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Olsen’s inequality and its applications
to Schrodinger equations

By

Yoshihiro SAWANO * and Satoko SUGANO **and Hitoshi TANAKA ***

Abstract

Morrey spaces turned out to be useful in that it grasps the subtle property of the fractional
integral operators.

In 1995 Olsen obtained a bilinear estimate. Olsen applied his estimate called the Olsen
inequality to the Schrodiger equation. We improve this estimate.

This Olsen inequality is a part of trace inequality that has kin relation with potential
theory. Here we present some applications of our results to PDEs and the potential theory.

§1. Introduction

The aim of this note is to establish the following inequality.

(1.1) lg - Lafll o < Cllgll amgzo Lf 1 a0,
where || - || MED denotes the Morrey (quasi-)norm given by
1/p
0Dl = s @ ([ wPay)  0<p<m <o
QeD Q
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and I, denotes the fractional integral operator defined by

(1.3) Iaf(x):/]R Ady,0<oz<n.

" |£l'} _ y|n—a

Here D denotes the set of all dyadic cubes in R™. It is well known that I is the inverse of
—A modulo multiplicative constants. In this note we shall prove the following theorem
on the fractional integral operator I,,.

Here is a series of equivalent definitions of Morrey norms.

1/p
1712 = sup 1@/ ([ 7 an)
QeQ Q

1/p
A1, = sup [Q/r- 1 ( / If(y)lpdy) |

where Q denotes the set of all cubes whose edges are parallel to the coordinate axis and
Q* denotes the set of all cubes whose edges are not always parallel to the coordinate

axis. In the present paper we identify ||f||5\1/l)p with [|f|| ;2 but we do not use ||f||5\2/l)p
q q

If we formally let pg = oo, then we obtain the L space.

Theorem 1.1. Let 0 < aa < n, 1 <p < pp < 0,1 < q < qp < o0 and
1<r<rg<oo. Suppose that

(14) q > r, — > g; S gv
Po n n

and that

(1.5) =D =L

Then
g - T fll pmze < Cllgllagzo - [Lf [ aqzo s

where the constant C is independent of f and g.
Remark.  Holder’s inequality yields
(1.6) LPo = MPO — MDY — MY
for all pg > p1 > p2 > 1.
Here is a precise result by Olsen.

Theorem 1.2 ([10, Theorem 2]). Let0 < a <n, 1 <p<py<oo,1<q<
o < oo and 1 <r <ry<oo. Suppose that
1

1
(1.7) q>r, — >
do

Do

Y

S

«
S_
n
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and that
1 1 1 a 1 1 1 «
(1.8) T
0 do Po n.r go P N
Then

lg - Lo fllaazo < Cliglago - If 1 aazes

where the constant C is independent of f and g.
However, this result is not sharp as the following calculation shows.

Remark.  Using naively the Adams theorem [1] and Holder’s inequality, one can
prove a minor part of ¢ in Theorem 1.1. That is, the proof of Theorem 1.1 is fundamental
provided £qo < ¢ < qo- Indeed, by virtue of the Adams theorem we have, for any cube

Po

Qe Q,

1

<w>|wmQ@

1/s
s 1 po1 1 1 «
mewdﬁ e

P So So Do n

1 1 1
The condition - £, —_— =4+ — - ¢ reads
To DPo To go Po N

These yield
) 1 i 1/r
|Q|1/QO+1/ 0 <_|Q| /Q|g(gj)faf(x‘)| dib') < CHg“MgOHf”Mgo

if — =L =L Inview of the inclusion (1.6), the same can be said when
o Po 9o

b
—qo < ¢ < qo.
Do

1 1 1
Also observe that — = — + — — @ > —. Hence we have qo > rg. Thus, since the

7o do  Po n do
condition g > r, Theorem 1.1 is significant only when £7“0 <qg< £qo.

