussed.

In this paper, Takagi started with a new definition of class fields as follows.

Let K be a finite Galois extension of a number field k with degree [K: k]=n.
For each integral divisor \mathfrak{m} of k

,
the extension K/k defines a congruence ideal

class group I_{\mathfrak{m}}/H_{\mathfrak{m}} in k
,

where H_{\mathfrak{m}} is the subgroup of I_{\mathfrak{m}} generated by S_{\mathfrak{m}}
and by all norms N_{K/k}(A) of ideals A of K

, prime to \mathfrak{m}. \cdots In fact, there

exists an integral divisor \mathfrak{f} such that [if \mathfrak{m} is a multiple of \mathfrak{f} , then I_{\mathfrak{m}}/H_{\mathfrak{m}}
is cannonically identified with I_{\mathrm{f}}/H_{\mathrm{f}} ]. The group C_{K,k}(=C[=I_{\mathrm{f}}/H])
is called the ideal class group of k

,
associated with the Galois extension K/k,

and the integral divisor \mathfrak{f} is called the conductor of K/k . Let h be the order of

C_{K,k}:h=[C:1] . Then we obtain the so‐called second fundamental inequality
of class field theory:

h\leq n=[K:k].

Now, Takagi called the Galois extension K of k a class field over k when the

equality
h=n

holds for the h and n above. If \mathfrak{m} is an integral divisor of k such that C_{K,k}=
I_{\mathfrak{m}}/H_{\mathfrak{m}} ,

the above equality means [I_{\mathfrak{m}} : H_{\mathfrak{m}}]=[K:k] ,
and K is then called a

class field over k for the ideal class group I_{\mathfrak{m}}/H_{\mathfrak{m}}.

Then Iwasawa gave a list of the fundamental results of Takagi [T‐1920a].

Theorem 2.1. A finite Galois extension K of a number field k is a class field
over k if and only if K/k is an Abelian extension.

Theorem 2.2 (Existence Theorem). For every congruence ideal group I_{\mathfrak{m}}/H_{\mathfrak{m}}
of k

,
there exists a class field K over k for I_{\mathfrak{m}}/H_{\mathfrak{m}}.

As a consequence of the existence, analytic method implies that each coset of I_{\mathfrak{m}}/H_{\mathfrak{m}} of k

contains infinitely many prime ideals of k with absolute degree 1. This is a generalization
of Dirichlet�s Prime Number Theorem for arithmetic progressions.
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Theorem 2.3 (Uniqueness Theorem). Let K and K' be class fields over k and

let C_{K,k}=I_{\mathfrak{m}}/H_{\mathfrak{m}} and C_{K',k}=I_{\mathfrak{m}}/H_{\mathfrak{m}}' for a divisor \mathfrak{m} which is divisible by both of the

conductors of K/k and K'/k . Then k\subseteq K'\subseteq K if and only if H_{\mathfrak{m}}\subseteq H_{\mathfrak{m}}'\subseteq I_{\mathfrak{m}} . In

particular, the class field K is unique for the given ideal class group I_{\mathfrak{m}}/H_{\mathfrak{m}}.

Theorem 2.4 (Isomorphism Theorem). The Galois group of a class field K/k
is isomorphic to the ideal class group C_{K,k} associated with K/k.

Note that this Isomorphism Theorem follows from the first three theorems and the

Fundamental Theorem of Abelian Groups; indeed, if K/k is a cyclic extension then

the ideal class group C_{K,k} has to be cyclic because K/k can not contain any (l, l) ‐type
subfields over k for prime l . Hence the equality h=n implies Isomorphism Theorem

for the cyclic case. The canonical isomorphism of the two groups of the theorem will be

given by Artin�s General Reciprocity Law (cf. Subsection 8.2).

Theorem 2.5 (Conductor Theorem). A prime divisor of k is ramied in a class

field K/k if and only if it divides the conductor \mathfrak{f} of K/k.

Theorem 2.6 (Decomposition Theorem). In a class field K/k ,
the relative de‐

gree of an unramied prime ideal \mathfrak{p} of k is equal to the order of the class of \mathfrak{p} in the

ideal class group C_{K,k}=I_{\mathrm{f}}/H_{\mathrm{f}}.

Iwasawa states further,

In Takagi�s proof of those theorems in 13 [= [T‐1920a] in our bibliography]
the key steps were the proof of the following two statements:

a) Let l be an odd prime and let K be a cyclic extension of degree l over k

with discriminant \mathfrak{d}=\mathfrak{f}^{l-1} . Then K is a class field over k and its conductor is

a factor of the ideal \mathfrak{f} of k.

b) Suppose that the ground field k contains a primitive l‐th root of unity, l being
an odd prime as above. Then, for each congruence ideal class group I_{\mathfrak{m}}/H_{\mathfrak{m}} in

k with order l
,

there exists a cyclic extension K of degree l over k such that K

is a class field for the given I_{\mathfrak{m}}/H_{\mathfrak{m}}.

The proof of a) was carried out by computing (in modern terminology) the

orders of the cohomology groups of the cyclic Galois group of K/k , acting on

various abelian groups such as the unit group and the ideal class group of K.

The computation gave the first fundamental inequality of class field theory,

h\geq n,
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for the extension K/k ,
and hence the equality h=n . In proving h\geq n , Takagi

also obtained the Norm Theorem for K/k which states that an element  $\alpha$ of  k is

the norm of an element of K if and only if  $\alpha$ is a norm for every local extension

associated with  K/k . For the proof of b), Takagi fixed an integral divisor \mathfrak{m} of

k and counted the number N of congruence ideal class group I_{\mathfrak{m}}/H_{\mathfrak{m}} in k with

order [I_{\mathfrak{m}} : H_{\mathfrak{m}}]=l . On the other hand, using a) and the theory of Kummer

extensions of Hilbert [15] [= [Hi‐1897] in our bibliography], he showed that

there exist at least N class fields K of degree l over k with conductor dividing
\mathfrak{m} . This of course proved b). At the same time, the argument also yielded that

the ideal \mathfrak{f} is actually the conductor of the extension K/k in a).

In Section 4, Iwasawa explains the last chapter of [T‐1920a] which is devoted to

the proof of Kronecker�s Jugendtraum.
In Section 5, he gave a comment of Takagi�s another major paper [T‐1922], Über das

Reciprocitätsgesetz in einem beliebigen algebraischen Zahlkörper. (On the reciprocity
law in an arbitrary algebraic number field.) In this paper, Takagi discussed the reci‐

procity laws of the power residue symbol and the norm residue symbol following Hilbert

and Furtwängler; (see Subsections 5.2 and 6.1); he could much simplified Furtwängler�s

arguments by using his class field theory, although he handled only the case of a prime

exponent l.

§3. Two key words

As we saw in the previous section, there were two key words behind the tide towards

Takagi�s class field theory; namely,

(1) reciprocity law, and

(2) Kronecker�s Jugendtraum.

The latter more directly affected class field theory than the former. The former, however,

produced the main stream which created the theory of algebraic numbers and grew it

up to Takagi‐Artin class field theory.

§3.1. Reciprocity Law and Theory of Algebraic Numbers

The quadratic reciprocity law seems to be independently found by three mathe‐

maticians: L. Euler [Eu‐1744], A.‐M. Legendre [Le‐1785] and C. F. Gauss [Ga‐1801].
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It was, however, Gauss who was most influential. The work [Eu‐1744] of Euler was

published in 1744, but was not well known until it was pointed out by Kronecker in

[Kr‐1875] much later in 1875.

The main theme of the book Disquisitiones Arithmeticae [Ga‐1801] of Gauss is

actually the reciprocity law. In [F‐1994] Günther Frei presented his opinion that even the

cyclotomy of Chapter 7 was prepared as an introduction to the planned but unpublished

Chapter [Ga‐1801] for the theory of finite fields which should have been prepared for

investigation into higher power residue reciprocity law. (This article [\mathrm{G}\mathrm{a}-1801^{*}] was

posthumously published in 1863; hence E. Galois did not see it when he wrote his

article [Gl‐1846] on finite fields in 1846.) Twenty seven years had passed when Gauss

wrote his first paper [Ga‐1828] on the theory of biquadric residue in 1828; the second

paper [Ga‐1832] appeared four more years later. In these papers, he introduced a new

concept of integers of form m+n\sqrt{-1}, (m, n\in \mathbb{Z}) ,
showed the Fundamental Theorem

of Arithmetic for them, and his formulation of the biquadratic reciproci ty law. He did

not, however, published any proofs to it.

