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ABSTRACT. We study persistence properties of solutions to some canonical dis‐

persive models, namely the semi‐linear Schrödinger equation, the k‐generalized
Korteweg‐de Vries equation and the Benjamin‐Ono equation, in weighted Sobolev

spaces H^{s}(\mathbb{R}^{n})\cap L^{2}(|x|^{l}dx) , s, l>0.

1. Introduction

This work is concerned with persistence properties of solutions to some nonlinear

dispersive equations in weighted Sobolev spaces H^{s}(\mathbb{R}^{n})\cap L^{2}(xdx) , s, l>0 . We

shall consider the initial value problems (IVP) associated to the following dispersive
models: the nonlinear Schrödinger (NLS) equation

(1.1) i\partial_{t}u+\triangle u= $\mu$|u|^{a-1}u, t\in \mathbb{R}, x\in \mathbb{R}^{n},  $\mu$=\pm 1, a>1,
the k‐generalized Korteweg‐de Vries (k‐gKdV) equations

(1.2) \partial_{t}u+\partial_{x}^{3}u+u^{k}\partial_{x}u=0, t, x\in \mathbb{R}, k\in \mathbb{Z}^{+},
and the Benjamin‐Ono (BO) equation

(1.3) \partial_{t}u+\mathcal{H}\partial_{x}^{2}u+u\partial_{x}u=0, t, x\in \mathbb{R},
where \mathcal{H} denotes the Hilbert transform

(1.4) \displaystyle \mathcal{H}f(x)=\frac{1}{ $\pi$}\lim_{ $\epsilon$\downarrow 0}\int_{|y|\geq $\epsilon$}\frac{f(x-y)}{y}dy=-i(\mathrm{s}\mathrm{g}\mathrm{n}( $\xi$)\hat{f}( $\xi$))^{\vee}(x) .

These models have been widely studied in several contexts. For example, the

\mathrm{K}\mathrm{d}\mathrm{V}k=1 in (1.2) was first deduced as a model for long waves propagating in

a channel. Subsequently the \mathrm{K}\mathrm{d}\mathrm{V} and its modified form (k=2 in (1.2)) were

found to be relevant in a number of different physical systems. Also they have

been studied because of their relation to inverse scattering theory [20]. The NLS

arises as a model in several different physical phenomena (see [61] and references

therein). In the particular, case n=1 and a=3 it has been shown to be completely
integrable [66]. The BO equation (1.3) was first deduced in [3] and [54] as a model

for long internal gravity waves in deep stratified fluids. It was also shown that it is

a completely integrable system (see [2], [12] and references therein).
We recall the notion of well posedness given in [34] : the IVP is said to be locally

well posed (LWP) in the function space X if for each u_{0}\in X there exist T>0 and

a unique solution  u\in C([-T, T] : X)\cap =Y_{T} of the equation, with the map data

\rightarrow solution being locally continuous from  X to Y_{T} . This notion of LWP includes

the �persistent� property, i.e. the solution describes a continuous curve on X . In

particular, it implies that the solution flow defines a dynamical system in X . When
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T can be taken arbitrarily large one says that the corresponding IVP is globally
well posed (GWP) in X.

First, we shall study the Schrödinger equation (1.1).

2. The Schrödinger equation (1.1)

The results in [9], [10], [21], [35], and [65] yield the following LWP theory in the

classical Sobolev spaces H^{s}(\mathbb{R}^{n}) for the IVP associated to the NLS equation (1.1).

Theorem A. Let s_{c}=n/2-2/(a-1) .

(I) If s>s_{c}, s\geq 0 ,
with [s]\leq a-1 if a is not an odd integer, then for

each u_{0}\in H^{s}(\mathrm{R}) there exist T=T(\Vert u_{0}\Vert_{s,2})>0 and a unique solution

u=u(x, t) of the IVP associated to the NLS equation (1.1) with

(2.1) u\in C([-T, T] : H^{s}(\mathbb{R}^{n}))\cap L^{q}([-T, T] : L_{s}^{p} =Z_{T}^{s}.

Moreover, the map  data\rightarrow solution is locally continuous fr om  H^{s}(\mathbb{R}^{n}) into

Z_{T}^{s}.
(II) If s=s_{c} and s\geq 0 ,

then part (I) holds with T=T(u_{0})>0.

Notations: (a) for  1<p<\infty and  s\in \mathbb{R}

(2.2) L_{s}^{p}(\mathbb{R}^{n})\equiv(1-\triangle)^{-s/2}L^{p}(\mathbb{R}^{n})=J^{-s/2}L^{p}(\mathbb{R}^{n}) , \Vert\cdot\Vert_{s,p}\equiv\Vert(1-\triangle)^{s}\cdot\Vert_{p},
with L_{s}^{2}() =H^{s}(\mathbb{R}^{n}) ,

(b) the pair of indices (q,p) in (2.1) are given by the Strichartz estimates (see
[60] and [21]):

(2.3) (\displaystyle \int_{-\infty}^{\infty}\Vert e^{it\triangle}u_{0}\Vert_{p}^{q}dt)^{1/q}\leq c\Vert u_{0}\Vert_{2},
where

\displaystyle \frac{n}{2}=\frac{2}{q}+\frac{n}{p},  2\leq p\leq\infty ,
if  n=1, 2\leq p<2n/(n-2) ,

if n\geq 2.