Po bo
We generalized Theorem 1.1 in our subsequent papers [12, 13]. The motivation
stemed from the earlier works due to Sugano and Tanaka [17, 18]. To prove them we
used some auxiliary results of maximal operators, which strenghten those by Nakai [8, 9]
(see Lemmas 8.1 and 8.2).
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As we have established in [14], the fractional maximal operater I, is not surjective
from M¥ to Mj if

1 1
(1.10) l<g<p<oo,l<t<s<oo, —==—
S b

t
o

3|0

q
"p

Therefore, one can expect such a strange phenomenon like Theorem 1.1.

§2. Fundamentals on Morrey spaces

Here we shall present several examples of the functions in Morrey spaces. Here and
below given a cube () and k > 0, we denote by x(Q the cube concentric to ) and having
volume ™.

Example Let 1 < ¢ < g < 00. Then |z]|~"/% ¢ M.

The following proposition is due to Pérez [11]. It seems that we can construct
counterexamples by using the following proposition.

Proposition 2.1. Letpg > p >0 and R > 1 be fized so that
(2.1) (R+1)"Y/Pro = 2ol/p(1 4 R)~V/P,

For e ={ey}_, €{0,1}", we define an Affine transformation T, by

= 1 x + R €
 R+1 R+1

Let Ey = [0,1]". Suppose that we have defined Ey, Ey, Es,--- ,E;. Define

(2.3) Ein= | Tu(E).
ec{0,1}n

(2.2) T.(x) (r € R™).

Then we have

(2.4) IxE; | pgzo ~ (L + R)="/Pe,

where the implicit constants in ~ does not depend on 7 but can depend on p,pg.
Before the proof we make a preparatory observation. Note that

(2.5) 1B 0llzeo = I Ejllze (1 4+ R) /"7,

where E;o = [0, (1+ R)~7]".

Proof. Let us calculate

(2_6) ||XE]-||M§0 ~ gug |S|1/p0_1/p|SﬂEj|1/p,
€
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where O denotes the set of all cubes.
Let us temporally say that QQ € Q is wasteful, if there exists a cube S € Q such
that

(2.7) QP YPIQ A B[P < |S|Mro R |S 1 By

Thus, by definition, any cube is clearly wasteful unless it is contained in [0, 1]™. Also, if
the side-length of a cube Q is less than (R + 1)77, then it is wasteful. Indeed, then the
equality

sup QIPTPQAE MY = sup  |QIMRYRIQ N By
Q:cube: |Q|<(R+1)—Im Q:cube: QCE;
S
Q :cube: QCE;
— |Ej 0 1/po

holds. Thus, if the cube Q is not wasteful and (R+1)"%" < |Q| < (R+1)"*~1" then

R+1
R—+1Q contains a connected component of Fj. Hence it follows that

X2, |l Ao
~ sup{|Q|YP°~1/P|Q N E;|/P : Q contains a connected component of Fj, }.

Let us write

_ SN E;IMP -
(2.8) Q. = sup |S|1/P——1/Po : S contains a connected component of Ej o .

Let S be a cube which contains a connected component of ;. We define

(2.9) S* =co (U {W : W is a connected component of E; intersecting S}) ,

where co(A) denotes the smallest convex set containing a set A. Then a geometric
observation shows that S* engulfs £" connected component of E; for some 1 < k < 27,
Take an integer [ so that 2071 < k < 2! . Then we have

(2.10) ST NEj| = k"(1+R)™", |7 = (1+ Ry~
Consequently, we obtain

| §*|}/Po=1/P| 5% 0 Ej|1/p ~ 2/ (1 4 RYTIMVP(1 4 R)(TIFTD(/po—n/p)
~ an/p(l + R)—jn/poJrl(n/po—n/p)

~(1+ R)—jn/Po'
Thus, we obtain (2.4). O

We remark that this example is essentially employed in our paper [12] to prove the
sharpness of our result.
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Proposition 2.2. Let0<a<n,l<qg<p<ooandl <t<s<oo. If there
exists a constant C' > 0

(2.11) Hafllamg < Cllfllaz

for all positive measurable functions f, it is necessary and sufficient that

11
(2.12) Z==
s P

e
®w |

<

Y

IR

Proof. The sufficiency is well known as Adam’s theorem and we will use in this
lecture. For the necessity, we first obtain