Frei stated in [F‐1994], �Jacobi was the first to give a statement of the Cubic

Reciprocity Law in print, \cdots (see [[Ja‐1827] in our bibliography]).�
Proofs of cubic and biquadratic reciprocity laws were published in 1844 by Ferdi‐

nand Gotthold Eisenstein in [Ei‐1844a], [Ei‐1844c] and in [Ei‐1844d]. He also showed

the Fundamental Theorem of Arithmetic for the integers generated by a cubic root of

unity (-1+\sqrt{-3})/2 in [Ei‐1844b].
Then Ernst Eduard Kummer followed the line with a long series of papers [Ku‐1846,

Ku‐1845, Ku‐1847, Ku‐1852, Ku‐1857, Ku‐1856, Ku‐1858, Ku‐1859a, Ku‐1859b] pub‐
lished in the period 184559, and could finally show the l‐th power residue reciprocity
law in the l‐th cyclotomic field for odd prime l in 1859. For the purpose, first he had

to establish the Fundamental Theorem of Arithmetic in the ring \mathbb{Z}[$\zeta$_{l}] of cyclotomic

integers generated by the l‐th root of unity $\zeta$_{l} . There do not exist, however, sufficiently

many (prime elements� in the ring if l\geq 5 . Hence he had to introduce �ideal divisors�,
and developed his full scale theory on them by [Ku‐1847] in 1847. (A gap in this paper

was filled in the paper [Ku‐1856] of himself nine years later in 1856.)
The next stage is the establishment of general theory of algebraic numbers. It may

be worth noting that only one of two quadratic number fields \mathbb{Q}(\sqrt{l}) and \mathbb{Q}(\sqrt{-l}) is

contained in the cyclotomic field \mathbb{Q}($\zeta$_{l}) for an odd prime number l ; indeed, we have

\mathbb{Q}(\sqrt{l^{*}})\subset \mathbb{Q}($\zeta$_{l}) where l^{*} is one of \pm l which satisfies l^{*}\equiv 1 mod4. It was well

understood at the time, furthermore, that arithmetic in both of these quadratic number

fields were closely related to that of binary quadratic forms with discriminants l^{*} and

-l^{*}

P. G. Lejeune Dirichlet presented his unit theorem of algebraic number fields in his
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paper [Di‐1846] in 1846 when Kummer was ready to publish his theory of ideal divisors

for cyclotomic integers by [Ku‐1847]. Dirichlet actually published his results on units

earlier in 1841 as [Di‐1841]; however, the contents appeared in the garment of arithmetic

of norm forms.

It was Richard Dedekind and Leopold Kronecker who followed Kummer to develop

general theories of algebraic numbers. Dedekind was very successful with his concepts

of number fields (Körper), modules (Module), rings of algebraic integers (Ordnung),
and ideals (Ideale) which were developed in the series of appendices [De‐1871, De‐1879,

De‐1893] to the 2nd, 3rd and 4th editions of Dirichlet�s textbook Vorlesungen über

Zahlentheorie (Lectures on Number Theory). Kronecker formulated his divisor theory
around 1860, but published it much later in 1882 ([Kr‐1882]). His method utilized

forms of many variables which seems much influenced by Gauss� second proof of the

Fundamental Theorem of Algebra in [Ga‐1815]. (Cf. A. N. Kolmogorov and A. P.

Yushkevich (edit.) [KY‐1992, Ch. II].)

Note that E. I. Zolotareff also established a divisor theory in a general algebraic
number fields in his paper [Zo‐1880] under a quite different motivation. (Cf. ibid.)

In 1897, Hilbert wrote his report [Hi‐1897] on algebraic numbers. This became a

standard text for the theory of algebraic numbers. Then in the next year, he reported
his results on relative quadratic fields by [Hi‐1898] though its title was (Über die Theorie

der relativ‐Abelschen Zahlkörper� (On the theory of relative Abelian number fields), and

gave, in 1899, the formulation of his unramified class field theory in [Hi‐1899a] whose title

was �Über die Theorie der relativquadratischen Zahlkörper� (On the theory of relative

quadratic number field), however it may oddly sound. His theory of relative quadratic
number fields was fully demonstrated in [Hi‐1899b]; here he introduced quadratic norm

residue symbol and showed its reciprocity law, proved quadratic residue reciprocity law,
and showed the existence of his class field when the class number of the base field was

2 and 4.

Philipp Furtwängler followed Hilbert�s track to show the existence of the class fields

of Hilbert and proved higher power residue reciprocity law for powers of a prime. His

works will be reviewed in Subsection 6.1 below.

§3.2. Complex multiplication of elliptic functions and

Kronecker�s Jugendtraum

Here we start again with Gauss� Disquisitiones Arithmeticae [Ga‐1801]. At the

beginning of Chapter 7 on cyclotomy, he added the following phrase:
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The principles of the theory which we are going to explain actually extend

much farther than we will indicate. For they can be applied not only to circular

functions but just as well to other transcendental functions, e.g. to those which

depend on the integral \displaystyle \int[1/\sqrt{(1-x^{4})}]dx and also to various types of congru‐

ences. Since, however, we are preparing a substantial work on transcendental

functions and since we will treat congruences at length as we continue our dis‐

cussion of arithmetic, we have decided to consider only circular functions here.

And although we could discuss them in all their generality, we reduce them to

the simplest case in the following article, both for the sake of brevity and in

order that the new principles of this theory may be more easily understood.

(From English translation of [Ga‐1801] by Arthur A. Clarke, S.J.)

Then in 1827, Niels Henrik Abel established his theory of elliptic functions by the

paper [Ab‐1827], Recherches sur les fonctions elliptiques (Researchs on elliptic func‐

tions).
In the last Section X, Abel showed a basic result on (complex multiplication�

(named by Kronecker [Kr‐1857a]) with explicit examples. Also see his succeeding paper

[Ab‐1828] on the transformation of elliptic functions.

Abel was also interested in algebraic equations which were algebraically solvable;
he analyzed the solvability by radicals and found his criterion ([Ab‐1826, Ab‐1829]) in

the essential case. This is the reason why we call a commutative group an Abelian

group.

Abel used the term �fonctions elliptiques� for elliptic integrals after Legendre; the

latter investigated them in the world of real numbers \mathbb{R} ; but Abel did in the wide world

of complex numbers \mathbb{C} from the beginning, and considered their inverse functions to

find their double periodicity. It was Carl Gustav Jacobi who introduced the term �el‐

liptic integrals� and called the inverse functions of the complex elliptic integrals (elliptic

functions�; see [Ja‐1829a, Ja‐1829b]. He dared propose the change of the term (elliptic
function� which had been used since Legendre�s paper [Le‐1793] of 1793.1

Kronecker was attracted by Abel�s works, and in the article [Kr‐1853], he formulated

Theorem 3.1 (Kronecker‐Weber Theorem). Every abelian extension of the ra‐

tional field \mathbb{Q} is a subeld of a cyclotomic field.

He also stated that all abelian extensions of the quadratic field \mathbb{Q}(\sqrt{-1}) can be obtained

similarly by dividing the lemniscate instead of circle, and mathematically formulated

lM. Takase noticed this change of terminology and pointed out the correspondence between Jacobi

and Legendre in 1829 on the matter; cf. Takase�s article in Japanese in Sûgaku Seminar, Oct.,
(2002), 37‐43, Nihon Hyôronsha, Tokyo.



136 Katsuya MIYAKE

his Jugendtraum (dream in his young days) in [Kr‐1857a, Kr‐1857b, Kr‐1862].