The value s_{c}=n/2-2/(a-1) in Theorem A is determined by a scaling
argument : if u(x, t) is a solution of the IVP associated to the NLS equation

(1.1), then u_{ $\lambda$}(x, t)=$\lambda$^{2/(a-1)}u( $\lambda$ x, $\lambda$^{2}t) satisfies the same equation with data

u_{ $\lambda$}(x, 0)=$\lambda$^{2/(a-1)}u_{0}( $\lambda$ x) . Hence, for s\in \mathbb{R}

(2.4) \Vert D^{s}u_{ $\lambda$}(x, 0)\Vert_{2} =c $\xi$ û  $\lambda$ ( $\xi$, 0)\Vert_{2}=c$\lambda$^{2/(a-1)+s-n/2}\Vert u_{0}\Vert_{2},
is independent of  $\lambda$ when  s=s_{c} . In Theorem A the case (I) corresponds to the

sub‐critical case and (II) to the critical one. In the latter, one has that if \Vert D^{s_{c}}u_{0}\Vert_{2}
is sufficiently small, then the local solution extends globally in time.

For the optimality of the results in Theorem A see [4], [11], and [40].
Formally, solutions of the NLS equation (1.1) satisfies the following conservation

laws:

\Vert u(\cdot, t)\Vert_{2}=\Vert u_{0}\Vert_{2},
and

E(t)=\displaystyle \int_{\mathbb{R}^{n}}(|\nabla_{x}u(x, t)|^{2}+\frac{2 $\mu$}{a+1}|u(x, t)|^{a+1})dx=E(0) .

Using these conservation laws one can extend the LWP results in Theorem A to a

GWP one, for details we refer to [6], [64], and references therein.
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Concerning the persistence properties in weighted Sobolev spaces of solutions of

the IVP associated to the NLS equation (1.1) one has the following result established

in [26], [27], and [28].

Theorem B. In addition to the hypothesis in Theorem A assume u_{0}\in L^{2}(xdx) ,

m\in \mathbb{Z}^{+} with m\leq a-1 if a is not an odd integer.

(I) If s\geq m ,
then

(2.5) u\in C([-T, T] : H^{s}\cap L^{2}(|x|^{2m}dx))\cap L^{q}([-T, T] : L_{s}^{p}\cap L^{p}(|x|^{2m}dx)=Z_{T}^{s,m}
(II) If 1\leq s<m ,

then (2.5) holds with [s] instead of m and

(2.6) $\Gamma$^{ $\beta$}u=(x_{j}+2it\partial_{x_{j}})^{ $\beta$}u\in C([-T, T] : L^{2})\cap L^{q}([-T, T] : L^{p}) ,

for any  $\beta$\in(\mathbb{Z}^{+})^{n} with | $\beta$|\leq m.

The proof of Theorem \mathrm{B} (see [26], [27], [28]) combines the operators (�vector
fields�)

(2.7) $\Gamma$_{j}=x_{j}+2it\partial_{x_{j}}=e^{i|x|^{2}/4t}2it\partial_{x_{j}}(e^{-i|x|^{2}/4t}\cdot)=e^{it\triangle}x_{j}e^{-it\triangle}\cdot, j=1, n,

their commutative relation

(2.8) (i\partial_{t}+\triangle)$\Gamma$_{j}u=$\Gamma$_{j}(i\partial_{t}u+\triangle u) , j=1, n,

so that e^{it\triangle}(x_{j}u_{0})=$\Gamma$_{j}e^{it\triangle}u_{0} ,
and the structure of the nonlinearity in (1.1).

It should be remarked that Theorem \mathrm{B} shows that the amount of decay in

L^{2}(xdx) preserved by the solution depends on the regularity in the Sobolev

scale H^{s}, s\geq 0 ) of the data, and the non‐preserved decay is transformed in �local

regularity�. In particular, (2.6) tells us that t^{ $\beta$}\partial_{x}^{ $\beta$}u\in L_{loc}^{2}(\mathbb{R}^{n}) ,
for | $\beta$|\leq m and

t\in[-T, T]-\{0\}.
Also one notices that the power of the weight m in Theorem \mathrm{B} is assumed to be

an integer. In [53] we were able to remove this restriction.

Theorem 1. In addition to the hypothesis in Theorem A assume u_{0}\in L^{2}(xdx) ,

m>0 with [m]\leq a-1 if a is not an odd integer.

(I) If s\geq m,

(2.9) u\in C([-T, T] : H^{s}\cap L^{2}(|x|^{2m}dx))\cap L^{q}([-T, T] : L_{s}^{p}\cap L^{p}(|x|^{2m}dx)=Z_{T}^{s,m}
(II) If 1\leq s<m ,

then (2.9) holds with [s] instead of m and

(2.10) $\Gamma$^{b}$\Gamma$^{ $\beta$}u t)\in C([-T, T] : L^{2})\cap L^{q}([-T, T] : L^{p}) ,

where $\Gamma$^{b}=e^{i|x|^{2}/4t}2^{b}t^{b}D^{b}(e^{-i|x|^{2}/4t}\cdot) with | $\beta$|=[m] and b=m-[m].
In particular,

(2.11) t^{m}\partial_{x}^{ $\beta$}D^{b}u t)\in L_{loc}^{2}(\mathbb{R}^{n}) , | $\beta$|=[m], b=m-[m], t\in(-T, T)-\{0\}.

