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This article is organized in the following way. In Section 1 we state a

brief history of Herz space. In Section 2 we summarize our recent results in
[7].

1 Introduction

We consider the boundedness of fractional integral operators on Herz space.
First we state a brief history of Herz space. About the precise definition, see
the next section.

Let T' = [0, 27) and define

AT) = {fe L T); X |f(k)] < oo},

k=—o0

where f(k) = (27)! Jp F(t)e~™*dt. A(T) is called the Wiener algebra and
it is difficult to characterize this algebra. About this problem we know the
following theorem (see, for example, [6]).

Theorem (Bernstein). If f € Lip.(T) for some ¢ > 1/2, then f € A(T).

We also know a non-periodic version of this theorem. We define general-
ized Lipschitz spaces as follows (see, for example, [4] and [12]).

Definition . Let 0 < p < oo and 0 < o < 1. We say f € A(a;2,p)(R?) if
f € L*(R') and

/'wc+m—me4@
. Rl i

Theorem (a non-periodic version of Bernstein’s theorem). Let F be the
Fourier transform. If f € A(1/2;2,1)(RY) then Ff € L'(R").



Beuring [1] introduced a new function space A?(R'), and proved the next

result. Nowadays this function space is called the Beurling algebra, and we

know that this is the special case of Herz spaces, that is, A2(R!) = K,/*!(R1).

Definition . We say f € A?(R!) if

| f11%2 = ing/ w(z)dw Mdaj < 00,
Rl

we r w(z)

where €) consists of integrable positive w which are nonincreasing functions
of |z|.

Definition . We say f € A2(R!) if there exists g € A2(R') such that f = Fg.

Theorem (Beurling). f € EZ(Rl) if and only if f satisfies the following
three conditions.

f is continuous,

| 1|im f(z) =0,

fen(/2;2, D)(RY.
Herz [5] obtained the following.

Theorem (Herz). Let 0 < a <1 and 0 < p < co. If f € Aa; 2, p)(RY) then
Ffe KyP(RY).

Corollary . If f € A(1/p—1/2;2,1)(RY) then Ff € LP(RY), where 1 < p <
2.

If we take p = 1 in Corollary, then we can obtain the non-periodic version
of Bernstein’s theorem above.

2 Results

We define homogeneous Herz spaces and fractional integral. Let 0 < p <
00,1 < ¢ < ooand a € R

Definition .
KgP(R™) = {f € L, (R*\ {0}); || f|| gor < 00},

2



where

00 p/q) MP
1l — ﬁw(/ |ﬂ@ww) .
e =4 2 2 ([

Remark . K)(R") = LI(R").

Definition .

Iﬁf(z):/lgnmf(y)dy for 0<f<n.

The next proposition is well-known (see, for example, [13]).

Proposition 1. I3 is bounded from L9 (R™) to L®(R"™) where 1/q2 = 1/q1 —
B/n > 0.

Li and Yang [8] proved the following.
Proposition 2. I3 is bounded from Kj]’l’p(R") to Ké’Q’p(Rn) where
1/go=1/q1 = B/n>0, f—n/gg <a<n(l—1/¢) and 0<p< occ.

When ¢; > n/f, we know the following proposition (see [11] and [13]).
We define Lipschitz spaces and modified fractional integral. Let 0 < e < 1.

Definition .
1
Lip.(R") = {f7 | fllzipe = Supinf—/ |f(x) — cldz < oo},
72 g ¢ Qe 0

where the supremum is taken over all balls () C R".
We denote Lipy(R™) = BMO(R™).

Proposition 3. When 0 < e < 1,

1Lz, =~ sup LB T WL

Ty |z —yl°

Definition .

I = - dy fi .
ot = [ s ~ e}ty or 0<p <



Proposition 4. Tﬁ is bounded from LI(R™) to Lipg_,/q(R™) where
0<p—n/qg<l.
FEspecially fﬁ is bounded from L™P(R™) to BMO(R™).

We consider the boudedness of I3 on K(‘;"p where ¢ > n/g.
For our purpose we consider a variant of Lipschitz space. Our definition
is the following. Let 0 <e¢ < 1 and X € RL.