Kronecker�s Jugendtraum. All abelian extensions of an imaginary quadratic
field k can be generated by the singular values of the elliptic modular function j( $\tau$) and

the division values of elliptic functions which have complex multiplication in k.

He used the term (Jugendtraum� much later in 1880 in his letter [Kr‐1880b] to

Dedekind. (He originally put (singular moduli� in place of the singular values of the

elliptic modular function j( $\tau$) of the statement. Here we give this mathematically
refined form.)

It should be noted that Kronecker also suggested

Theorem 3.2 (Principal Ideal Theorem for imaginary quadratic number fields).
Every ideal of an imaginary quadratic field k is represented by a number in the field

generated by the singular values of the elliptic modular function j( $\tau$) corresponding to

elliptic functions which have complex multiplication in k.

§3.3. Mathematical Review on Complex Multiplication

(a) Elliptic Functions

An elliptic function  $\varphi$(z) is a meromorphic function on the whole complex plane \mathbb{C}

which has a pair of independent periods $\omega$_{1} and $\omega$_{2} ; here �independent� means that the

two lines \mathbb{R}$\omega$_{1} and \mathbb{R}$\omega$_{2} are different. We choose the indices so that the imaginary part

of the quotient $\omega$_{1}/$\omega$_{2} is positive. Put  $\Omega$:=\mathbb{Z}$\omega$_{1}+\mathbb{Z}$\omega$_{2} ; this is a free \mathbb{Z}‐module of rank

2; let us call it the module of periods of  $\varphi$ . Then for  $\omega$\in $\Omega$ ,
we have  $\varphi$(z+ $\omega$)= $\varphi$(z) .

Hence  $\varphi$ may be considered as a meromorphic function on the complex torus \mathbb{C}/ $\Omega$ ; this

is a quotient Abelian group of the additive group \mathbb{C} by its discrete subgroup  $\Omega$.

All of those elliptic functions (including constant functions) whose module of pe‐

riods contains  $\Omega$ form an algebraic function field  K_{ $\Omega$} of one variable over \mathbb{C} ; we call it

the elliptic function field with the module of periods  $\Omega$ . Suppose that a \mathbb{Z}‐module  $\Omega$ of

rank 2 in \mathbb{C} is given; then the Weierstrass \wp‐function \wp(z)=\wp( $\Omega$;z) and its derivative

\wp'(z)=\wp'( $\Omega$;z) are given by the series

\displaystyle \wp( $\Omega$;z)=\frac{1}{z^{2}}+\sum_{ $\omega$\in $\Omega$\backslash \{0\}}\{\frac{1}{(z- $\omega$)^{2}}-\frac{1}{$\omega$^{2}}\}, \wp'( $\Omega$;z)=-2\sum_{ $\omega$\in $\Omega$}\frac{1}{(z- $\omega$)^{3}} ;

these two series define meromorphic functions on \mathbb{C} which generate the elliptic function

field K_{ $\Omega$}=\mathbb{C}(\wp(z), \wp'(z)) with a relation

\wp'(z)^{2}=4\wp(z)^{3}-g_{2}\wp(z)-g_{3}, g_{2}, g_{3}\in \mathbb{C}, \triangle:=g_{2}^{3}-27g_{3}^{2}\neq 0.



TAKAGI�S Class Field Theory 137

The coefficients g_{2}=g_{2}( $\Omega$) , g_{3}=g() and hence \triangle=\triangle( $\Omega$) are determined by  $\Omega$ as

Eisenstein series

 g_{2}( $\Omega$)=60 \displaystyle \sum \frac{1}{$\omega$^{4}}, g_{3}( $\Omega$)=140 \sum \frac{1}{$\omega$^{6}}.
 $\omega$\in $\Omega$\backslash \{0\}  $\omega$\in $\Omega$\backslash \{0\}

Note that we have g_{2}( $\lambda \Omega$)=$\lambda$^{-4}g() and g_{3}( $\lambda \Omega$)=$\lambda$^{-6}g_{3}() for  $\lambda$\in \mathbb{C}\backslash \{0\}.

Theorem 3.3. The following three statements are equivalent:

(1) Two elliptic function fields K_{ $\Omega$} and K_{$\Omega$'} are isomorphic over \mathbb{C} as abstract fields;

(2) g_{2}( $\Omega$)^{3}/\triangle( $\Omega$)=g_{2}($\Omega$')^{3}/\triangle($\Omega$') ;

(3) There exists  $\xi$\in \mathbb{C}\backslash \{0\} such that  $\Omega$'= $\xi \Omega$ :=\{ $\xi \omega$| $\omega$\in $\Omega$\}.

Because of the theorem, the quantity

j( $\Omega$):=\displaystyle \frac{g_{2}( $\Omega$)^{3}}{\triangle( $\Omega$)}=\frac{g_{2}( $\Omega$)^{3}}{g_{2}( $\Omega$)^{3}-27g_{3}( $\Omega$)^{2}}
is called the modulus of the elliptic function field K_{ $\Omega$}.

(b) The Elliptic Modular Function

As it is easily seen, we have j( $\lambda \Omega$)=j( $\Omega$) for  $\lambda$\in \mathbb{C}\backslash \{0\} . Put $\tau$_{ $\Omega$} :=$\omega$_{1}/$\omega$_{2} ; then

$\tau$_{ $\Omega$}\in \mathbb{C}\backslash \mathbb{R}.
We suppose that the imaginary part {\rm Im}($\tau$_{ $\Omega$}) is positive by changing the indices if

necessary; that is, $\tau$_{ $\Omega$} is a point on the upper half complex plane. Conversely, for a given

point  $\tau$ on the half plane, we have a Zmodule  $\Omega$_{ $\tau$} :=\mathbb{Z}\cdot $\tau$+\mathbb{Z}\cdot 1 of rank 2, and an

elliptic function \wp($\Omega$_{ $\tau$};z) whose module of periods is $\Omega$_{ $\tau$} . It is clear that  $\tau$=$\tau$_{$\Omega$_{ $\tau$}} . Thus

we have a holomorphic function j( $\tau$) :=j($\Omega$_{ $\tau$}) on the upper half plane. Because of the

theorem in the preceding (a), the function j( $\tau$) is called the elliptic modular function.
For a given module of periods  $\Omega$

,
the value  j($\tau$_{ $\Omega$}) is independent from the choice of its

basis $\omega$_{1}, $\omega$_{2} . If we take another basis  $\omega$ í,  $\omega$_{2}' and $\tau$' :=$\omega$_{1}'/$\omega$_{2}' ,
then we have

\left(\begin{array}{l}
$\omega$_{1}'\\
$\omega$_{2}'
\end{array}\right)=\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)\left(\begin{array}{l}
$\omega$_{1}\\
$\omega$_{2}
\end{array}\right)
with a, b, c, d\in \mathbb{Z} ,

ad—bc =1
,

and hence $\tau$'=(a $\tau$+b)/(c $\tau$+d) . Therefore we have

Proposition 3.4. For  $\tau$ on the upper half plane and for  A\in \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) ,
let A( $\tau$)

be the linear fr actional transfo rmation dened as above. Then we have j(A( $\tau$))=j( $\tau$) .
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(c) Complex Multiplication
Let  $\varphi$(z) be an elliptic function with the module  $\Omega$ of its periods. For  $\mu$\in \mathbb{C}\backslash \{0\},

 $\psi$(z) := $\varphi$(z) is an elliptic function with the module of periods $\Omega$'=$\mu$^{-1} $\Omega$.

Proposition 3.5. The notation being as above,  $\varphi$(z) and  $\psi$(z) are algebraically

dependent over \mathbb{C} if and only if  $\Omega$\cap$\Omega$' is of rank 2. Hence, in the case,  $\Omega$\cap$\Omega$' is of

finite index both in  $\Omega$ and in  $\Omega$'

Definition 3.6. An elliptic function  $\varphi$(z) has complex multiplication by  $\mu$\in

\mathbb{C}\backslash \mathbb{R} if  $\varphi$(z) and  $\varphi$( $\mu$ z) are algebraically dependent over C.

