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Abstract

We consider the nonlinear Dirac equations in one spatial dimension and review

various results on global existence of solutions in H^{1} . Depending on the character of

the nonlinear terms, existence of the large‐norm solutions can be extended for all times.

Global existence of the small‐norm solutions is proved for the most general nonlinear

Dirac equations with cubic and higher‐order nonlinear terms. Integrability is used to

find conditions that no solitons occur in the Cauchy problem for the massive Thirring
model with small initial data in L^{2}.

1 Introduction

The goal of this article is to survey a number of recent results on global well‐posedness of

the nonlinear Dirac equations in the space of one dimension. The nonlinear Dirac equations
are known for long time in quantum mechanics and relativity theory [7, 22]. Recently
these equations were used to model other physical systems such as photonic crystals and

BoseEinstein condensates in optical lattices [1, 17, 21].
The nonlinear Dirac equations are similar to the nonlinear KleinGordon equation on

one hand and to the nonlinear Schrödinger equation on the other hand. In the former

case, the reduction to the nonlinear KleinGordon equation is possible for a special form of

nonlinear terms in the nonlinear Dirac equations as the linear dispersion relation between

the two models are identical. In the latter case, the reduction to the nonlinear Schrödinger
equation holds in the asymptotic limit using an envelope wave approximation near one

branch of the wave spectrum in the nonlinear Dirac equations. Since analysis of global well‐

posedness in the nonlinear Klein‐Gordon and nonlinear Schrödinger equations has been

booming in the last ten years, it is not surprising that the interest of harmonic analysts
turns recently to the nonlinear Dirac equations.

The organization of this article is as follows. Section 2 sets up the nonlinear Dirac

equations and reviews a number of physically relevant models. Global well‐posedness in H^{1}
is studied in Section 3 using apriori estimates as in Goodman et al. [6]. We show that the

nonlinear Dirac equations with a special structure of nonlinear terms are globally well‐posed
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even for large powers of the nonlinear terms. This result is different from the behavior of

the nonlinear Schrödinger equation.
Section 4 deals with global solutions for small initial data in H^{1} using analysis in

Strichartz spaces as in Pelinovsky & Stefanov [18]. We prove the global existence of small‐

norm solutions for the nonlinear Dirac equations with quintic and higher‐order nonlinear

terms.

The nonlinear Dirac equations with cubic terms are considered in Section 5. The decay
of small‐norm solutions to zero is proved using the recent results of Hayashi & Naumkin

[8, 9]. In Section 6, we discuss the special role of the integrable version of the nonlinear Dirac

equations known as the massive Thirring model [22], for which global well‐posedness in L^{2}
was proved recently by Candy [2]. Using the formalism of the inverse scattering transform,
we show that small initial data in L^{2} are associated to purely continuous spectrum of the

Lax operator and admits no solitons in the long‐time asymptotics.
Acknowledgments: Part of this work was done during the visits of the author to

University of British Columbia and the Kyoto University in 2010. The author would like

to thank K. Nakanishi and T.P. Tsai for useful discussions regarding this article.

2 Model

Let us consider the nonlinear Dirac equations

\left\{\begin{array}{l}
i(u_{t}+u_{x})+v=\partial_{\overline{u}}W(u, v) ,\\
i(v_{t}-v_{x})+u=\partial_{\overline{v}}W(u, v) ,
\end{array}\right. (2.1)

where (x, t)\in \mathbb{R}^{2}, (u, v)\in \mathbb{C}^{2} ,
and W(u, v) : \mathbb{C}^{2}\rightarrow \mathbb{R} is a nonlinear function which satisfies

the following three conditions:

\bullet symmetry  W(u, v)=W(v, u) ;

\bullet gauge invariance  W(e^{i $\theta$}u, e^{i $\theta$}v)=W(u, v) for any  $\theta$\in \mathbb{R} ;

\bullet polynomial in (u, v) and (\overline{u}, v

The nonlinear Dirac equations can be rewritten in the abstract evolutionary form,

i\partial_{t}\mathrm{u}=\mathcal{H}\mathrm{u}+\mathrm{f}(\mathrm{u}) , \mathcal{H}=\left\{\begin{array}{ll}
-i\partial_{x} & -1\\
-1 & i\partial_{x}
\end{array}\right\}, \mathrm{u}=\left\{\begin{array}{l}
u\\
v
\end{array}\right\}, \mathrm{f}(\mathrm{u})=\left\{\begin{array}{l}
\partial_{\overline{u}}W(u,v)\\
\partial_{\overline{v}}W(u,v)
\end{array}\right\} . (2.2)

A homogeneous quartic polynomial W(u, v) satisfying the three properties above is

characterized by Chugunova & Pelinovsky [3],

W=$\alpha$_{1}(|u|^{4}+|v|^{4})+$\alpha$_{2}|u|^{2}|v|^{2}+$\alpha$_{3}(\partial v+u\overline{v})^{2}+$\alpha$_{4}(|u|^{2}+|v|^{2})(\overline{u}v+uv (2.3)

where ($\alpha$_{1}, $\alpha$_{2}, $\alpha$_{3}, $\alpha$_{4})\in \mathbb{R}^{4} are numerical coefficients.