As an application of this result we also prove that the persistence property in

these weighted spaces can only hold for regular enough solutions. More precisely:

Lemma 1. Let u be a solution of the IVP associated to the NLS equation (1.1)
provided by Theorem A. If there exist two times t_{1}, t_{2}\in[0, T], t_{1}\neq t_{2} such that

(2.12) |x|^{m}u(t_{1}) , |x|^{m}u(t_{2})\in L^{2}(\mathbb{R}^{n}) , m>s,
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m\leq a-1 if a is not an odd integer, then

u\in C([-T, T] : H^{m}\cap L^{2}(|x|^{2m}dx))\cap L^{q}([-T, T] : L_{m}^{p}\cap L^{p}(|x|^{2m}dx) .

Moreover, if a is an odd integer and (2.12) holds for all m\in \mathbb{Z}^{+} ,
then

(2.13) u\in C([-T, T] : \mathrm{S}(\mathbb{R}^{n})) .

A key ingredient in our proof was an appropriate version of the Leibnitz rule for

homogeneous fractional derivatives of order b\in \mathbb{R}

(2.14) D^{b}f(x)\equiv((2 $\pi$| $\xi$|)^{b}\hat{f})^{\vee}(x)
deduced as a direct consequence of the characterization of the L_{s}^{p}() spaces (see
(2.2)) given in [58].

Theorem D. Let b\in(0,1) and  2n/(n+2b)\leq p<\infty . Then  f\in L_{b}^{p}() if and

only if

( a ) f\in L^{p}(\mathbb{R}^{n}) ,

(2.15)

( b ) \displaystyle \mathcal{D}^{b}f(x)=(\int_{\mathbb{R}^{n}}\frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2b}}dy)^{1/2}\in L^{p}(\mathbb{R}^{n}) ,

with

(2.16) \Vert f\Vert_{b,p}=\Vert(1-\triangle)^{b/2}f\Vert_{p}\simeq\Vert f\Vert_{p}+\Vert D^{b}f\Vert_{p}\simeq\Vert f\Vert_{p}+\Vert \mathcal{D}^{b}f\Vert_{p}.

For the proof of Theorem \mathrm{D} we refer to [58], where the optimality of the lower

bound 2n/(n+2b) was also established. The case p=2n/(n+2b) was proven

in [18]. For a detailed discussion on the different characterizations of the L_{s}^{p}(\mathbb{R}^{n})
spaces we refer to [58] and [59].

It is easy to see that for p=2 and b\in(0,1) one has

(2.17) \Vert \mathcal{D}^{b}f\Vert_{2}\simeq\Vert D^{b}f\Vert_{2},

(2.18) \Vert \mathcal{D}^{b}(fg)\Vert_{2}\leq c(\Vert f\mathcal{D}^{b}g\Vert_{2}+\Vert g\mathcal{D}^{b}f\Vert_{2}) ,

and for p>2n/(n+2b)

(2.19) \mathcal{D}^{b}(fg)(x)\leq\Vert f\Vert_{\infty}\mathcal{D}^{b}g(x)+|g(x)|\mathcal{D}^{b}f(x) .

We observe that in (2.18) both terms on the right hand side are estimates on

the product of functions. We do not know whether or not (2.18) still holds with

D^{b} instead of \mathcal{D}^{b},\mathrm{o}\mathrm{r} for p\neq 2
Theorem \mathrm{D} (i.e. the estimates (2.18)-(2.17) ) allows us to get the following in‐

equalities:
-(\mathrm{i}) Let b\in(0,1) . For any t>0

(2.20) \mathcal{D}^{b}(e^{it|x|^{2}})\leq c(t^{b/2}+t^{b}|x|^{b}) .

-(\mathrm{i}\mathrm{i}) Let b\in(0,1) . Then there exists c=c(b)>0 such that for any t\in \mathbb{R}

(2.21) \Vert|x|^{b}e^{it\triangle}f\Vert_{2}\leq c(t^{b/2}\Vert f\Vert_{2}+t^{b}\Vert D^{b}f\Vert_{2}+\Vert|x|^{b}f\Vert_{2}) .

‐(iii) Defining the operator $\Gamma$^{b} for b>0 as in Theorem 1 (see (2.10))

(2.22) $\Gamma$^{b}\equiv$\Gamma$^{b}(t)=e^{i|x|^{2}/4t}2^{b}t^{b}D^{b}(e^{-i|x|^{2}/4t}\cdot) ,
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one has for b>0 and t\in \mathbb{R} that

(2.23) $\Gamma$^{b}(t)e^{it\triangle}f=e^{it\triangle}(|x|^{b}f) ,

and consequently

(2.24) $\Gamma$^{b}(t)f=e^{it\triangle}(|x|^{b}e^{-it\triangle}f) .

In addition to the estimates (2.20)-(2.24) the following two lemmas were essential

in the proof of Theorem 1 given in [53]. The first is a version of the Gagliardo‐
Nirenberg inequality for fractional derivatives.