Now suppose that  $\varphi$(z) has complex multiplication by  $\mu$ . Let  $\Omega$=\mathbb{Z}$\omega$_{1}+\mathbb{Z}$\omega$_{2} be

the module of periods of  $\varphi$(z) . Then there is an integer N\neq 0 such that  N $\Omega$\subset$\mu$^{-1} $\Omega$ ;

hence we have  N $\mu \Omega$\subset $\Omega$ . Writing this relation in terms of the basis  $\omega$_{1} and $\omega$_{2} ,
we have

N $\mu$\left(\begin{array}{l}
$\omega$_{1}\\
$\omega$_{2}
\end{array}\right)=\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)\left(\begin{array}{l}
$\omega$_{1}\\
$\omega$_{2}
\end{array}\right)
with a, b, c, d\in \mathbb{Z} ,

ad—bc \neq 0 . Therefore,  N $\mu$ is an eigenvalue of the  2\times 2 matrix in

\mathrm{G}\mathrm{L}() and a root of a quadratic equation with coefficients in \mathbb{Q}.
The notation being as above, we have N $\mu$=c $\tau$+d, c, d\in \mathbb{Z} by the equation

multipled by $\omega$_{2}^{-1} . By the choice of  $\mu$ and  $\tau$
,

we see  c\neq 0 ; hence  $\mu$ and  $\tau$ generate the

same imaginary quadratic number field  k:=\mathbb{Q}( $\tau$) .

From now on, by changing the complex variable z to $\omega$_{2}z or passing to the isomor‐

phic elliptic function field induced by multiplying $\omega$_{2}^{-1} ,
we assume  $\Omega$=\mathbb{Z}  $\tau$+\mathbb{Z} 1.

Then it is contained in the imaginary quadratic field k=\mathbb{Q}( $\tau$) . Put

0:=\{ $\alpha$\in k| $\alpha \Omega$\subset $\Omega$\} ;

this is an order of k
,
that is, a subring of the ring of integers 0_{k} of rank 2 as \mathbb{Z}‐module,

and  $\Omega$ is a fractional ideal of  0 . For simplicity, here we consider only the case of the

maximal order, 0=0_{k}.

We now take a fractional ideal a of k as a module of periods. Let a and \mathrm{b} be

fractional ideals of k . Then two complex tori \mathbb{C}/a and \mathbb{C}/\mathrm{b} are isomorphic if and only
if there exists  $\alpha$\in \mathbb{C} such that \mathrm{b}= $\alpha$ a . This equality shows that  $\alpha$\in k.

Theorem 3.7. For two ideals a and \mathrm{b} of an imaginary quadratic number field
k

,
the elliptic function fields K_{ $\alpha$} and K_{\mathrm{b}} are isomorphic over \mathbb{C} as abstract fields if and

only if a and \mathrm{b} belong to the same ideal class of k.
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(d) Division Points of Elliptic Curves with Complex Multiplication and

Congruence ideal groups

The elliptic function field K_{ $\Omega$} for a module of periods  $\Omega$ is generated by the Weier‐

strass \wp‐function \wp( $\Omega$;z) and its derivative \wp'( $\Omega$;z) over \mathbb{C} as explained in (a); these

functions define an embedding of the complex torus \mathbb{C}/ $\Omega$ into the projective plane \mathbb{P}^{2}

with homogeneous coordinate (X: Y:Z) whose image is the elliptic curve C_{ $\Omega$} defined

by

Y^{2}Z=4X^{3}-g_{2}( $\Omega$)XZ^{2}-g_{3}( $\Omega$)Z^{3},

X=\wp( $\Omega$;z) , Y=\wp'( $\Omega$;z) ,
Z=1

,
for z\not\in $\Omega$,

X=0, Y=1, Z=0 ,
for z\in $\Omega$.

We may be much familiar with its affine form

y^{2}=4x^{3}-g_{2}( $\Omega$)x-g_{3}( $\Omega$) ,

with x=X/Z, y=Y/Z . (Note that z=0 is a pole of \wp( $\Omega$;z) of order 2 and a pole of

\wp'( $\Omega$;z) of order 3.) Hence division points of the elliptic curve C_{ $\Omega$} just correspond to

division points of the periods in the complex torus \mathbb{C}/ $\Omega$.

Now, let a be a fractional ideal of an imaginary quadratic number field k
,

and

consider the complex torus \mathbb{C}/a . Then for a natural number m
,
the set of m‐th division

points corresponds to the subgroup m^{-1}a/a of the complex torus.

Let  $\alpha$ be an integer of  k . Then  $\alpha$ a\subset a . Therefore, we have an endomorphism of

\mathbb{C}/a by multiplication of  $\alpha$ . Suppose that it fixes each of the m‐th division points on

\mathbb{C}/a . Then we have ( $\alpha$-1)m^{-1}a\subset a . Hence we have  $\alpha$-1\in(m)=mo_{k} by multipying
both sides by ma^{-1} ,

and

 $\alpha$\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} (m) .

We may replace m with an integral ideal \mathfrak{m} of k
,

and obtain \mathfrak{m}‐division points on \mathbb{C}/a.
This is the idea behind congruence ideal class groups which Weber introduced. To define

them, however, we have to introduce �multiplicative congruence�
If two integers  $\alpha$ and  $\beta$ in  k are relatively prime to an integral ideal \mathfrak{m} and  $\alpha$\equiv

 $\beta$ \mathrm{m}\mathrm{o}\mathrm{d} (\mathfrak{m}) ,
then they induce the same permutation on the quotient group \mathfrak{m}^{-1}a/a by

multiplication; in the case, we simply denote  $\alpha$/ $\beta$\equiv 1 \mathrm{m}\mathrm{o}\mathrm{d} (\mathrm{m}) even when  $\alpha$/ $\beta$-1
might not belong to the set \mathfrak{m} ; note that an element  $\gamma$ of  k is expressed as  $\gamma$= $\alpha$/ $\beta$ with

two integers relatively prime to \mathfrak{m} if the principal ideal (  $\gamma$ ) is relatively prime to \mathfrak{m}.
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§4. Analytic method

In 1837, P. G. Lejeune Dirichlet introduced ingenious analytic method into number

theory with his L‐series to prove the so‐called Dirichlet prime number theorem on

arithmetic progressions; it states that there are infinitely many prime numbers in an

arithmetic progression whenever its common difference is relatively prime to the initial

term. Then he refined the analytic method to show his �class number formula� of binary

quadratic forms ([Di‐1837, Di‐1838, Di‐1839]; today, it is known as his class number

formula of quadratic fields; see Subsection 3.1.) Here he created modern analytic number

theory.

Later, Dedekind studied pure cubic fields ([De‐1900]), introduced his zeta‐function

of an algebraic number field ([De‐1877]), and encouraged F. G. Frobenius to develop
the theory of group characters ([Fr‐1896b]). (The paper [De‐1900] was a reproduction
based on a manuscript prepared in 1871 or 1872 and published in 1900.) The original
motivation of Dedekind should have been to establish a �class number formula� for a

pure cubic field \mathbb{Q}(\sqrt[3]{a}) , a\in \mathbb{Q}\backslash \mathbb{Q}^{3} which would be analogous to that of Dirichlet for

quadratic fields. Note that a pure cubic field is a non‐abelian extension of the rational

number field. (Cf. eg. Hawkins [Hk‐1970, Hk‐1974] and Miyake [Mi‐1989b].)

§5. Two concepts of class fields: Weber and Hilbert

§5.1. Weber

In his two papers [Wb‐1886], Heinrich Martin Weber (1842-1913) presented a

proof of Kronecker‐Weber Theorem, and then started to challenge Kronecker�s Jugend‐
traum and published Elliptische Functionen und algebraische Zahlen ([Wb‐1891]). (The
mathematical propositions of them were given in Subsection 3.2.) There was a gap in

his proof of Kronecker‐Weber Theorem. Hence, the paper [Hi‐1896] of Hilbert gave

the first complete proof to it. Weber could show in [Wb‐1891] that, for an imaginary

quadratic field k
,

each of the singular values of the elliptic modular function j( $\tau$) for

elliptic functions with fractional ideals of k as period modules generate the same un‐

ramified abelian extension \tilde{k} of k . He could also show that the values of the division

points of the periods of the elliptic functions generate abelian extensions of \tilde{k} ; but at

the time, he could not see that they were abelian extensions over the base quadratic
field k.