Definition .
Lip? (R")
. 1 1
= (i = sp it s e [ 1) ey < oo,
R>0
where B(z, R) ={y € R"; |z — y| < R}.
Remarks . Lip?(R") = Lip.(R") and Lip)(R") = BMO(R").

Lipg®, o (R*) C Lipg_pjg—a(R") if a >0,
Lipg—njg-o(R") C Lipy®, , (R") if o <0.

1 1
I ~ 510 [ 1) faenldy < o
B an (fal + RN B, R Jie e

where fp@r) = m fB(%R) f(y)dy
We give some examples.
x|t € Lipt(R™), |z|™° € Lipy;°(R") where 0<e<1.
(log|x])*x(s121y € Lipg(R") \ BMO(R"),
(log |])?X{jz1<1} € Lipy ' (R™) \ BMO(R").

Such function spaces are introduced by Nakai et al. [9], [10], [2]. They
consider more general function spaces, that is, generalized Campanato spaces:

LipZ(R")
= {f £l = sup inf L ! / |f(y) —cldy < OO}
e = B G R B BT Sy |

Our result is the following.




Theorem ([7]). Let ¢ =n/B, 0 <p<oo and 3 —n/q—1<a<n-—n/q.
If 0 < pB—n/qg < 1+min(0,a), then Ig is bounded from K‘”’(R”)
Lipgfn/q (R").
Corollary .

I KOP(R™) — Lips_n/e(R")  if  0<p—n/g<1,

Iy K7,(R") — BMO(R").

Since LY C K, g,p when ¢ < p, Corollary is an extension of Proposition 4.

An outline of the proof of Theorem. Let ¢ = f—n/q. Fixaball Q = B(zg, R)
and we estimate

. (|$0|+R)a/ g
inf ——— Isf(z) — cldx.
o |, 1ol @)~

Let k be the least integer such that @ C B(0,2%). Note that
70| + R ~ 2",
We consider three cases:
(1) @NB(0,27%) #0,

(ii) @ N B(0,2¥2) =0 and R > 2F*,

(ii) @ N B(0,257%) = @ and R < 2k
The case (i) or (ii). Note that |Q| > C2*" in both cases. We write

f(x) = f(@)xpo2x+r) + f(T)xepo2r+1) = fi(x) + fa(z).

First we estimate Tgfl. Let ¢; = — f|y|>1 f1(y)/|y|"Pdy. Then Tgfl (x) —
c1 = Igfi(x), and we have

/Q Is fu(@)lda < C2HO0D QP £,
and obtain
1 I —Q
it [, T = ke < Ol + Rl
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Next we estimate fgfg . Let o = fﬁf($0)_ For any z € Q,
|Tﬁf2($) —c| <CR Qk(ﬁ_n/q_a_l)”f||i{g’pv

and we have

1 T. —x
W/QUﬁfz — ealdw < C(lwol + R) ™| fll g

The case (iii). We write

f(r) = f(iE)XB(:cozR) + f(iU)XE{2k—3<|:c|§2k+1} + f($)X{2k—3<|x|§2k+1}\B(xo,2R)
=: fl(SL’) + fz(flf) + f3(1’)

First we estimate Tgfl. Let ¢; = — f|y|>1 f1()/|y|"Pdy. Then we have

[ i) = aldn < €27 Q10 g,
Q
because B(xg,2R) C {x;2"3 < |z| < 28*1}. Therefore we obtain
1 — —Q
Q[+ /Q (s f1(z) — aldr < C(lzo| + B) (| f| goor-

Next we estimate 1, afa . Let co = I, 3f2(xo). It follows that for any = € @,

ro-erson(] MOy [ )

ylz2k+t |T0 — yl<2h=3 [To —

< CRCD| f] .

Since  —n/q— 1 < 0, we obtain

—1 —a
Q[+ /Q (g fa(x) — coldx < C(|zo| + B) (| f| goor-

Finally we estimate Zg fz . Let ¢35 = Zg f3(zg). It follows that for any
T € Q,

I fs(x) — cal < CRPM127% £l oo,

and we obtain

—1 —a
Q[i+/m /Q (s f3(x) — coldx < C(|lzo| + R)™(| f | ggor- m
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