Lemma 2. Let 1<q, p,  r<\infty and  0< $\alpha$< $\beta$ . Then

(2.25) \Vert D^{ $\alpha$}f\Vert_{p}\leq c\Vert f\Vert_{r}^{1- $\theta$}\Vert D^{ $\beta$}f\Vert_{q}^{ $\theta$},
with

(2.26) \displaystyle \frac{1}{p}-\frac{ $\alpha$}{n}=(1- $\theta$)\frac{1}{r}+ $\theta$(\frac{1}{q}-\frac{ $\beta$}{n}) ,  $\theta$\in[ $\alpha$/ $\beta$, 1].
The second is an interpolation estimate, which as Lemma 2, is a consequence of

the three line theorem.

Lemma 3. Let a, b>0 . Assume that J^{a}f=(1-\triangle)^{a/2}f\in L() and

\{x\}^{b}f=(1+|x|^{2})^{b/2}f\in L^{2}(\mathbb{R}) . Then forany  $\theta$\in(0,1)

(2.27) \Vert J^{ $\theta$ a}(\{x\}^{(1- $\theta$)b}f)\Vert_{2}\leq c\Vert\{x\}^{b}f\Vert_{2}^{1- $\theta$}\Vert J^{a}f\Vert_{2}^{ $\theta$}.

For the study of persistence properties of the solution to the IVP associated to

the NLS equation (1.1) in exponential weighted spaces we refer to [16], [17], and

references therein.

Next, we shall consider the k‐gKdV equation (1.2).

3. THE k‐generalized KORTEWEG‐DE Vries equation (1.2)

The following theorem describes the LWP theory in the classical Sobolev spaces

H^{s}(\mathbb{R}) for the IVP associated to the kgKdV equation (1.2).

Theorem E. (I) The IVP associated to the equation (1.2) with k=1 is LWP

in H^{s}(\mathbb{R}) for s\geq s_{1}^{*}=-3/4.
(II) The IVP associated to the equation (1.2) with k=2 is LWP in H^{s}(\mathbb{R}) for

s\geq s_{2}^{*}=1/4.
(III) The IVP associated to the equation (1.2) with k=3 is LWP in H^{s}(\mathbb{R}) for

s\geq s_{3}^{*}=-1/6.
(IV) The IVP associated to the equation (1.2) with k\geq 4 is LWP in H^{s}(\mathbb{R}) for

s\geq s_{k}^{*}=(k-4)/2k.
The result s>-3/4 for the case k=1 was established in [39]. The limiting

value s=-3/4 was obtained in [11], [24], and [42]. The result for the case k=2

was proven in [38]. The result s>-1/6 for the case k=3 was given in [22]. The

limiting value s=-1/6 was obtained in [63]. The proof of the cases k\geq 4 was

given in [38].
The above local results apply to both real and complex valued functions.

The scaling argument described in (2.4) affirms that LWP should hold for  s\geq

 s_{k}=(k-4)/2k . As Theorem \mathrm{E} shows this is the case for k\geq 3 (where for s_{k}=s_{k}^{*}
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one has T=T(u_{0}) ). However, in the cases k=1 and k=2 the values suggested
by the scaling do not seem to be reachable in the Sobolev scale, see [40], and [11].
For the sharpness of these results we refer to [4], [40], and [11].

Real valued solutions of the k‐gKdV equation (1.2) formally satisfy at least three

conservation laws:

I_{1}(u)=\displaystyle \int_{-\infty}^{\infty}u(x, t)dx, I_{2}(u)=\int_{-\infty}^{\infty}(u(x, t))^{2}dx,
I3 (u)=\displaystyle \int_{-\infty}^{\infty}((\partial_{x}u(x, t))^{2}-\frac{2}{(k+1)(k+2)}u(x, t)^{k+2})dx.

It was proven in [13] that for k=1 and k=2 one has global well posedness for

s>-3/4 and s>1/4 , respectively. The global cases for k=1, s=-3/4 and

k=2, s=1/4 were proven in [24] and [42]. For the case k=3 the global well

posedness is known for s>-1/42 ,
see [23].

For k=4 blow up of �large� enough solutions was proven in [48]. Similar results

for k\geq 5 remain an open problem.
Concerning the persistence of these solutions in weighted Sobolev spaces one has

the following result found in [34].

Theorem F. Let m\in \mathbb{Z}^{+} . Let  u\in C([-T, T] : H^{s}(\mathbb{R}))\cap with  s\geq 2m be

the solution of the IVP associated to the equation (1.2) provided by Theorem E. If
u(x, 0)=u_{0}(x)\in L^{2}(xdx) ,

then

u\in C([-T, T] : H^{s}(\mathbb{R})\cap L^{2}(|x|^{2m}dx)) .

We recall that if for a solution u\in C([0, T] : H^{s} of (1.2) one has that

\exists t_{0}\in[0, T] such that u t_{0} ) \in H^{s'} s'>s ,
then u\in C([0, T] : H^{s'} So we

shall mainly consider the most interesting case s=2m in Theorem F.

The proof of Theorem \mathrm{F} combines the operator

 $\Gamma$=x+3t\partial_{x}^{2},
and its commutative relation with the linear part L=\partial_{t}+\partial_{x}^{3} of the equation (1.2)
i.e.