His book [Wb‐1891] was much enlarged and published as the third volume [Wb‐1908]
of his textbook Lehrbuch der Algebra [Wb‐1894]. He also showed Principal Ideal Theo‐

rem for imaginary quadratic fields by utilizing special values of Dedekind�s  $\eta$ function;
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(see Subsection 3.2). His article (Komplexe Multiplikation� [Wb‐1900] in Encyklopädie
der Mathematischen Wissenschaft en is worth mentioning as a good introduction to

complex multiplication of elliptic functions.

Then as we saw in Section 2, he introduced his Strahl (ray) ideal class group

 I_{\mathfrak{m}}/S_{\mathfrak{m}} for an integral ideal \mathfrak{m} of an arbitrary algebraic number field k in a series of

papers [Wb‐1897], and showed for an imaginary quadratic number field k that the field

generated by the values of the elliptic functions at \mathfrak{m}‐division points over \tilde{k} is abelian

extensions over the quadratic field k . With the result, he called such extensions �class

fields� (Classenkörper) of k.

§5.2. Hilbert

As was mentioned in the preceding subsection, David Hilbert (1862—1943), much

younger than Weber, started to investigate algebraic number fields with his ramifica‐

tion theory in a Galois extension ([Hi‐1894]) in 1894, and gave an amazingly simple

proof to Kronecker‐Weber Theorem in his paper [Hi‐1896]. Then by the request of

Deutschen Mathematiker‐Vereinigung (German Mathematician�s Union), he wrote up

the famous gigantic report [Hi‐1897] (usually called Hilbert‐Bericht, Zahlbericht or sim‐

ply the Bericht here in this article) on the theory of algebraic numbers. This contains a

systematic treatment of Kummer extensions k(\sqrt[m]{a}) , a\in k ,
of an algebraic number field

k which contains m‐th roots of unity.
Theorem 94 of the Bericht states that, in a cyclic unramified extension K/k of

algebraic number fields of prime degree l
,

ideals in at least l ideal classes of k become

principal ideals in K . Because of the generality of the theorem, Hilbert called a cyclic
unramified extension a �class field� (Klassenkörper) associated to the ideal classes which

become principal ideal classes in the extension. The section containing the theorem is

§58. Der Fundamentalsatz von den relativ‐zyklischen Körpern mit der Relativdifferente

1. Die Bezeichnung dieser Körper als Klassenkörper. (The fundamental theorem of

relative‐cyclic extensions with relative difference 1. The characterization of these fields

as class fields.)

Then he gave much more sophisticated definition of his class fields in the paper

[Hi‐1899a] showing his results on relative quadratic extensions. This class field \tilde{k} of

an algebraic number field k would be an unramified abelian extension whose Galois

group over k is isomorphic to the absolute ideal class group of k . He required a certain

decomposition law of ideals in \tilde{k}/k . Furthermore, he stated the following two properties:

(1) \tilde{k} would be the maximal unramified abelian extension of k ;
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(2) Principal Ideal Theorem: all ideals of k become principal ideals in \tilde{k}.

He also showed in [Hi‐1899b] the quadratic reciprocity law in k via the reciprocity
law for the quadratic norm residue symbols, and the existence of his class field when

the class number of k was 2 or 4. The results of this paper is previously announced in

[Hi‐1898]. Although he claimed the properties (1) and (2) for his class fields, his main

target would have been to show reciprocity laws of power residues and norm residues in

an algebraic number field with appropriate roots of unity.
He left this subject, algebraic number theory, after the above‐mentioned works.

Then Furtwängler pursued Hilbert�s project for unramified class field theory and higher

power residue reciprocity law as it will be seen in the succeeding section.

§6. Further Development

§6.1. Furtwängler

Philipp Furtwängler (1869—1940) went farther along the way where Hilbert han‐

dled the quadratic case; he aimed to generalize Kummer�s results on reciprocity law in

cyclotomic fields and showed the power residue reciprocity law for an odd prime degree
l in a general algebraic number field which contains the l‐th roots of unity by his paper

[Fw‐1904] in 1904. Then, in 1907, he constructed Hilbert�s class field for a general alge‐
braic number field in [Fw‐1907]. He could also show the power residue reciprocity law

for an arbitrary power le of an odd prime l in the series of papers [Fw‐1909] by utilizing
Hilbert�s class fields he constructed.

It was in 1911 when he was able to prove the required decomposition law of ideals

in the Hilbert class field ([Fw‐1911]).
He did not seem to be seriously interested in Weber�s class fields nor Kronecker�s

Jugendtraum.

The assertion (1) of Hilbert, which were pointed out in the preceding subsection,
was established in 1920 when Takagi showed his class field theory in which the ramifi‐

cations in an Abelian extension became clear as it was characterized as a congruence

class field.

In 1930, Furtwängler came back to show Principal Ideal Theorem (the assertion (2)
above) with laborious calculation of the transfer of a metabelian group to its commutator
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subgroup. This approach was opened by Artin with his general reciprocity law as will

be seen in one of the following sections.

§6.2. Fueter

There was also a big advance for Kronecker�s Jugendtraum early in the twentieth

century. In 1914, Swiss mathematician Karl Rudolf Fueter (1880—1950) succeeded in

proving a theorem on Abelian extensions of imaginary quadratic number fields in the

paper �Abel�sche Gleichungen in quadratisch‐imaginären Zahlkörpern� [Fu‐1914].

Theorem 6.1 (Fueter). Every abelian extension of an imaginary quadratic num‐

ber field k with an odd degree is contained in an extension of k generated by suitable

roots of unity and the singular moduli of elliptic functions with complex multiplication
in k.

It was known at the time, however, that the extensions of k given in the theorem

are not large enough to cover all abelian extensions of k.

This result apparently stimulated Takagi.

§7. Takagi

Teiji Takagi (1875—1960) gave the following list of seven references in the foreword

of his major paper [T‐1920a] on his class field theory as basis and stimulation for his

work: Weber�s paper [Wb‐1897] on his congruence class fields and his book [Wb‐1908]
which is a much enlarged version of [Wb‐1891], Hilbert�s papers [Hi‐1898, Hi‐1899b] on

relative quadratic extensions and [Hi‐1899a] of his unramified class fields, Furtwängler�s

paper [Fw‐1907] on construction of Hilbert�s class fields, and Fueter�s paper [Fu‐1914].
At the end of the foreword of his paper [T‐1922] on reciprocity law, Takagi gave a

list of six references, Hilbert�s papers [Hi‐1898, Hi‐1899a, Hi‐1899b], Furtwängler�s two

papers [Fw‐1907, Fw‐1909], and his own paper [T‐1920a] of his class field theory.
As a result of Takagi�s determination of the conductors of Abelian extensions, the

assertion (1) of Hilbert was proved as was stated in Subsection 6.1:

Theorem 7.1 (Maximality of Hilbert�s Class Field). Hilbert�s class filed \tilde{k} of an

algebraic number field k is the maximal unramied abelian extension of k.

At the end of the abstract [T‐1920b] for International Mathematicians Congress
held at Strasbourg in 1920, Takagi proposed a problem whether it would be possible or
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not to define �ideal classes� of an algebraic number field to determine non‐abelian normal

extensions of the base field. Indeed, we do not see any reason to define the congruence

ideal group H_{\mathfrak{m}} in association with a Galois extensions K/k as the subgroup of I_{\mathfrak{m}} which

is generated by S_{\mathfrak{m}} and by the norm group { N_{K/k}(\mathfrak{A})| A is an ideal of K prime to \mathfrak{m} }.
In case where k is an imaginary quadratic field, the Strahl (ray) ideal group S_{\mathfrak{m}} may be

reasonable on account of \mathfrak{m}‐division points of elliptic curves with complex multiplication
in k . If we see it, however, from the side of an Abelian extension K of a general algebraic
number field k

,
we do not find any explana tion to enlarge the norm group by the Strahl

group. Here we recall the words of Takagi, �Far beyond any perspectives at the time,

however, \cdots

It should also be noted that Takagi refined multiplicative congruence by introducing

(signatures at infinite places�. Weber owed his idea of class fields to arithmetic of

imaginary quadratic number fields and did not seem to be aware of necessity of the

signatures. It was Hilbert who introduced them in his investigation of relative quadratic
extensions in general in [Hi‐1899b]. Today, we say an integral divisor of an algebraic
number field  k to mean a combination of an integral ideal and some infinite places to

indicate distribution of signatures there.