2



The standard example of the nonlinear Dirac equations with

W= $\alpha$(|u|^{2}+|v|^{2})^{2}+2 $\alpha$|u|^{2}|v|^{2},  $\alpha$\in \mathbb{R} , (2.4)

occurs in the context of periodic dielectric materials under the Bragg resonance [21]. The

account of a zero‐mean periodic modulation of the nonlinear refractive index gives the

nonlinear Dirac equations with

W= $\alpha$(\overline{u}v+u\overline{v})(|u|^{2}+|v|^{2})+ $\beta$((\partial v+u\overline{v})^{2}-2|u|^{2}|v|^{2}) , (2.5)

where  $\alpha$\in \mathbb{R} and  $\beta$\in \mathbb{R} are proportional to Fourier coefficients of the nonlinear refractive

index [1].
Two models are relevant for general relativity: the massive Thirring model with W=

4|u|^{2}|v|^{2}[22] and the massive GrossNeveu model with W=2(\partial v+u\overline{v})^{2}[7] . Under the

following change of variables,

 $\psi$=T\mathrm{u}, \mathrm{g}=T\mathrm{f}, T=\left\{\begin{array}{ll}
1 & -1\\
-i & -i
\end{array}\right\} , (2.6)

the nonlinear Dirac equation (2.2) can be written in the equivalent form

i\partial_{t} $\psi$=\mathcal{M} $\psi$+\mathrm{g}, \mathcal{M}=\left\{\begin{array}{ll}
1 & \partial_{x}\\
-\partial_{x} & -1
\end{array}\right\} . (2.7)

If  $\psi$=( $\psi$,  $\phi$) , system (2.7) can be written as follows: the massive Thirring model is

\left\{\begin{array}{l}
i$\psi$_{t}- $\psi-\phi$_{x}=($\psi$^{2}+$\phi$^{2})\overline{ $\psi$},\\
i$\phi$_{t}+ $\phi$+$\psi$_{x}=($\psi$^{2}+$\phi$^{2})\overline{ $\phi$},
\end{array}\right. (2.8)

and the massive GrossNeveu model is

\left\{\begin{array}{l}
i$\psi$_{t}- $\psi-\phi$_{x}=($\psi$^{2}-$\phi$^{2}) $\psi$,\\
i$\phi$_{t}+ $\phi$+$\psi$_{x}=($\phi$^{2}-$\psi$^{2}) $\phi$,
\end{array}\right. (2.9)

Thus, we see that all coefficients of the general quartic potential (2.3) have physically
relevant applications. Note also that W may have sixth‐order and higher‐order terms, as

in the context of the Feshbach resonance for BoseEinstein condensates [19], where

W= $\alpha$(|u|^{2}+|v|^{2})|u|^{2}|v|^{2},  $\alpha$\in R.

Local existence of solutions of the nonlinear Dirac equations (2.2) in Sobolev space

 H^{s}(\mathrm{R}) can be proved with standard methods using the Duhamel formulation and the fixed‐

point arguments [4, 6]. If \mathrm{u}_{0}\in H^{s}(\mathrm{R}) for a fixed s>\displaystyle \frac{1}{2} ,
then there exists a T>0 such that

the nonlinear Dirac equations (2.2) admits a unique solution

\mathrm{u}(t)\in C([0, T], H^{s}(\mathbb{R}))\cap C^{1}([0, T], H^{s-1}(\mathbb{R})) ,

where \mathrm{u}(t) depends continuously on the initial data \mathrm{u}(0)=\mathrm{u}_{0}.
In what follows, we review results on global well‐posedness of general nonlinear Dirac

equations (2.1) in some subspaces of H^{1}(\mathrm{R}) or L^{2}(\mathbb{R}) .
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3 Global well‐posedness in H^{1}

There exist three conserved quantities of the nonlinear Dirac equations (2.1) corresponding
to Hamiltonian H

,
momentum P

,
and charge Q,

H=\displaystyle \frac{i}{2}\int_{\mathbb{R}}(u_{x}\overline{u}-u\overline{u}_{x}-v_{x}\overline{v}+v\overline{v}_{x})dx+\int_{\mathbb{R}}(v\overline{u}+u\overline{v}-W(u, v))dx , (3.1)

P=\displaystyle \frac{i}{2}\int_{\mathbb{R}}(u\overline{u}_{x}-u_{x}\overline{u}+v\overline{v}_{x}-v_{x}\overline{v})dx , (3.2)

and

Q=\displaystyle \int_{\mathbb{R}}(|u|^{2}+|v|^{2})dx . (3.3)

These conserved quantities are well defined for a local solution in H^{1}(\mathrm{R}) thanks to the

Banach algebra of H^{1}(\mathrm{R}) with respect to multiplication.
Unlike the nonlinear Schrödinger equation, the Hamiltonian H is not useful for analysis

of global well‐posedness because the quadratic part of H is sign‐indefinite. Nevertheless,
for a special nonlinear function W(u, v) ,

local solutions can be extended to global solutions

for all  t\in R. The following theorem generalizes the result of Delgado [4] for the massive

Thirring model (2.8) and the result of Goodman et al. [6] for the nonlinear Dirac equations
with  W in (2.4).

Theorem 3.1 Assume that W is a polynomial in variables |u|^{2} and |v|^{2} . Let \mathrm{u}(t)\in
 C([0, T], H^{1}(\mathrm{R})) be a local solution of the nonlinear Dirac equations (2.2) for some T>0.

Then, the solution is extended globally as \mathrm{u}(t)\in C(\mathbb{R}_{+}, H^{1}(\mathbb{R})) .

Proof. To extend the local solution \mathrm{u}(t)\in C([0, T], H^{1}(\mathrm{R})) to all t\in \mathbb{R}_{+} ,
it is sufficient

to prove that the H^{1} ‐norm of the solution \mathrm{u}(t) satisfies the estimate

\displaystyle \sup\Vert \mathrm{u}(t)\Vert_{H^{1}}\leq C(T) , (3.4)
t\in[0,T]

where the constant C(T) is finite for  T<\infty but may grow as  T\rightarrow\infty . By the conservation

of  Q in (3.3), we have

\Vert \mathrm{u}(t)\Vert_{L^{2}}=\Vert \mathrm{u}(0)\Vert_{L^{2}}, t\in \mathbb{R} . (3.5)
To consider \Vert \mathrm{u}(t)\Vert_{L^{2p+2}} for a fixed p>0 ,

we multiply the first equation of system (2.1)
by |u|^{2p}\overline{u} and the second equation by |v|^{2p}\overline{v} ,

add the two equations, and take the imaginary
part. If W depends only on |u|^{2} and |v|^{2} ,

the nonlinear function is cancelled out and we

obtain

\displaystyle \frac{1}{p+1}\partial_{t}(|u|^{2p+2}+|v|^{2p+2})+\frac{1}{p+1}\partial_{x}(|u|^{2p+2}-|v|^{2p+2})=i(v\overline{u}-\overline{v}u)(|u|^{2p}-|v|^{2p}) .