 $\Gamma$(\partial_{t}+\partial_{x}^{3})v=(\partial_{t}+\partial_{x}^{3}) $\Gamma$ v.
As in the case of the NLS equation (1.1) we would like to extend Theorem \mathrm{F}

where m\in \mathbb{Z}^{+} to the case m\in \mathbb{R}, m>0 . Our first result in this direction is the

following:

Theorem 2. Let m\geq 0 . Let  u\in C([-T, T] : H^{m}(\mathbb{R}))\cap with  m\displaystyle \geq\max\{s_{k}^{*};0\}
be the solution of the IVP associated to the equation (1.2) provided by Theorem E.

If u(x, 0)=u_{0}(x)\in L^{2}(xdx) ,
then

(I) If m<1 ,
then for any  $\epsilon$>0

u\in C([-T, T] : H^{m}(\mathbb{R})\cap L^{2}(|x|^{m- $\epsilon$}dx)) .

(II) If m\geq 1 ,
then

u\in C([-T, T] : H^{m}(\mathbb{R})\cap L^{2}(|x|^{m}dx)) .

In [51] and [52] the loss of power  $\epsilon$>0 in the weight when m<1 was removed for

the equation (1.2) with non‐linearity k=2
, 4, 5, More precisely, the following

optimal result was established in [52]:
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Theorem 3. Let m\displaystyle \geq\max\{s_{k}^{*};0\} with k=2
, 4, 5, Let u\in C([-T, T] :

 H^{m}(\mathbb{R}))\cap be the solution of the IVP associated to the equation (1.2) provided
by Theorem E. If  u(x, 0)=u_{0}(x)\in L^{2}(xdx) ,

then

u\in C([-T, T] : H^{m}(\mathbb{R})\cap L^{2}(|x|^{m}dx)) .

It should be remarked that in the cases k=1 and k=3 the proof of the

local theory in Theorem \mathrm{E} is based on the spaces X_{s,b} introduced in the context

of dispersive equations in [5]. For all the other powers k one has a local existence

theory based on a contraction principle in a spaces defined by mixed norms of the

type L^{p}(\mathbb{R} : L^{q}([0, T or L^{q}([0, T] : L (see [38]). This is the main difficulty in

extending the optimal result in Theorem 3 to the powers k=1 and k=3 in (1.2).

Proof of Theorem 2

We shall sketch the ideas in the proof of Theorem 2 and refer to [51] and [52] for

the justification of the argument and further details.

Following Kato�s idea in [34] to establish the local smoothing effect (i.e. multiply‐
ing the equation (1.2) by u(x, t) $\phi$(x) , integrating the result, and using integration
by parts) one formally gets the identity

(3.1) \displaystyle \frac{d}{dt}\int u^{2} $\phi$ dx+3\int(\partial_{x}u)^{2}$\phi$'dx-\int u^{2}$\phi$^{(3)}dx-\frac{2}{k+2}\int u^{k+2}$\phi$'dx=0.
Let us consider first the case \displaystyle \max\{s_{k}^{*};0\}\leq m<1.
From the local theory one has the following estimates for the solution u=u(x, t)

(3.2) \displaystyle \sup_{x\in \mathbb{R}}(\int_{0}^{T}|\partial_{x}D_{x}^{m}u(x, t)|^{2}dt)^{1/2}<c_{T}\Vert J^{m}u_{0}\Vert_{2}=c_{T}\Vert u_{0}\Vert_{m,2},
(the sharp form of the local smoothing effect found in [37]-[38] ), and

\displaystyle \Vert D_{x}^{m}u\Vert_{L_{x}^{2}L_{T}^{2}}=(\int_{-\infty}^{\infty}\int_{0}^{T}|D_{x}^{m}u(x, t)|^{2}dtdx)^{1/2}(3.3)

\displaystyle \leq T^{1/2}\sup_{t\in[0,T]}\Vert D_{x}^{m}u(t)\Vert_{2}<c_{T}\Vert D^{m}u_{0}\Vert_{2}\leq c_{T}\Vert u_{0}\Vert_{m,2}.
Now, we consider the extensions of the estimates in (3.2)-(3.3) to the operators

D_{x}^{1+m+iy} and D_{x}^{m+iy}, y\in \mathbb{R} respectively. First, in the linear case one has the

estimates

\Vert D_{x}^{m+1+iy}v\Vert_{L_{x}^{\infty}L_{T}^{2}}\leq c_{T}\Vert D^{m}v_{0}\Vert_{2},
(3.4)

\Vert D_{x}^{m+iy}v\Vert_{L_{x}^{2}L_{T}^{2}}\leq c_{T}\Vert D^{m}v_{0}\Vert_{2},
for

(3.5) v(x, t)=U(t)v_{0}(x)=c\displaystyle \int_{-\infty}^{\infty}e^{ix $\xi$}e^{it$\xi$^{3}}\hat{v}_{0}( $\xi$)d $\xi$.
To apply the three line theorem we consider the function F(z) defined on  S=\{z\in
\mathbb{C}:\Re(z)\in[0 ,