§8. After Takagi

§8.1. Tschebotareff�s Density Theorem

In 1926, Nikolai Tschebotareff published his paper [Ts‐1926] in which he proved
so called his density theorem. The proposition was formulated for a Galois extension

by Frobenius [Fr‐1896a] in 1896. The origin of the idea of it goes back to the paper

[Kr‐1880a] of Kronecker. Takagi gave a comment on the theorem in a footnote of his

book [T‐1948, p.261] as follows:

It was a kind of daydream of Kronecker to control algebraic extensions

 $\Omega$/k with the density \triangle( $\Omega$) . He only conjectured the existence of \triangle_{a} ; he was

lucky enough to hit the target here again. The existence was established by
Tschebotareff after a partial success of Frobenius. We named it as �Kronecker�s

density� after the prophet (cf. Hilbert�s Bericht [Hi‐1897, §50]).

The theorem determines Kronecker�s density of those prime ideals in a Galois ex‐

tension K over k whose Frobenius automorphisms belong to a prescribed conjugacy
class of the group. More precisely, the density of a conjugacy class in a finite group
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is the number of elements in the class divided by the order of the group; the density

\triangle(M) of a set M of prime ideals of K is give by

\displaystyle \triangle(M)=\lim_{s\rightarrow 1+0}\frac{\sum_{\mathfrak{p}\in M^{\frac{1}{N_{K/\mathbb{Q}}(\mathfrak{p})^{\mathrm{s}}}}}}{\log\frac{1}{s-1}}
if the limit exists. (The density \triangle( $\Omega$) for a Galois extension  $\Omega$/k in Takagi�s comment

is \triangle(M) for the set M of those prime ideals of  $\Omega$ whose Frobenius automorphisms are

the identity of the group; this  M represents the set of those prime ideals of k which

split completely in  $\Omega$/k. )

Theorem 8.1 (Tschebotareff�s Density Theorem). For a Galois extension K/k,
the density of those prime ideals in K whose Frobenius automorphisms belong to a given

conjugacy class of the Galois group exists and coincides with the density of the conjugacy
class in the Galois group.

This is a natural generalization of the Dirichlet prime number theorem on arithmetic

progressions showed in Dirichlet [Di‐1837] if we (naturally� identify the multiplicative

group (\mathbb{Z}/m\mathbb{Z})^{\times} with the Galois group \mathrm{G}\mathrm{a}1(\mathbb{Q}($\zeta$_{m})/\mathbb{Q}) of the mth cyclotomic field \mathbb{Q}($\zeta$_{m}) .

The original conjecture of Kronecker was on the density of the set of those prime numbers

p for which a given polynomial with integer coefficients has the prescribed number (a in

the above quoted comment of Takagi) of solutions \mathrm{m}\mathrm{o}\mathrm{d} p . Because of the contribution of

Frobenius, Helmut Hasse later chose the term �Frobenius automorphism� in his Bericht

[Ha‐1926] on class field theory.

The proof of Tschebotareff in [Ts‐1926] was well analyzed by Otto Schreier in his

paper [Srr‐1927] and applied by Artin to show his general reciprocity law which we shall

see in the next subsection.

§8.2. Artin�s general reciprocity law

Much influenced by Takagi�s class field theory, Emil Artin (1898—1962) formulated

his general reciprocity law and showed that reciprocity laws for power residue and norm

residue are easily derived from the one conjecturally proposed by him in [Ar‐1924]. Then

he could publish a proof to it in [Ar‐1927] with the help of Schreier�s analysis of the

proof of Tschebotareff as was mentioned at the end of the preceding subsection.

Theorem 8.2 (Artin�s General Reciprocity Law). Let K be the class field of k

corresponding to a congruence ideal group H_{\mathrm{f}} with the conductor \mathfrak{f} . Then the canonical

isomorphism from I_{\mathrm{f}}/H_{\mathrm{f}} onto the Galois group \mathrm{G}\mathrm{a}1(K/k) is given by the Artin map

which assigns the Frobenius automorphism to each prime ideal of I_{\mathrm{f}}.
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This work of Artin clarified the arithmetic nature of the isomorphism of an congruence

ideal class group onto the Galois group of the Takagi�s class field associated to it. Takagi

highly praised this work of Artin ([T‐1927]).
As an application of his reciprocity law, Artin formulated, in the paper [Ar‐1930],

Principal Ideal Theorem in terms of the metabelian group \mathrm{G}\mathrm{a}1(k/k)\approx where  k\approx is the

Hilbert class field of the Hilbert class field \tilde{k} of an algebraic number field k
,

that is,
the second class field of k ; namely, the transfer homomorphism from \mathrm{G}\mathrm{a}1(k/k)\approx to its

commutator subgroup \mathrm{G}\mathrm{a}1(k/\tilde{k})\approx is trivial.

Then by the paper [Ar‐1931] published in 1931, Artin introduced his  L‐functions

with group characters of the Galois group of a general Galois extension K/k to decom‐

pose Dedekind�s zeta‐function $\zeta$_{K}(s) into a product of these L‐functions and Dedekind�s

zeta $\zeta$_{k}(s) of the base field k . This is a far‐reaching generalization of what Dedekind

did for the Galois closure of a pure cubic extension of the rational number field. The

theory of group characters has been well developed by Frobenius [Fr‐1896b] who were

encouraged by Dedekind. This paper of Frobenius was published in 1896; however, he

himself nor Dedekind did not give any L‐series with group characters of the group of

a general non‐Abelian Galois extension. Frobenius seemed much engaged in the theory
of representation of finite groups.

Here we give the reciprocity law for complex multiplication to close this subsection

(cf. [Shm‐1971, Theorem 5.7, p.123]).

Theorem 8.3 (Reciprocity Law of Elliptic Modular Function). Let k be an

imaginary quadratic number field and a a fractional ideal of k . Then the extension

k(j(a))/k generated by the singular value j(a) of the elliptic modular function is the

Hibert class field of k
,

whose Galois group is isomorphic to the ideal class group of k.

For a prime ideal \mathfrak{p} of k
, moreover, let  $\alpha$(\mathrm{p}) be the Frobenius automorphism of \mathfrak{p} in

\mathrm{G}\mathrm{a}1(k(j(a))/k) . Then we have j(a)^{ $\alpha$(\mathfrak{p})}=j(\mathfrak{p}^{-1}a) .

§8.3. Principal Ideal Theorem

Furtwängler, informed of the result of Artin in the paper [Ar‐1930] in advance,
carried out a laborious calculation and succeeded in proving Principal Ideal Theorem in

[Fw‐1930]. He could show his powerful ability even at about 60 years old, which makes

us think of his young days when classical invariant theory still flourished in Germany.
Their papers [Ar‐1930, Fw‐1930] were published in the same volume of the journal,
Abhandl. Math. Sem. Univ. Hamburg in 1930.

It should be pointed out here again that Weber showed the principal ideal theorem

for imaginary quadratic fields in his book [Wb‐1908] using special values of Dedekind
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 $\eta$‐function.

Later in 1949, F. Terada showed Tannaka�s generalization of Principal Ideal The‐

orem in genus fields in his paper [Te‐1949] by following the line of the method of

Furtwängler.
In 1997, Hiroshi Suzuki finally proved a beautiful �Principal Ideal Theorem� in a

unified form which includes all of Hilbert�s Theorem 94, the original Principal Ideal

Theorem and Terada�s Theorem in his paper �On the Capitulation Problem� [Su‐1997]:

Theorem 8.4 (Suzuki). Let  k be a finite cyclic extension of an algebraic number

field k_{0} of finite degree and K be an unramied extension of k which is abelian over k_{0}.
Then the number of those \mathrm{G}\mathrm{a}1(k/k_{0}) ‐invariant ideal classes of k which become principal
in K is divisible by the degree [K:k] of the extension K/k.