Integrating this balance equation on x\in \mathbb{R} for a local solution in C([0, T], H^{1}(\mathrm{R})) and using
inequality |u||v|\displaystyle \leq\frac{1}{2}(|u|^{2}+|v|^{2}) ,

we obtain apriori estimate

\displaystyle \frac{d}{dt}\Vert \mathrm{u}(t)\Vert_{L^{2p+2}}^{2p+2}\leq 4(p+1)\Vert \mathrm{u}(t)\Vert_{L^{2p+2}}^{2p+2} . (3.6)
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By Gronwall�s inequality, we have

\Vert \mathrm{u}(t)\Vert_{L^{2p+2}}\leq e^{2|t|}\Vert \mathrm{u}(0)\Vert_{L^{2p+2}}, t\in[0, T] . (3.7)

Since the estimate holds for any p>0 ,
it holds for  p\rightarrow\infty and gives apriori estimate on

the  L^{\infty} ‐norm of the local solution \mathrm{u}(t) . The bound on the L^{\infty} ‐norm is needed to control

the growth rate of the L^{2}‐norm of \mathrm{u}(\mathrm{t}) as t\rightarrow\infty.

Taking x‐derivatives and performing a similar computation, we obtain the balance equa‐

tion

\partial_{t}(|u_{x}|^{2}+|v_{x}|^{2})+\partial_{x}(|u_{x}|^{2}-|v_{x}|^{2})=i(u_{x}\partial_{x}\partial_{\overline{u}}+v_{x}\partial_{x}\partial_{\overline{v}}-\overline{u}_{x}\partial_{x}\partial_{u}-\overline{v}_{x}\partial_{x}\partial_{v})W(u, v) .

Let N\geq 1 be the degree of the polynomial W in variables |u|^{2} and |v|^{2} . Integrating the

previous equation over x\in \mathbb{R} and using bound (3.7), we obtain the estimate

\displaystyle \frac{d}{dt}\Vert \mathrm{u}_{x}(t)\Vert_{L^{2}}^{2}\leq C_{W}e^{4(N-1)|t|}\Vert \mathrm{u}_{x}(t)\Vert_{L^{2}}^{2},
where the constant C_{W}>0 depends on the coefficients of the polynomial W . By Gronwall�s

inequality again, we obtain

\Vert \mathrm{u}_{x}(t)\Vert_{L^{2}}^{2}\leq e^{\frac{C_{W}}{4(N-1)}(e^{4(N-1)|t|}-1)}\Vert \mathrm{u}_{x}(0)\Vert_{L^{2}}^{2}, t\in[0, T] . (3.8)

The exponential factor remains bounded for any finite time T>0 . Therefore,  C(T)<\infty if

 T<\infty and bound (3.4) gives global well‐posedness of the nonlinear Dirac equations (2.2)
in the  H^{1} ‐norm. \square 

Remark 3.2 The result of Theorem 3.1 is very diffe rent from the behavior of the nonlinear

Schrödinger equations, where global solutions may not exist for nonlinear terms generated
by a polynomial W in variables |u|^{2} and |v|^{2} of degree N\geq 3.

If W also depends on (\overline{u}v+uv apriori estimates of the L^{p}‐norm include nonlinear

terms which may lead to the finite‐time blow‐up of solutions in L^{\infty} and H^{1} norms. That

is, there may exist  T_{\max}<\infty such that

\displaystyle \lim_{t\uparrow T_{\max}}\Vert \mathrm{u}\Vert_{H^{1}}=\infty . (3.9)

The next sections address the question if the finite‐time blow‐up (3.9) can be excluded at

least for small‐norm solutions in the general nonlinear Dirac equations (2.1).

4 Global well‐posedness in Strichartz spaces

Strichartz spaces  L_{t}^{p}L_{x}^{q} and L_{x}^{q}L_{t}^{p} are defined for 1\leq p,  q\leq\infty by the norms

\displaystyle \Vert f\Vert_{L_{t}^{p}L_{x}^{q}}:=(\int_{0}^{T}\Vert f(\cdot, t)\Vert_{L_{x}^{q}}^{p}dt)^{1/p}, \Vert f\Vert_{L_{x}^{q}L_{t}^{p}}:=(\int_{\mathbb{R}}\Vert f(x, \cdot)\Vert_{L_{t}^{p}}^{q}dx)^{1/q} , (4.1)
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where T>0 is an arbitrary time including  T=\infty . Strichartz spaces have become popular
in the context of global scattering and asymptotic stability of solitary waves. Nakanishi

[16] applied these spaces to the proof of global well‐posedness for small initial data in the

nonlinear KleinGordon and Schrödinger equations. Here we consider the nonlinear Dirac

equations and modify arguments from a more general work of Pelinovsky & Stefanov [18]
on the asymptotic stability of small solitary waves.

Let \mathcal{H} be the one‐dimensional Dirac operator in (2.2) and R_{H}( $\lambda$)=(\mathcal{H}- $\lambda$ I)^{-1} be the

resolvent operator, defined as a bounded operator from L^{2}(\mathrm{R}) to L^{2}(\mathrm{R}) for any  $\lambda$\not\in $\sigma$(\mathcal{H}) ,

where

 $\sigma$(\mathcal{H})\equiv(-\infty, -1]\cup[1, \infty) .