(2.13) % _

"=
|
3e

by the dilation

(214)  [FOag = 277 1 g 1F Oz = A5 1 lags LalF O] = A7 Lo f(A)

for A > 0. Consequently, we obtain

1 1 «

2.15 I —
(2.15) 5T n

t
We may assume that ¢ < p for the purpose of establishing — = 9 Let R > 1 be the

s P
solution of (1 + R)_% = 2%(1 + R)_%. Then we have
(2.16) Ixz, | ag ~ (14 R)="/7.
If we use E; above, then we have
(2.17) Ioxg,(z) > c(R+ 1) 7%g, ().
Indeed, as the equality

dy
(2.18) IoxE; (v) = T T—Ej:={r—y:y€E;}
shows, I,x g, is continuous. So we can take ¢ = n[lin] IoxE; ().
z€|0,1]™
Also, from the definition of M7, we have

(2.19) (R+1)"7" = [Ixglle < lIxe, g

from the defintion of the Morrey norm. Consequently, it follows that

(R + 1)_% <C(R+ 1)ja||XEj||Mg =C(R+ 1)j(°‘_%) =C(R+ 1)—%”.
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Since j € N is arbitrary, it follows that ¢t < 4. O
p

§ 3. Boundedness of the operators on Morrey spaces

Now we present a typical argument proving the Morrey-boundedness. We accept

(3.1) [Mfllg < Cllifllg: 1 <q< o0,
where M denotes the Hardy-Littlewood maximal operator given by
1
(32) Mi@) = sw = [ |)ldy
TEQ;cube |Q| Q

Here and below given a cube @), we define
(3:3) 0Q) = Q"™

Theorem 3.1. Let 1 < g <p <oo. Then there exists C) 4 such that
(3.4) IM fllap < Cpl
Jor all f € MY.

fllaez

Proof. For the proof we shall show, from the definition, that

1

(3.5) QI ( /Q Mf(y)qdy>q < Cpallflae @ € Q.

Once this is achieve, we have only to consider the supremum over all Q.
Write f = fi1 + fo, where f; = f on 5Q and f = f outside 5@Q). The estimate of
(3.5) can be decomposed into

f“./\/lga

(3.6) Q|7 (/Q Mfl(y)qdy> "< Cp.ql

(3.7) Q[ (/Q Mfz(y)qdy) "< Cp.ql

by virtue of the triangle inequality.
As we have seen in (3.1), M is L9-bounded. Thus (3.6) can be shown easily ;

fllaez

q

o1+ (| mara) <10 ([ s a)

Q-+ (/Q If(y)|qdy>%

< Cpal5QIF ( / . |f(y)|qdy) "

< Cp,q||f||M§~

< Cpaq




8 SAWANO YOSHIHIRO, SUGANO SATOKO, TANAKA HITOSHI

Thus, we obtain (3.6).
To prove (3.7) we have to keep in mind the following fundamental geometric ob-
servation.

If R € Q is a cube that meets both @ and R™ \ 5Q), then ¢(R) > 2/(Q) and
2R D Q.

This geometric observation yields

1
. " — dy.
(39 Mpw <2 swp o [ 1wy

If we insert this inequality to (3.7), then we obtain
1
11 q a 1AL 1
QI { | Mfa(y)*dy ) <2"|Q» sup — [ |f(y)|dy.
Q @cree |R| Jr

Taking into account M% C MY, we sce that
(3.9)

1_1 a i_ n n
Q> (/ Mfz(y)qdy> < 2" sup |R|? 1/ W)l dy = 2" fllame < 2" F g
Q ReQ R
Estimate (3.7) is therefore proved. With (3.6) and (3.7) proved, we obtain (3.4). O

We now turn to the boundedness of the fractional integral operators. The following
lemma is named the comparison lemma by Volberg.