As is easily seen, Hilbert�s Theorem 94 is the case of this theorem where k=k_{0}
and K/k is cyclic; the original Principal Ideal Theorem is the case where k=k_{0} and

K is the Hilbert class field \tilde{k} of k ; and Terada�s Theorem is the case where K is the

maximal Abelian extension of k_{0} contained in the Hilbert class field \tilde{k}.

§9. Some Topics

§9.1. Local class field theory and algebraic proof

In 1930, F. K. Schmidt showed local class field theory in his paper [Smd‐1930]. He

put a stress in the introduction that he used global class field theory and hence needed

transcendental (analytic) method behind the second fundamental inequality.
On the result, E. Noether gave a comment that the way of the proof should be con‐

verted; that is, the simpler local class field theory should be proved first independently,
and then the complicated global class field theory should be shown by the (local‐global
relation� of norm residue symbol. (Cf. the testimony of Hasse in his lecture notes Cl ass

Field Theory [Ha‐1973, p.68].) Thus the problem of finding an algebraic proof of class

field theory was asked by Noether.

It was the paper [Ch‐1940] of Claude Chevalley (1909—1984) which first showed

an algebraic proof of global class field theory.
The theory of class formation of Y. Kawada (a part of it is a joint work with I.

Satake) may be another answer to the problem of algebraic proof ([Ka‐1955, KS‐1955,

Ka‐1956]).
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We may study local class field theory directly and independently from the global
one in the books of Serre [Se‐1962] and of Iwasawa [Iw‐1986], for example; the article

[Hz‐1975] of Hazewinkel may also be helpful.
There has not yet been presented any construction of global class field theory with

local ones and the local‐global relation of norm residue symbol.

§9.2. Idele

One of the motivations of Chevalley to introduce the concept of �élément idéal� in

his paper [Ch‐1940] was to avoid somewhat clumsy Strahl ideal classes, and tried to go

far up to a kind of limit by taking all integral divisors instead of setting conductors.

It naturally led him to consider the maximal abelian extension k^{\mathrm{a}\mathrm{b}} of the ground field

k in a fixed algebraic closure of k;k^{\mathrm{a}\mathrm{b}}/k is an infinite extension. Hence Krull�s works

[Krl‐1928] and [Krl‐1932] gave a foundation to him.

Then Iwasawa [Iw‐1950] and Tate [Ta‐1950] independently furnished the group of

ideles with the good topology and developed functional analysis on the group to describe

zeta‐ and L‐functions of the base field.

Finally, Weil introduced adeles (additive ideles) in the lecture notes [We‐1959]. And

these became a kind of natural language for (algebraic) number theory.

The idele class group of the ground field k is the quotient of the whole idele group

by its discrete subgroup of diagonally embedded (global numbers� k^{\times} . It describes the

Galois group \mathrm{G}\mathrm{a}1(k^{\mathrm{a}\mathrm{b}}/k) of the maximal abelian extension of the base field by Artin�s

general reciprocity law. Then we see the local‐global principle most naturally as in the

next subsection.

See also Iyanaga�s article [Iy‐1975].

§9.3. Class Field Theory — Idele Version

Let k be an algebraic number field and k^{\mathrm{a}\mathrm{b}} the maximal Abelian extension of k in

the algebraic closure \overline{k} of k in the complex number field \mathbb{C}.

For a prime ideal \mathfrak{p} of k
,

let k_{\mathfrak{p}} be the \mathfrak{p} ‐adic completion of k
,

and 0_{\mathfrak{p}} the ring of

integers of k_{\mathfrak{p}} . Then the unit group 0_{\mathfrak{p}^{\times}} of k_{\mathfrak{p}} is the set of invertible elements in 0_{\mathfrak{p}}.
Fix a local parameter  $\pi$ so that the unique maximal ideal of  0_{\mathfrak{p}} is  $\pi$ 0_{\mathfrak{p}} . Then we have

k_{\mathfrak{p}}^{\times}\simeq\langle $\pi$\rangle\times 0_{\mathfrak{p}^{\times}} . Furthermore, let k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}} be the maximal Abelian extension of k_{\mathfrak{p}} in its

fixed algebraic closure k_{\mathfrak{p}}^{-} ,
and k_{\mathfrak{p}}^{\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}} the maximal unramified Abelian extension of k_{\mathfrak{p}} in

k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}.
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Theorem 9.1 (Local Artin Map). Let the notation be as above. Then there ex‐

ists an injective homomorphism $\alpha$_{\mathfrak{p}} : k_{\mathfrak{p}}^{\times}\rightarrow \mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}}) which satises the three condi‐

tions (i), (ii) and (iii):
(i) the image of $\alpha$_{\mathfrak{p}} is dense in \mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}}) ;
(ii) $\alpha$_{\mathfrak{p}}(0_{\mathfrak{p}^{\times}})=\mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}}^{\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}}) ;
(iii) $\alpha$_{\mathfrak{p}}( $\pi$) mod \mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}}^{\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}}) is the Frobenius automorphism of k_{\mathfrak{p}}^{\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}};\mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}})
is an Abelian fr ee pro‐finite group generated by $\alpha$_{\mathfrak{p}}( $\pi$) mod \mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}}^{\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}}) .

Note that $\alpha$_{\mathfrak{p}}( $\pi$) mod \mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}}^{\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}}) in (iii) of the theorem is independent from

the choice of the local parameter  $\pi$.

An Abelian free pro‐finite group generated by a single element is isomorphic to the

pro‐finite completion \tilde{\mathbb{Z}} of the additive group of integers \mathbb{Z} and is a compact topological

group. It is naturally isomorphic to the direct product of all of the p‐adic completion

\mathbb{Z}_{p} where p runs over all prime numbers because of the Chinese Remainder Theorem.

The adele ring A of the rational number field \mathbb{Q} may be defined as follows:

\mathrm{A}:=\tilde{\mathbb{Z}}\otimes_{\mathbb{Z}}\mathbb{Q}\oplus \mathbb{R}.

The p‐adic completion \mathbb{Q}_{p} of \mathbb{Q} is considered as \mathbb{Q}_{p}=\mathbb{Z}_{p}\otimes_{\mathbb{Z}}\mathbb{Q} . The field of real

numbers \mathbb{R} of the last term in the above expression of A stands for the Archimedean

completion of \mathbb{Q} . The gobal numbers \mathbb{Q} are diagonally embedded in A and form a

discrete subring.
The adele ring k_{\mathrm{A}} of an algebraic number field k is defined as k_{\mathrm{A}}:=k\otimes_{\mathbb{Q}} A.

The idele group k_{\mathrm{A}}^{\times} is the set of all invertible adeles; its group structure is multi‐

plicative, and furnished with the topology to act naturally on the adele ring k_{\mathrm{A}}.

Let p be a prime number and \mathfrak{p} a prime ideal of k which divides p . Let k_{\mathfrak{p}} be the

\mathfrak{p} ‐adic completeion of k . Since k\otimes_{\mathbb{Q}}\mathbb{Q}_{p} is the direct sum of k_{\mathfrak{p}} for all prime ideals \mathfrak{p}

dividing p ,
the local field k_{\mathfrak{p}} is naturally embedded in the adele ring k_{\mathrm{A}} ; hence we have

a natural embedding $\iota$_{\mathfrak{p}} : k_{\mathfrak{p}}^{\times}\rightarrow k_{\mathrm{A}}^{\times} of the multiplicative group of the local field into the

idele group.