Using Fourier transform for 2‐vectors,

\displaystyle \mathrm{f}(x)=\frac{1}{2 $\pi$}\int_{\mathbb{R}}\hat{\mathrm{f}}(k)e^{ikx}dk, \hat{\mathrm{f}}(k)=\int_{\mathbb{R}}\mathrm{f}(x)e^{-ikx}dx,
the resolvent operator R_{H}( $\lambda$) can be expressed in the Green�s function form,

(R_{H}( $\lambda$)\displaystyle \mathrm{f})(x)=\int_{\mathbb{R}}G_{ $\lambda$}(x-y)\mathrm{f}(y)dy,  $\lambda$\not\in $\sigma$(\mathcal{H}) , (4.2)

where

G_{ $\lambda$}(x)=\displaystyle \frac{1}{2 $\pi$}\int_{\mathbb{R}}\frac{e^{ikx}}{$\lambda$^{2}-1-k^{2}}\left\{\begin{array}{ll}
-(k+ $\lambda$) & 1\\
1 & (k- $\lambda$)
\end{array}\right\}dx . (4.3)

Let  $\kappa$\in \mathbb{C} be a solution of the algebraic equation $\kappa$^{2}+$\lambda$^{2}=1 for  $\lambda$\not\in $\sigma$(\mathcal{H}) such that

{\rm Re}( $\kappa$)>0 . After computations of the Fourier integral (4.3), we obtain

G_{ $\lambda$}(x)=\displaystyle \frac{1}{2 $\kappa$}\left\{\begin{array}{llll}
 $\lambda$ & +i $\kappa$ \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(x-y) &  & -1\\
 & -1 & - $\lambda$ & -i $\kappa$ \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(x-y)
\end{array}\right\}e^{- $\kappa$|x-y|} . (4.4)

The representation (4.2) with Green�s function (4.4) shows that the resolvent operator

R_{H}( $\lambda$) can be extended to the continuous spectrum  $\sigma$(\mathcal{H}) as a bounded operator from

L^{1}(\mathrm{R}) to L^{\infty}(\mathrm{R}) for any  $\lambda$\in $\sigma$(\mathcal{H})\backslash \{1, -1\} excluding the end points \pm 1 of the continuous

spectrum,

R_{H}^{\pm}( $\lambda$):=\displaystyle \lim_{ $\epsilon$\downarrow 0}R_{H}( $\lambda$\pm i $\epsilon$) ,  $\lambda$\in(-\infty, -1)\cup(1, \infty) .

It follows from (4.2) and (4.4) that for any $\lambda$_{0}>1 ,
there is C($\lambda$_{0})>0 such that

\displaystyle \sup\Vert R_{H}^{\pm}( $\lambda$)\Vert_{L^{1}\rightarrow L^{\infty}}\leq C($\lambda$_{0}) . (4.5)
| $\lambda$|\geq$\lambda$_{0}

Strichartz estimates for the nonlinear Dirac equations were derived in [18] using analysis
of Green�s function (4.4). The behavior of the semi‐group e^{-itH} for large Fourier wave

numbers was controlled by bound (4.5).
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Definition 4.1 We say that a pair (q, r) is Strichartz admissible for the nonlinear Dirac

equations in Strichartz space L_{t}^{q}L_{x}^{r} if

q\geq 2, r\geq 2 and \displaystyle \frac{2}{q}+\frac{1}{r}\leq\frac{1}{2}.
In particular, (q, r)=(4, \infty) and (q, r)= ( , 2) are end‐point Strichartz pairs.

Lemma 4.2 Let (q, r) be a Strichartz admissible pair. There are constants C>0 such that

\Vert e^{-itH}\mathrm{f}\Vert_{L_{t}^{4}L_{x}\infty}\leq C\Vert \mathrm{f}\Vert_{H_{x}^{1}} , (4.6)

\Vert e^{-itH}\mathrm{f}\Vert_{L_{t}^{\infty}H_{x}^{1}}\leq C\Vert \mathrm{f}\Vert_{H_{x}^{1}} , (4.7)

\displaystyle \Vert\int_{0}^{t}e^{-i(t- $\tau$)H}\mathrm{F}( $\tau$, \cdot)d $\tau$\Vert_{L_{t}^{4}L_{x}^{\infty}\cap L_{t}^{\infty}H_{x}^{1}}\leq C\Vert \mathrm{F}\Vert_{L_{t}^{1}H_{x}^{1}} . (4.8)

Proof. See Lemma 4 in [18]. \square 

The following theorem simplifies the main result of Pelinovsky & Stefanov [18] to the

global small‐norm solutions of the nonlinear Dirac equations with quintic and higher‐order
nonlinear terms.

Theorem 4.3 Consider the nonlinear Dirac equations (2.2) with homogeneous \mathrm{f} such that

there is an integer n\geq 2 such that

\mathrm{f}(a\mathrm{u})=a^{2n+1}\mathrm{f}(\mathrm{u}) , a\in \mathbb{R}.

Assume that \mathrm{u}(0)\in H^{1}(\mathrm{R}) and \Vert \mathrm{u}(0)\Vert_{H^{1}} is sufficiently small. The nonlinear Dirac equa‐

tions (2.2) admit a global solution

\mathrm{u}(t)\in C(\mathbb{R}_{+}, H^{1}(\mathbb{R}))\cap L^{4}(\mathbb{R}_{+}, L^{\infty}(\mathbb{R})) .

Proof. By Duhamel�s principle, we can rewrite the Cauchy problem for the nonlinear

Dirac equations (2.2) in the integral form,

\displaystyle \mathrm{u}(t)=e^{-itH}\mathrm{u}(0)+\int_{0}^{t}e^{-i(t-s)H}\mathrm{f}(\mathrm{u}(s))ds . (4.9)

By Lemma 4.2, solutions of the integral equation (4.9) satisfy the bound,

\Vert \mathrm{u}\Vert_{L_{t}^{4}L_{x}^{\infty}\cap L_{t}^{\infty}H_{x}^{1}}\leq C\Vert \mathrm{u}_{0}\Vert_{H^{1}}+C\Vert \mathrm{f}(\mathrm{u})\Vert_{L_{t}^{1}H_{x}^{1}} , (4.10)

for some C>0 . We set up the problem of solving the integral equation (4.9) as an iteration

scheme, where we look for a fixed point in a small ball in normed space L_{t}^{4}L_{x}^{\infty}\cap L_{t}^{\infty}H_{x}^{1}.
Because \mathrm{f}(\mathrm{u}) is a homogeneous polynomial of degree 2n+1 ,

we obtain

\Vert \mathrm{f}(\mathrm{u})\Vert_{L_{t}^{1}H_{x}^{1}}\leq C\Vert(|\mathrm{u}|+|\mathrm{u}_{x}|)|\mathrm{u}|^{2n}\Vert_{L_{t}^{1}L_{x}^{2}}\leq C\Vert \mathrm{u}\Vert_{L_{t}^{\infty}H_{x}^{1}}\Vert \mathrm{u}\Vert_{L_{t}^{2n}L_{x}^{\infty}}^{2n}.
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By Sobolev embedding and the \log convexity of the  L^{2n}(\mathrm{R}) norms for any n\geq 2 ,
we have