Lemma 3.2 (Comparison lemma). Let 0 < a < n.

n—ao

o0 dl |z —y| e
(310) /0 XB(m,l)(y) [n+tl—a = ’

Proof. The proof is simple. Indeed, we have

> dl > dl
(3.11) /0 X8 (Y) ima = /O X(le—yl.o0) (1) Tgi=a
> dl
3.12 — -
( ) /va—yl [nHize
lx —y|
1 R e
(3.13) n—a
which is the desired result. O

We use a notation; if we are given a cube ) and a locally integrable function f,
then we write

1
ma(f) = /Q f(x) de,



OLSEN’S INEQUALITY AND ITS APPLICATIONS TO SCHRODINGER EQUATIONS 9

the average of f over a cube Q.
Morrey spaces, the BMO space and Holder spaces lie in a line. More precisely we

have the following.

Theorem 3.3 ( I, and the modified fractional maximal operators fa). Suppose
that 0 < a < n. We define

(3.14) I.f(z) ::/]R Ady

S

(3.15 ffe)= [ (oo - 2 )y

o=yl Jeo — gl

where Qo s a fived cube centered at xg.

n
1. (Subcritical case) Let p < —. Assume that the parameters s,t satisfy
Q

1 1 t
(3.16) 1<q§p<oo,1<t§s<oo,—:——g,—:g.
s p mn's p
Then
(3~17) ||Iaf||/\/l§ < Cp,q,aHfHM’;
for every (positive) f € MP.
2. (Critical case) Assume that 1 < q<p= D Then
o
(3.18) Haflls < Cpagall Fllae

for every f € M&, where || - || denotes the BMO norm given by

(3.19) lgll« = sup mq(lg —mq(g)l)-
QeQ

3. (Supercritical case) Assume that 1 < g <p < oo and that 0 < o — n < 1. Then

p
(3-20) ||faf||Lip (a_%) < Cp,q,a |f||M§
for every f € MY, where we denoted
(321)  llglluip = sup {'g(@)_;jgy)' oy CR", z # y}, 0<h<1

for a function g.
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Before we come to the proof of this theorem, let us remark that the integral kernel
n/a

of I, is better than that of I,. With the better kernel, we can apply I, for My
functions.
Here we content ourselves with proving (2), other results being proved similarly.

Proof. We have to prove
(3:22) mQ(Haf = moUaf)l) < cllfll ygn/o
for all cubes ). For the proof we may assume ¢ < n because we always have
Q@

(3.23) I T i

We decompose f according to 2@ as usual. That is, we split f = f1+ fo with f1 = x20-f
and fo = f— fi1. By virtue of the triangle inequality our present task is partitioned into

proving

(3'24) mQ(|I~af1 - mQ(jafl)D + mQ(|I~o¢f2 - mQ(iafZ)D <c “f“MZ/O‘

Then the estimate for f; is simple. Indeed, to estimate f;, we define an auxiliary index
1

w € (g,00) by — = — — g By the triangle inequality and the Holder inequality, we
w q n

have

(3.25) mq([lafi — mo(Iafi)l) < 2mq(lafil) < 2m8” (1afi]).

where we wrote

gl=

(3.26) mi (F) = (|22—| /Q Fa)" da:)

for positive measurable functions F'. By using the L9-L" boundedness of the fractional
integral operator we obtain

5 B 1 _ 1/w
mallfati - ol < (g [ 1nhil do)

< emaq(| 191"

< el e

For the proof of the second inequality, we write the left-side out in full.

mq(|Lafo —mo(lafs)l)

L fiz)  f(®) >dd p
|Q|2/Q //Qx(Rn\QQ) (|$—Z|n_a |y—z|n—0‘ ydz| ax.
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First, we bound the right-hand side with the triangle inequality and arrange it. Then
the right-hand side is majorized by

s o] /Q RN LT

Denote by ¢(Q) the center of the cube Q). By virtue of the mean value theorem, we have

[z — Y] UQ)
Q@ S @

1

o= 2 Jy— e

dx dydz.

1 1

e P

(3.28)

Thus, inserting this inequality gives us

el
pa0 12 — (@)t

By the comparison lemma, the integral of the right-hand side is bounded by
(3.30)

= a0 o g Mlagre Il ygore
f)|dz | —— < c|fll \ nsa / — =c L <ec i,
/%(Q) </B<c<Q),e)| = ) prmarz = Wl v 4(®) Q)

Thus, the estimate of the second inequality is complete and the proof is concluded. [

(3.29) mq(lafo = moUaf2)l) < cl(Q)

§4. Proof of Theorem 1.1

In [10] the proof was rather lengthy. But our proof is a little shorter than that by
Olsen.