On the other hand, we have embeddings of k into k_{\mathfrak{p}} ,
and so embeddings k^{\mathrm{a}\mathrm{b}} into

k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}} for every \mathfrak{p} dividing p which are consistent with the embeddings $\iota$_{\mathfrak{p}} . Hence we have

the restriction homomorphism

$\rho$_{\mathfrak{p}} : \mathrm{G}\mathrm{a}1(k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}/k_{\mathfrak{p}})\rightarrow \mathrm{G}\mathrm{a}1(k^{\mathrm{a}\mathrm{b}}/k)
which is injective because k_{\mathfrak{p}}^{\mathrm{a}\mathrm{b}}=k^{\mathrm{a}\mathrm{b}}\cdot k_{\mathfrak{p}}.

The Archimedean (or infinite) part k_{\infty}^{\times} of the idele group k_{\mathrm{A}}^{\times} is naturally identified

with the multiplicative group (k\otimes_{\mathbb{Q}}\mathbb{R})^{\times} . If k has a real conjugate, then the Archimedean
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completion at the corresponding infinite place is \mathbb{R}
,

and hence its multiplicative group

has two connected components. Let k_{\infty,0}^{\times} be the connected component of the unity in

(k\otimes_{\mathbb{Q}}\mathbb{R})^{\times}.
With these preparation, we are ready to state the idele version of class field theory.

Theorem 9.2 (Global Artin Map). Let the notation be as above. Then there

exists a surjective homomorphism $\alpha$_{k}:k_{\mathrm{A}}^{\times}\rightarrow \mathrm{G}\mathrm{a}1(k^{\mathrm{a}\mathrm{b}}/k) which satises the two condi‐

tions (i) and (ii):
(i) the kernel of  $\alpha$ is the topological closure of  k^{\times}\cdot k_{\infty,0}^{\times} in k_{\mathrm{A}}^{\times} ;
(ii) For each prime divisor \mathfrak{p} of k

,
we have $\alpha$_{k}\circ$\iota$_{\mathfrak{p}}=$\rho$_{\mathfrak{p}}\circ$\alpha$_{\mathfrak{p}}.

We now see by these two theorems on the Artin maps that the local‐global relation

in class field theory is supplied by the diagonally embedded global numbers of k.

On account of (ii), $\alpha$_{k}\circ$\iota$_{\mathfrak{p}}($\pi$_{\mathfrak{p}}) represents the Frobenius automorphism of \mathfrak{p} on each

Abelian extension K/k where \mathfrak{p} is unramified. In general, however, it is only determined

as a coset of $\alpha$_{k}\circ$\iota$_{\mathfrak{p}}(0_{\mathfrak{p}^{\times}}) .

§9.4. Shafarevich and Iwasawa

—Non‐Abelian World, especially, p‐Extensions—

After the establishment of Takagi‐Artin class field theory in 1927, Arnold Scholz

(1904—1942) and Olga Taussky (1906—1995) took a step toward non‐Abelian world

in 1934. Their main theme in the paper [ST‐1934] was the �capitulation problem� which

asked more detailed process for a prime ideal of the base field to become a principal ideal

in the Hilbert class field. They dealt the case of p=3 and, in particular, determined the

Galois group of the maximal unramified p‐extension of \mathbb{Q}(\sqrt{-4027}) ; it is a non‐Abelian

group of order 3^{5}.

Then in 1937 after his studies [Slz‐1929a, Slz‐1929b, Slz‐1929c, Slz‐1934, Slz‐1936],
Scholz opened the gate toward p‐extensions, p being a prime number, with construction

problem of p‐extensions in his paper [Slz‐1937]. It is sorry to say, however, that he could

not continue his investigation on the subject because of his short life.

In 1947, I.R. Shafarevich published a paper �On p‐extensions� (Russian) [Shf‐1947];
in 1954, he did two elaborated papers �On the construction of fields with a given Galois

group of order l^{ $\alpha$} �

(Russian) [Shf‐1954a] and �On the construction of fields with given
solvable Galois groups� (Russian) [Shf‐1954b]. Then in 1964, he presented the paper �On

the tower of class fields� (Russian) [GS‐1964] with co‐author E. Golod which showed the

existence of infinite towers of unramified p‐extensions of quadratic fields. We may see his

intension toward non‐Abelian world in his article(Abelian and Nonabelian Mathematics�
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[Shf‐1991].

In 1958, K. Iwasawa published a paper �On solvable extensions of algebraic number

fields� [Iw‐1958]; here he proved that the Galois group of the maximal solvable extension

k^{\mathrm{s}\mathrm{o}1} over the maximal Abelian extension k^{\mathrm{a}\mathrm{b}} of an algebraic number field k of finite

degree is a free pro‐finite solvable group with countable number of generators. This

is remarkable because the structure of \mathrm{G}\mathrm{a}1(k^{\mathrm{a}\mathrm{b}}/k) is very complicated as we see it by
its idelic description given in the preceding subsection. Actualy Iwasawa also reached

a similar result for the Galois group of the maximal nilpotent extension k^{\mathrm{n}\mathrm{i}1} over the

maximal Abelian extension k^{\mathrm{a}\mathrm{b}} of k ; cf. also Miyake [Mi‐1990]. Note that a pro‐finite‐

nilpotent‐group is a direct product of pro‐p‐groups where prime numbers p runs over

some set of prime numbers. After he looked into the Galois groups of local fields,
he started his investigation in mathbbZ‐extensions in the series of papers [Iw‐1959a,
Iw‐1959b] and [Iw‐1959c]. (He first called \mathbb{Z}_{p} ‐extensions  $\Gamma$‐extensions.) His class number

formula for \mathbb{Z}_{p} ‐extensions was given in [Iw‐1959a] with a proof.
Here we may recall a paper [De‐1901] of Dedekind in which he showed the structure

of the Galois group of the infinite extension \mathbb{Q}( $\mu$(p^{\infty})) obtained by all of pn‐th roots of

unity for n=1
, 2, 3, . .

.,
which is isomorphic to the multiplicative group \mathbb{Z}_{p}^{\times} of the units

of the p‐adic completion \mathbb{Z}_{p}.
In 1962, Iwasawa studied the class numbers of cyclotomic fields in [Iw‐1962], and,

finally in 1973, presented his full scale theory of \mathbb{Z}_{p} ‐extensions in his celebrated paper

�On \mathrm{Z}_{\ell} ‐extensions of algebraic number fields� [Iw‐1973].

We should here mention Helmut Koch�s influential book Galoissche Theorie der

p ‐Erweiterungen (Galois Theory of p‐Extensions) [Ko‐1970]. Its English translation

[Ko‐2002] was published in 2002 with a brief historical description as Postscript with

additional references.

To close our article, let me point out a few recent results. One of them is the

paper �Galois Theoretic Local‐Global Relations in Nilpotent Extensions of Algebraic
Number Fields� [Mi‐1989c] of the author which presents somewhat analogous local‐

global relations to the idelic description of the Galois group \mathrm{G}\mathrm{a}1(k^{\mathrm{a}\mathrm{b}}/k) in the previous
subsection.

Others are most recent remarkable results of Manabu Ozaki. In 2007, he suc‐

cessfully presented �Non‐abelian Iwasawa theory of \mathbb{Z}_{p} ‐extensions� [Oz‐2007]. Then in

2009, he showed the existence of algebraic number fields with prescribed finite p‐groups

or finitely generated pro‐p‐groups as the Galois groups of the maximal unramied p‐

extensions.
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To be more precise, let p be a prime number. For a number field F (not necessary

of finite degree), let L_{p}(F) denote the maximal unramified p‐extension over F
,

and put

\tilde{G}_{F}(p) :=\mathrm{G}\mathrm{a}1(L_{p}(F)/F) .

Theorem 9.3 (Ozaki). For an arbitrarily given finite p ‐group G ,
there exists a

number field F of finite degree such that \tilde{G}_{F}(p) is isomorphic to G.

In the case where we take account of number fields of infinite degree, Ozaki obtained

a similar result:

Theorem 9.4 (Ozaki). Let C_{p} be the set of all isomorphism classes of the pro‐

p ‐groups \tilde{G}_{F}(p) where F runs over all algebraic extensions of the rational number field
\mathbb{Q} . Then C_{p} is exactly equal to the set of all isomorphism classes of pro‐p‐groups with

countably many generators.
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