\Vert \mathrm{u}\Vert_{L_{t}^{2n}L_{x}^{\infty}}\leq\Vert \mathrm{u}\Vert_{L_{t}^{4}L_{x}^{\infty}}^{2/n}\Vert \mathrm{u}\Vert_{L_{t}^{\infty}L_{x}^{\infty}}^{1-2/n}\leq C\Vert \mathrm{u}\Vert_{L_{t}^{4}L_{x}^{\infty}\cap L_{t}^{\infty}H_{x}^{1}}.
As a result, we obtain

\Vert \mathrm{f}(\mathrm{u})\Vert_{L_{t}^{1}H_{x}^{1}}\leq C\Vert \mathrm{u}\Vert_{L_{t}^{4}L_{x}^{\infty}\cap L_{t}^{\infty}H_{x}^{1}}^{2n+1},
and the fixed point argument is closed for small \mathrm{u}(0)\in H^{1}(\mathbb{R}) . \square 

Remark 4.4 Because \Vert \mathrm{u}(t)\Vert_{L}\infty is a continuous function of  t\in \mathbb{R}_{+} and \Vert \mathrm{u}(t)\Vert_{L}\infty \in

 L^{4}(\mathbb{R}_{+}) ,
we have

\displaystyle \lim_{t\rightarrow\infty}\Vert \mathrm{u}(t)\Vert_{L}\infty=0.

Moreover, \Vert \mathrm{u}(t)\Vert_{L}\infty=\mathcal{O}(t^{-1/4- $\nu$}) as  t\rightarrow\infty for some  v>0.

5 Decay of small solutions for cubic Dirac equations

Here we consider the nonlinear Dirac equations (2.1) with the cubic nonlinear terms, which

are generated by the quartic function W in (2.3). If W is a function of |u|^{2} and |v|^{2},
results of Theorem 3.1 show that the local solutions in H^{1} are globally well‐posed. On the

other hand, decay of small solutions to zero is not covered by the results of Theorem 4.3

because the cubic nonlinear terms with n=1 can not be treated by the nonlinear analysis
in Strichartz spaces. Additional constraints must be imposed to ensure that small solutions

in H^{1} decay to zero.

A similar question has been addressed in the context of the nonlinear KleinGordon

equation,

u_{tt}-u_{xx}+u+|u|^{p-1}u=0 , (5.1)

Let us consider the semi‐group of the linear KleinGordon equation,

S(t):=e^{-it\{\partial_{x}\rangle}, t>0,

where \{x\}=\sqrt{1+x^{2}} . The L^{1}\rightarrow L^{\infty} norm of the semi‐group S(t) decays like \mathcal{O}(t^{-1/2}) as

 t\rightarrow\infty . As a result, the term \Vert u\Vert_{L^{\infty}}^{p-1}=\mathcal{O}(t^{-(p-1)/2}) is absolutely integrable in t for p>3.
The dispersive decay of small initial data for p>3 was proven by Georgiev & Lecente [5].
In the critical case p=3 of the cubic nonlinear terms, the decay of small solutions to zero

was recently obtained by Hayashi & Naumkin [8, 9].
We will show that the results of Hayashi & Naumkin [8, 9] can be equally applied to

the nonlinear Dirac equations (2.1). Using the Fourier transform, we rewrite the system as

\left\{\begin{array}{l}
i\^{u} t-- k\^{u}+\ovalbox{\tt\small REJECT}=\hat{f},\\
i\hat{v}_{t}+k\hat{v}+\^{u}=\ovalbox{\tt\small REJECT},
\end{array}\right. (5.2)
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(5.3)

Using the projection matrix

\hat{P}=[\sqrt{1+k^{2}}+k1 -\sqrt{1+k^{2}}-k1], \displaystyle \hat{P}^{-1}=\frac{1}{2\sqrt{1+k^{2}}}[\sqrt{1+k^{2}}-k-1 \sqrt{1+k^{2}}-k1],
we can write (5.2) in the equivalent form

\left\{i\hat{a}_{t}-\{k\}\hat{a}=\frac{}{2}(-\hat{f}+(\{k\}-k)\hat{g})i\hat{b}_{t}+\{k\}\hat{b}=\frac{\{k\rangle 11}{2\{k\rangle}(\hat{g}+(\{k\}-k)\hat{f}),\right.

(5.4)

In the physical space, this system takes the form

\left\{a_{t}+i\{i\partial_{x}\}\hat{a}=\frac{1}{12i,i}\{i\partial_{x}\}^{-1}(-\tilde{f}(a,b)+(\{i\partial_{x}\}+i\partial_{x})\tilde{g}(a,bb_{t}-i\{i\partial_{x}\}b=\frac{}{2}\partial_{x}\}^{-1}(\tilde{g}(a,b)+(\{i\partial_{x}\}+i\partial_{x})\tilde{f}(a,b))\right.
where

\tilde{f}(a, b) = f(b+(i\partial_{x}-\{i\partial_{x}\})a, a+(\{i\partial_{x}\}-i\partial_{x})b) ,

\tilde{g}(a, b) = g(b+(i\partial_{x}-\{i\partial_{x}\})a, a+(\{i\partial_{x}\}-i\partial_{x})b) .