1 ]\}

F(z)=\displaystyle \int_{-\infty}^{\infty}\int_{0}^{T}D_{x}^{s(z)}v(x, t) $\phi$(x, z)f(t)dtdx,
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where

s(z)=(1-z)(1+m)+\mathrm{z}m, 1/q(z)=(1-z)+z/2, q=2/(2-m) ,

 $\phi$(x, z)=|g(x)|^{q/q(z)}\displaystyle \frac{g(x)}{|g(x)|} ,
with \Vert g\Vert_{L_{x}^{2/(2-m)}}=\Vert f\Vert_{L^{2}([0,T])}=1,

which is analytic on the interior of S . So using that

\Vert $\phi$(\cdot, 0+iy)\Vert_{1}=\Vert $\phi$(\cdot, 1+iy)\Vert_{2}=1,
one gets that

\Vert\partial_{x}v\Vert_{L_{x}^{2/m}L_{T}^{2}}\leq c\Vert D_{x}v\Vert_{L_{x}^{2/m}L_{T}^{2}}
(3.6)

\displaystyle \leq c\sup_{y\in \mathbb{R}}\Vert D_{x}^{1+m+iy}v\Vert_{L_{x}^{\infty}L_{T}^{2}}^{1-m}\sup_{y\in \mathbb{R}}\Vert D_{x}^{m+iy}v\Vert_{L_{x}^{2}L_{T}^{2}}^{m}\leq c_{T}\Vert D^{m}v_{0}\Vert_{2}.
Inserting the estimate (3.6) in the proof of the local well posedness one obtains

that

(3.7) \Vert\partial_{x}u\Vert_{L_{x}^{2/m}L_{T}^{2}}\leq c_{T}\Vert u_{0}\Vert_{m,2},
for u=u(x, t) solution of the k‐gKdV equation (1.2).

Now taking  $\phi$(x)=\{x\}^{m- $\epsilon$},  $\epsilon$>0 sufficiently small in (3.1), (we recall that

m<1) and integrating in the time interval [0, T] one finds that

\displaystyle \int_{0}^{T}\int_{-\infty}^{\infty}(\partial_{x}u(x, t))^{2}$\phi$'(x)dxdt=c\Vert\partial_{x}u\{x\}^{\frac{m}{2}-\frac{1}{2}-\frac{ $\epsilon$}{2}}\Vert_{L_{x}^{2}L_{T}^{2}}^{2}(3.8)

\leq c\Vert\{x\}^{m/2-1/2- $\epsilon$/2}\Vert_{L_{x}^{2/(1-m)}}\Vert\partial_{x}u\Vert_{L_{x}^{2/m}L_{T}^{2}}\leq c_{m, $\epsilon$}\Vert\partial_{x}u\Vert_{L_{x}^{2/m}L_{T}^{2}},
which combined with (3.6) and (3.1) shows that \{x\}^{m/2- $\epsilon$/2}u(\cdot, t)\in L^{2}() for  t\in

[0, T] . This basically completes the proof of the case m<1.

Next, we shall consider the case m\geq 1.

We take in (3.1)  $\phi$(x)=\{x\}^{m} in (3.1), so we need to estimate the term

\displaystyle \int_{-\infty}^{\infty}|\partial_{x}u(x, t)|^{2}\{x\}^{m-1}dx=\Vert\partial_{x}u(\cdot, t)\{\cdot\}^{(m-1)/2}\Vert_{L_{x}^{2}}^{2}.
Thus, combining Lemma 3 in the previous section, the preservation of the L^{2} ‐norm

of the solution, and Lemma 3 it follows that

\Vert\partial_{x}u(\cdot, t)\{\cdot\}^{(m-1)/2}\Vert_{2}
\leq\Vert\partial_{x}(u(\cdot, t)\{\cdot\}^{(m-1)/2})\Vert_{2}+c\Vert u(\cdot, t)\{\cdot\}^{(m-3)/2}\Vert_{2}

(3.9) \leq\Vert\partial_{x}J^{-1}J(u(\cdot, t)\{\cdot\}^{(m-1)/2})\Vert_{2}+c\Vert u(\cdot, t)\{\cdot\}^{m/2}\Vert_{2}
\leq c\Vert J(u(\cdot, t)\{\cdot\}^{(m-1)/2})\Vert_{2}+c\Vert u(\cdot, t)\{\cdot\}^{m/2}\Vert_{2}

\leq c\Vert J^{m}u(\cdot, t)\Vert_{2}^{1/m}\Vert u(\cdot, t)\{\cdot\}^{m/2}\Vert_{2}^{1-1/m}+c\Vert u(\cdot, t)\{\cdot\}^{m/2}\Vert_{2}.
Hence, inserting (3.9) in (3.1), using Young and Gronwall inequalities, the hy‐

pothesis m\geq 1 ,
and the fact that the H^{m}‐norm of the solution is bounded in the

time interval [0, T] one obtains the desired result

\displaystyle \sup_{t\in[0,T]}\Vert\{x\}^{m/2}u(\cdot, t)\Vert_{L^{2}}<\infty.
This completes the sketch of the proof of Theorem 2.
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To finish this section concerning the k‐gKdV equation (1.2) we will make some

comments concerning the proof of Theorem 3 given in [51] and [52]. One of the key
element in that proof is the following commutator estimate:

Lemma 4. Let 0< $\alpha$<1 and  1<p<\infty . Then for functions  f, g : \mathbb{R}\rightarrow \mathbb{C} one

has that

(3.10) \Vert D^{ $\alpha$}(fg)-fD^{ $\alpha$}g\Vert_{p}\leq c\Vert Q_{N}(D^{ $\alpha$}f)\Vert_{L^{\infty}l_{N}^{1}}\Vert g\Vert_{2},
where

\displaystyle \Vert Q_{N}(f)\Vert_{L^{\infty}l_{N}^{1}}\equiv\Vert\sum_{N\in \mathbb{Z}}|Q_{N}(f)|\Vert_{L^{\infty}},
and

Q_{N}(f)(x)=(( $\eta$(\displaystyle \frac{ $\xi$}{2^{N}})+ $\eta$(-\frac{ $\xi$}{2^{N}}))\hat{f}( $\xi$))^{\vee}(x) ,

where  $\eta$\in C_{0}^{\infty}() with supp ( $\eta$)\subseteq[1 , 2, 2 ] so that

\displaystyle \sum_{N\in \mathbb{Z}}( $\eta$(\frac{x}{2^{N}})+ $\eta$(-\frac{x}{2^{N}}))=1 ,
for x\neq 0.

In the proof of Theorem 3 for the case k=2 and m=1/4 (extremal case) given
in [51] Lemma 4 was combined with the inequality

\displaystyle \Vert D_{ $\xi$}^{1/8}Q_{N}(\frac{e^{it$\xi$^{3}}}{(1+$\xi$^{2})^{1/8}})\Vert_{L_{ $\xi$}^{\infty}l_{N}^{1}}<\infty,
to establish the main estimate in the proof.

For the study of persistence properties of the solution to the IVP associated to

the k‐gKdV equation (1.2) in exponential weighted spaces we refer to [41] and [15]
and references therein.

Finally, we shall consider the BO equation (1.3).

4. THE BENJAMIN‐OnO equation (1.3)

The LWP in the Sobolev spaces H^{s}(\mathbb{R}) of the IVP associated to the BO equation
(1.3) has been largely considered: in [1] and [32] LWP was established for s>3/2,
in [56] for s\geq 3/2 ,

in [44] for s>5/4 ,
in [36] for s>9/8 ,

in [62] for s\geq 1 ,
in [7]

for s>1/4 ,
and in [31] LWP was proven in H^{s}(\mathbb{R}) for s\geq 0.

Real valued solutions of the IVP (1.3) satisfy infinitely many conservation laws

(time invariant quantities), the first three are the following:

I_{1}(u)=\displaystyle \int_{-\infty}^{\infty}u(x, t)dx, I_{2}(u)=\int_{-\infty}^{\infty}u^{2}(x, t)dx,
(4.1)

I3 (u)=\displaystyle \int_{-\infty}^{\infty}(|D_{x}^{1/2}u|^{2}-\frac{u^{3}}{3})(x, t)dx,
where D_{x}=\mathcal{H}\partial_{x}.

The k‐conservation law I_{k} provides an a priori estimate of the L^{2} ‐norm of the

derivatives of order (k-2)/2, k>2 of the solution, i.e. \Vert D_{x}^{(k-2)/2}u(t)\Vert_{2} . This

allows one to deduce GWP from LWP results.
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In the BO equation the dispersive effect is described by a non‐local operator
and is significantly weaker than that exhibited by the Korteweg‐de Vries (\mathrm{K}\mathrm{d}\mathrm{V})
equation, i.e. k=1 in (1.2). Indeed, it was proven in [49] that for any s\in \mathbb{R} the

map data‐solution from H^{s}(\mathbb{R}) to C([0, T] : H^{s} is not locally C^{2} ,
and in [45]

that it is not locally uniformly continuous. In particular, this implies that no LWP

results can be obtained by an argument based only on a contraction method.

Consider the weighted Sobolev spaces

(4.2) Z_{s,r}=H^{s}(\mathbb{R})\cap L^{2}(|x|^{2r}dx) ,
and \dot{Z}_{s,r}=\{f\in Z_{s,r} : \hat{f}(0)=0\} s, r\in \mathbb{R}.

In [32] the following results were obtained:

Theorem G. (I) The IVP associated to the BO equation (1.3) is GWP in

Z_{2,2}.
(II) If û0(0) =0 ,

then the IVP associated to the BO equation (1.3) is GWP in

\dot{Z}_{3,3}.
(III) If u(x, t) is a solution of the IVP associated to the BOequation(1.3) such

that u\in C([0, T] : Z_{4,4}) for arbitrary T>0 ,
then u(x, t)\equiv 0.

We observe that the linear part of the equation in (1.3) L=\partial_{t}+\mathcal{H}\partial_{x}^{2} commutes

with the operator  $\Gamma$=x-2t\mathcal{H}\partial_{x} ,
i.e.

[L; $\Gamma$]=L $\Gamma$- $\Gamma$ L=0.

Also, the solution v(x, t) of the associated IVP

(4.3) v(x, t)=U(t)v_{0}(x)=e^{-itH\partial_{x}^{2}}v_{0}(x)=(e^{-it $\xi$| $\xi$|}\hat{v}_{0})^{\vee}(x) ,

satisfies that v t) \in L^{2}(|x|^{2k}dx) , t\in[0, T] ,
when v_{0}\in Z_{k,k}, k\in \mathbb{Z}^{+} for k=

1
, 2, and

\displaystyle \int_{-\infty}^{\infty}x^{j}v_{0}(x)dx=0, j=0 , 1, k-3 ,
if k\geq 3.