If f and g are homogeneous cubic polynomials in variables u and v
,

then \tilde{f} and \tilde{g} are

cubic polynomials in variables a, b, \partial_{x}a, \partial_{x}b, \{i\partial_{x}\}a ,
and \{i\partial_{x}\}b . By Remark 1.1 in [9], all

these cubic coefficients can be treated in spaces H_{s}^{m}(\mathrm{R}) equipped with the norm,

\Vert u\Vert_{H_{s}^{m:=}}\Vert\{x\}^{s}\{i\partial_{x}\}^{m}u\Vert_{L^{2}}.

The method of Hayashi & Naumkin [8, 9] yields the following theorem.

Theorem 5.1 Fix small  $\epsilon$>0 and assume that \mathrm{u}(0)\in H_{1}^{4}(\mathrm{R}) with \Vert \mathrm{u}(0)\Vert_{H_{1}^{4}}\leq $\epsilon$ . There

exists  $\epsilon$_{0}>0 such that for all  $\epsilon$\in(0, $\epsilon$_{0}) ,
the Cauchy problem for the nonlinear Dirac

equations (2.2) with the quartic function W in (2.3) admit a unique global solution \mathrm{u}(t)\in
 C(\mathbb{R}_{+}, H_{1}^{4}(\mathrm{R})) satisfy ing the time decay estimate

\Vert\{i\partial_{x}\}\mathrm{u}(t)\Vert_{L}\infty\leq C $\epsilon$(1+t)^{-1/2}, t\in \mathbb{R}_{+}.

Remark 5.2 Small norm \Vert \mathrm{u}(0)\Vert_{H_{1}^{4}} implies small H^{1} and L^{1} norms of the initial data

\mathrm{u}(0) .

6 Massive Thirring model in L^{2}

We consider the integrable case of the nonlinear Dirac equations (2.1) with W=2|u|^{2}|v|^{2},
which is referred to as the massive Thirring model (MTM). Theorem 3.1 implies global
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existence of solutions of (MTM) in H^{1} . Theorem 5.1 implies that these solutions decay to

zero in the L^{\infty} norm. More results were obtained for the massive Thirring model recently.
Selberg and Tesfahun [20] proved local well‐posedness of (MTM) in H^{s}(\mathrm{R}) for s>0 and

global well‐posedness in H^{s}(\mathrm{R}) for s>\displaystyle \frac{1}{2} . Machihara et al. [14] proved for similar nonlinear

Dirac equations with quadratic nonlinear terms that local well‐posedness holds in H^{s}(\mathrm{R})
for s>-\displaystyle \frac{1}{2} and that the Cauchy problem is ill‐posed in H^{-1/2}(\mathbb{R}) . Using ideas from [20]
and [14], Candy [2] proved local and global well‐posedness of (MTM) in L^{2}(\mathbb{R}) .

In characteristic coordinates,

 $\xi$=\displaystyle \frac{x-t}{2},  $\tau$=\frac{x+t}{2},
the nonlinear Dirac equations (2.1) with W=2|u|^{2}|v|^{2} are written explicitly by

\left\{\begin{array}{l}
iu_{ $\tau$}+v=2|v|^{2}u,\\
-iv_{ $\xi$}+u=2|u|^{2}v.
\end{array}\right. (6.1)

Let us introduce the change of variables,

u( $\xi$,  $\tau$)=\displaystyle \frac{1}{2}w( $\xi$,  $\tau$)\exp(-\frac{i}{2}\int_{ $\xi$}^{\infty}|w|^{2}($\xi$',  $\tau$)d$\xi$') . (6.2)

The second equation of system (6.1) can be solved with

v( $\xi$,  $\tau$) = -\displaystyle \frac{i}{2}\partial_{ $\xi$}^{-1}w( $\xi$,  $\tau$)\exp(-\frac{i}{2}\int_{ $\xi$}^{\infty}|w|^{2}($\xi$',  $\tau$)d$\xi$') , (6.3)

where

\displaystyle \partial_{ $\xi$}^{-1}w( $\xi$,  $\tau$):=-\int_{ $\xi$}^{\infty}w($\xi$',  $\tau$)d$\xi$'.
If v  $\tau$)\in H^{1}(\mathbb{R}) ,

then w  $\tau$ ) \in L^{2}(\mathbb{R})\cap\dot{H}^{-1}(\mathrm{R}) satisfies the zero‐mass constraint

\displaystyle \int_{\mathbb{R}}w( $\xi$,  $\tau$)d $\xi$=0.
With the substitutions (6.2)(6.3) to (6.1), the massive Thirring model becomes the

scalar evolution equation,

w_{ $\tau$}-\partial_{ $\xi$}^{-1}w+i|\partial_{ $\xi$}^{-1}w|^{2}w=0 . (6.4)

The scalar equation (6.4) is invariant under the following change of variables,

w= $\delta$ W(X, T) , X=$\delta$^{2} $\xi$, T=$\delta$^{-2} $\tau$,  $\delta$>0 , (6.5)

which implies that the massive Thirring model is the L^{2} ‐critical model with \Vert w\Vert_{L^{2}}=\Vert W\Vert_{L^{2}}.
Therefore, it is natural to expect that the dispersive decay to zero can occur already for a

smooth initial data with a small L^{2}‐norm. To deal with this question, we shall review the

inverse scattering transform method for the massive Thirring model (6.1).
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The scalar equation in characteristic coordinates (6.4) appears as a solvability condition

[11, 12] of the spectral problem,

\partial_{ $\xi$}\left\{\begin{array}{l}
$\psi$_{1}\\
$\psi$_{2}
\end{array}\right\}=\left\{\begin{array}{ll}
-i$\lambda$^{2} &  $\lambda$ w\\
- $\lambda$\overline{w} & i$\lambda$^{2}
\end{array}\right\}\left\{\begin{array}{l}
$\psi$_{1}\\
$\psi$_{2}
\end{array}\right\} , (6.6)

and the linear time‐evolution problem,

\displaystyle \partial_{ $\tau$}\left\{\begin{array}{l}
$\psi$_{1}\\
$\psi$_{2}
\end{array}\right\}=i[$\eta$^{2}-\frac{1}{2}|\partial_{ $\xi$}^{-1}w|^{2}- $\eta$\partial^{\frac{}{ $\xi$}1}w -$\eta$^{2}+\frac{1}{2}|\partial^{\frac{w}{ $\xi$}1}w|^{2}- $\eta$\partial_{ $\xi$}^{-1}]\left\{\begin{array}{l}
$\psi$_{1}\\
$\psi$_{2}
\end{array}\right\} , (6.7)

where  $\lambda$\in \mathbb{C} is \mathrm{a}( $\xi$,  $\tau$) ‐independent spectral parameter and  $\eta$=\displaystyle \frac{1}{2 $\lambda$} . Note that the mas‐

sive Thirring model in the laboratory coordinates can also be represented as a solvability
condition of the Lax system [10, 13].

The spectral problem (6.6) has some symmetries. If ($\psi$_{1}(x; $\lambda$), $\psi$_{2}(x; $\lambda$)) is a solution of

(6.6), then

($\psi$_{1}(x;- $\lambda$), -$\psi$_{2}(x;- $\lambda$)) , (\overline{ $\psi$}_{2}(x;-\overline{ $\lambda$}),\overline{ $\psi$}_{1}(x;-\overline{ $\lambda$})) , (\overline{ $\psi$}_{2}(x; $\lambda$ -\overline{ $\psi$}_{1}(x; $\lambda$ (6.8)

are also solutions of (6.6).
The continuous spectrum of the spectral problem (6.6) is located for  $\lambda$\in \mathbb{R}\cup\{i\mathbb{R}\},

whereas isolated eigenvalues are located symmetrically in quartets ( $\lambda$, - $\lambda$,\overline{ $\lambda$}, -\overline{ $\lambda$}) in all quad‐
rants of the complex plane for  $\lambda$[12] . Isolated eigenvalues are associated with solitons that

occur in the long‐time dynamics of the solution w( $\xi$,  $\tau$) thanks to the independence of  $\lambda$

from  $\tau$ and the inverse scattering transform technique. We shall prove that solitons are

absent if  w  $\tau$ ) for a frozen  $\tau$ has a small norm in  L^{2}(\mathbb{R}) . For clarity of presentation, we

do not write  $\tau$ in the arguments of  w and $\psi$_{1,2}.

Theorem 6.1 Fix small  $\epsilon$>0 and assume that w\in L^{2}(\mathrm{R}) with \Vert w\Vert_{L^{2}}\leq $\epsilon$ . There is

 C>0 such that the spectral problem (6.6) admits no solutions in L^{2}(\mathbb{R}) for any  $\lambda$\in \mathbb{C} with

\displaystyle \arg( $\lambda$)\in(C$\epsilon$^{2}, \frac{ $\pi$}{2}-C$\epsilon$^{2}) . If in addition, w\in L^{1}(\mathbb{R})\cap L^{\infty}(\mathrm{R}) and \partial_{ $\xi$}w\in L^{1}(\mathrm{R}) with

\Vert w\Vert_{L^{1}}(\Vert w\Vert_{L^{\infty}}+\Vert\partial_{ $\xi$}w\Vert_{L^{1}})\leq $\epsilon$ , (6.9)

then the spectral problem (6.6) admits no solutions in  L^{2}(\mathbb{R}) for any  $\lambda$\in \mathbb{C}.

Proof. Let us choose  $\lambda$\in \mathbb{C} in the first quadrant of the complex plane. Because of the

symmetry (6.8) of eigenvectors, the results are valid in all four quadrants of the complex
plane. If  $\lambda$ is in the first quadrant of \mathbb{C} , then {\rm Im}($\lambda$^{2})>0 and we can parameterize  $\lambda$ by
 $\lambda$=| $\lambda$|e^{i $\theta$} with  $\theta$\displaystyle \in(0, \frac{ $\pi$}{2}) .

If {\rm Im}($\lambda$^{2})>0 ,
then e^{-i$\lambda$^{2} $\xi$} decays to zero as  $\xi$\rightarrow-\infty ,

and we can introduce  $\psi$( $\xi$)=
e^{-i$\lambda$^{2} $\xi$} $\varphi$( $\xi$) with boundary conditions \displaystyle \lim_{ $\xi$\rightarrow-\infty} $\varphi$( $\xi$)=(1,0)^{T} for eigenvectors of the spectral
problem (6.6).
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Integrating system (6.6) from -\infty to  $\xi$ under the boundary conditions for  $\varphi$( $\xi$) ,
we

obtain the integral equations,

$\varphi$_{1}( $\xi$)=1+ $\lambda$\displaystyle \int_{-\infty}^{ $\xi$}w($\xi$')$\varphi$_{2}($\xi$')d$\xi$', $\varphi$_{2}( $\xi$)=- $\lambda$\displaystyle \int_{-\infty}^{ $\xi$}e^{2i$\lambda$^{2}( $\xi-\xi$')}\mathrm{W}($\xi$')$\varphi$_{1}($\xi$')d$\xi$' . (6.10)

Using the exact integral for  $\lambda$=| $\lambda$|e^{i $\theta$} with  $\theta$\displaystyle \in(0, \frac{ $\pi$}{2}) ,

I( $\lambda$):=|$\lambda$^{2}|\displaystyle \int_{0}^{\infty}e^{-2{\rm Im}($\lambda$^{2})x}dx=\frac{| $\lambda$|^{2}}{2{\rm Im}($\lambda$^{2})}=\frac{1}{2\sin(2 $\theta$)},
the Schwarz inequality, and Young�s inequality for convolution integrals, we obtain

\Vert$\varphi$_{1}-1\Vert_{L^{\infty}}\leq\Vert w\Vert_{L^{2}}\Vert $\lambda \varphi$_{2}\Vert_{L^{2}}, \Vert $\lambda \varphi$_{2}\Vert_{L^{2}}\leq I( $\lambda$)\Vert w\Vert_{L^{2}}\Vert$\varphi$_{1}\Vert_{L^{\infty}}.