In [33] the unique continuation result in Z_{4,4} in Theorem \mathrm{G} was improved:

Theorem I. Let u\in C([0, T] : H^{2} be a solution of the IVP (1.3). If there

exist three diffe rent times t_{1}, t_{2}, t_{3}\in[0, T] such that

(4.4) u t_{j})\in Z_{4,4}, j=1 , 2, 3, then u(x, t)\equiv 0.

As in the previous cases, the goal was to extend the results in Theorem \mathrm{G} and

Theorem I from integer values to the continuum optimal range of indices (s, r) . In

this direction one finds the following results established in [19]:

Theorem 4.

(I) Let s\geq 1, r\in[0, s] ,
and r<5/2 . If u_{0}\in Z_{s,r} ,

then the solution u(x, t) of the

IVP associated to the BO equation (1.3) satisfies that u\in C([0, \infty):Z_{s,r}) .

(II) For s>9/8(s\geq 3/2) , r\in[0, s] ,
and r<5/2 the IVP associated to the BO

equation(1.3) is LWP (GWP resp.) in Z_{s,r}.
(III) If r\in[5./2 , 7/2) and r\leq s ,

then the IVP associated to the BO equation (1.3)
is GWP in Z_{s,r}.

Theorem 5. Let u\in C([0, T] : Z_{2,2}) be a solution of the IVP associated to the BO

equation (1.3). If there exist two diffe rent times t_{1}, t_{2}\in[0, T] such that

(4.5) u t_{j})\in Z_{5/2,5/2}, j=1 , 2, then û0(0) =0, ( so u t)\in\dot{Z}_{5/2,5/2} ).
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Theorem 6. Let u\in C([0, T] : \dot{Z}_{3,3}) be a solution of the IVP (1.3). If there exist

three diffe rent times t_{1}, t_{2}, t_{3}\in[0, T] such that

(4.6) u t_{j})\in Z_{7/2,7/2}, j=1 , 2, 3, then u(x, t)\equiv 0.

We also refer readers to the related works [47], [25], and [43].
Remarks : Theorem 5 and Theorem 6 show that the upper values of r for the

persisitence properties in Z_{s,r} and \dot{Z}_{s,k} in Theorem 4 are optimal. We recall that if

u\in C([0, T] : H^{s} is a solution of the BO equation (1.3) such that \exists t_{0}\in[0, T]
for which u(x, t_{0})\in H^{s'} s'>s ,

then u\in C([0, T] : H^{s'} So it suffices to

consider the most interesting case s=r in (4.2).
The proof of Theorems 6 is based on weighted energy estimates and involves

several inequalities concerning the Hilbert transform \mathcal{H}.

Among them one finds the A_{p} condition introduced in [50].

Definition 1. A non‐negative function w\in L_{loc}^{1}(\mathbb{R}) satisfies the A_{p} inequality with

 1<p<\infty if

(4.7)
 Q intervalsup (\displaystyle \frac{1}{|Q|}\int_{Q}w)(\frac{1}{|Q|}\int_{Q}w^{1-p'})^{p-1}=c(w)<\infty,

where 1/p+1/p'=1.

It was proven in [30] that this is a necessary and sufficient condition for the

Hilbert transform \mathcal{H} to be bounded in L^{p}(w(x)dx) (see [30], ), i.e. w\in A_{p}, 1<

 p<\infty if and only if

(4.8) (\displaystyle \int_{-\infty}^{\infty}|\mathcal{H}f|^{p}w(x)dx)^{1/p}\leq c^{*}(\int_{-\infty}^{\infty}|f|^{p}w(x)dx)^{1/p},
In the case p=2 ,

a previous characterization of w in (4.7) was found in [29].
However, even though the main case is for p=2 ,

the characterization (4.7) will be

the one used in the proof. In particular, one has that in \mathbb{R}

(4.9) |x|^{ $\alpha$}\in A_{p} \Leftrightarrow  $\alpha$\in(-1,p-1) .

In order to justify some of the arguments in the proofs one need some further

continuity properties of the Hilbert transform. More precisely, the proof requires
the constant c^{*} in (4.8) to depend only on c(w) the constant describing the A_{p}
condition (see (4.7)) and on p . In [55] precise bounds for the constant c^{*} in (4.7)
were given which are sharp in the case p=2 and sufficient for the purpose in [19].

It will be essential in the arguments in [19] that some commutator operators

involving the Hilbert transform \mathcal{H} are of �order zero�. More precisely, one shall use

the following estimate: \forall p\in(1, \infty) , l, m\in \mathbb{Z}^{+}\cup\{0\}, l+m\geq 1\exists c=c(p;l;m)>0
such that

(4.10) \Vert\partial_{x}^{l}[\mathcal{H};a]\partial_{x}^{m}f\Vert_{p}\leq c\Vert\partial_{x}^{l+m}a\Vert_{\infty}\Vert f\Vert_{p}.
In the case l+m=1 , (4.10) is Calderón�s first commutator estimate [8]. The case

l+m\geq 2 of the estimate (4.10) was proved in [14].
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