Closing the inequalities and using fixed‐point arguments, we can see that if

I( $\lambda$)\Vert w\Vert_{L^{2}}^{2}<1,
then there is a unique solution of system (6.10) for $\varphi$_{1}\in L^{\infty}(\mathrm{R}) and  $\lambda \varphi$_{2}\in L^{2}(\mathrm{R}) such that

\Vert$\varphi$_{1}-1\Vert_{L}\infty<1 . Therefore, $\varphi$_{1}( $\xi$)\rightarrow 0 as  $\xi$\rightarrow+\infty ,
and so $\psi$_{1}( $\xi$) grows exponentially as

 $\xi$\rightarrow+\infty . Eigenvectors in  L^{2} may only exist if I( $\lambda$)\Vert w\Vert_{L^{2}}^{2}\geq 1 ,
that is, if either  $\theta$\in(0, C$\epsilon$^{2})

or  $\theta$\in (\displaystyle \frac{ $\pi$}{2}-C$\epsilon$^{2}, \frac{ $\pi$}{2}) for some C>0.

To eliminate eigenvectors everywhere in the first quadrant of \mathbb{C} , we add now the condition

(6.9). Integrating the second equation of system (6.10) by parts and using the first equation,
we obtain

 $\lambda \varphi$_{2}( $\xi$) = -$\lambda$^{2}\displaystyle \int_{-\infty}^{ $\xi$}e^{2i$\lambda$^{2}( $\xi-\xi$')}\mathrm{W}($\xi$')$\varphi$_{1}($\xi$')d$\xi$'
= \displaystyle \frac{1}{2i}\mathrm{W}( $\xi$)$\varphi$_{1}( $\xi$)-\frac{1}{2i}\int_{-\infty}^{ $\xi$}e^{2i$\lambda$^{2}( $\xi-\xi$')}(\partial_{$\xi$'}\mathrm{W}($\xi$')$\varphi$_{1}($\xi$')+\mathrm{w}($\xi$')\partial_{$\xi$'}$\varphi$_{1}($\xi$'))d$\xi$'
= \displaystyle \frac{1}{2i}\mathrm{W}( $\xi$)$\varphi$_{1}( $\xi$)-\frac{1}{2i}\int_{-\infty}^{ $\xi$}e^{2i$\lambda$^{2}( $\xi-\xi$')}\partial_{$\xi$'}\mathrm{W}($\xi$')$\varphi$_{1}($\xi$')d$\xi$'

-\displaystyle \frac{1}{2i}\int_{-\infty}^{ $\xi$}e^{2i$\lambda$^{2}( $\xi-\xi$')}|w($\xi$')|^{2} $\lambda \varphi$_{2}($\xi$')d$\xi$'.
Using Hölder�s inequality and Young�s inequality for convolution integrals, we obtain

\Vert$\varphi$_{1}-1\Vert_{L^{\infty}} \leq \Vert w\Vert_{L^{1}}\Vert $\lambda \varphi$_{2}\Vert_{L^{\infty}},

\displaystyle \Vert $\lambda \varphi$_{2}\Vert_{L^{\infty}} \leq \frac{1}{2}(\Vert w\Vert_{L^{\infty}}+\Vert\partial_{ $\xi$}w\Vert_{L^{1}})\Vert$\varphi$_{1}\Vert_{L^{\infty}}+\frac{1}{2}\Vert w\Vert_{L^{2}}^{2}\Vert $\lambda \varphi$_{2}\Vert_{L^{\infty}}.
If \Vert w\Vert_{L^{2}}^{2}<2 ,

then there is C>0 such that

\Vert$\varphi$_{1}-1\Vert_{L^{\infty}} \leq C\Vert w\Vert_{L^{1}}(\Vert w\Vert_{L^{\infty}}+\Vert\partial_{ $\xi$}w\Vert_{L^{1}})\Vert$\varphi$_{1}\Vert_{L^{\infty}},
\Vert $\lambda \varphi$_{2}\Vert_{L^{\infty}} \leq C(\Vert w\Vert_{L^{\infty}}+\Vert\partial_{ $\xi$}w\Vert_{L^{1}})\Vert$\varphi$_{1}\Vert_{L^{\infty}}.
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Under the condition (6.9), there is a unique solution of system (6.10) for $\varphi$_{1}\in L^{\infty}(\mathrm{R}) and

 $\lambda \varphi$_{2}\in L^{\infty}(\mathrm{R}) such that \Vert$\varphi$_{1}-1\Vert_{L}\infty<1 . Repeating the arguments above, we conclude the

proof that no eigenvector in L^{2} exists for any  $\lambda$\in \mathbb{C} under the condition (6.9). \square 

Remark 6.2 Using the scaling transfO rmation (6. 5), we can see that both \Vert w\Vert_{L^{2}} and

\Vert w\Vert_{L^{1}}(\Vert w\Vert_{L}\infty+\Vert\partial_{ $\xi$}w\Vert_{L^{1}}) are invariant with respect to parameter  $\delta$ . Soliton solutions of the

massive Thirring model (6.1) correspond to particular values for these quantities. If \Vert w\Vert_{L^{2}}
and \Vert w\Vert_{L^{1}}(\Vert w\Vert_{L}\infty+\Vert\partial_{ $\xi$}w\Vert_{L^{1}}) are below these particular values, no solitons can occur in

the long‐time evolution of the massive Thirring model (6.1).

Further analysis of the inverse scattering transform using the time‐evolution problem
(6.7) may give an analogue of Theorem 5.1 for the massive Thirring model, perhaps, with

relaxed assumptions on the initial data \mathrm{u}_{0} . Another interesting open problem is to explore
global existence of the massive Thirring model in L^{2} [2] and obtain L^{2} ‐orbital stability of

MTM solitons. A similar task was recently achieved by Mizumachi & Pelinovsky [15] in

the context of the nonlinear Schrödinger equation. The massive Thirring model is more

interesting for orbital stability analysis of solitary waves. Because it is associated with

the sign‐indefinite Hamiltonian function (3.1), no orbital stability in H^{1} can be extracted

from the standard energy analysis. These open problems will likely to attract interests of

researchers in near future.
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