We need the following observation below. This lemma dates back to [18] for exam-
ple.

Lemma 4.1.  For a nonnegative function h in L>(Qo) we let vo = mg,(h) and
c=2"" Fork=1,2,... let

D;, = U{Q : Q € D1(Qo) : mg(h) > ’yock} c R".

(0) Define

(4.1) 2, =1{Q : Q € D1(Qo) : mg(h) >v0c"}.

Considering the maximal cubes in Z;. with respect to inclusion, we can write
Dy = J Q.
J

where the cubes {Q,;} C D1(Qo) are nonoverlapping.
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(1) By virtue of the mazimality of Q. ; one has that

Yoc® < mq,, (h) < 2" yock.

(2) Let
Eo=Qo\ D1 and Eij = Q. j \ Di+1.

Then {Eo} U{Ey ;} is a disjoint family of sets which decomposes Qo and satisfies

(4.2) |Qol < 2[Eo| and |Qk.;| < 2[Ek,;|.

(3) Also, we set

Dy :=1{Q € D1(Qo) : mqg(h) <~voc} CD
Dij:={Q € D1(Qo) : Q C Qr.j, yoc* < mg(h) <y} C D.

Then D1(Qo) is partitioned as follows:

(4.3) D1 (Qo) = Do U | D
k.j

Proof.  We choose Q. ; as is indicated in (0).

(1) The left inequality is a consequence of the fact that we chose Q ; from Zj. If we
consider the dyadic parent R of Q) ;, then we have

(4.4) mg(h) < yoc”.

Otherwise, instead of ), ; R would have been chosen as an element of Z. Since
(4.5) mq, ., (h) <2"mg(h),

we obtain the right inequality.

(2) A geometric observation shows that two dyadic cube never intersect unless one is
not included in the other. Let 7 and k be freezed. We write

(4.6) Dy = UQlH-l,j*a Qrt1,5* € Zr1.-
j*

JFrom the observation above, we have

(4.7) Diy1 N Q= U {Qk+1,5+ ¢ Qry15+ C Qry}h
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because Q41,5+ 2 @k ; never happens thanks to the maximality of ) ;. Note that

(4.8) | Qs 1,5+ lroc™ ™ < / h(z) dz
Qrg1,5*
since Qr41,5+ € Zr+1. If we add this estimate for all j* such that Qr41,+ C Qs
we obtain
(1.9) i N Qushoc ™ < [ hla)do < Q20
Qr,j

So, if we consider the complement set of Dy 1, then we obtain the desired result.

(3) By maximality if R C Qp is a dyadic cube such that mgr(h) > 70, then R is
contained in some @ ;. So this assertion follows.

O

We begin by discretizing the operator I, f following the idea of C. Pérez (see [11]):

i@ =3 [ ey [ g

Vel volg|p—y|<2—v |$ - y|n—a veZ B(z,27v)
Denote by D, the set of all dyadic cubes of volume 27%7;
(4.10) D,={2""m+277[0,1)" : meZ"}.

Then we have

Lfx)<cd. Y “lg{“ / W)y

velZ xeQED,
_ ‘e ol
_CQ;) 0 /3Qf(y)dy xXQ()
=C > Q) msq(f) - xq(x).
QeD

It suffices, from the definition of the Morrey norm, to show that

1/r
([ wtas@) ar) " < Clalag - IMaflLugo - ol

for a given dyadic cube )y, where M, denotes the fractional maximal operator given
by

(4.11) Mof(e) = sup |Q/ (ﬁ /Q If(y)ldy>-

reQEQ
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Indeed, a geometric observation shows

(4.12) Q" xo(y) <clz —y[", zeQ.

So the pointwise estimate M, f(z) < ¢l f(x) follows. If we invoke the Adams theorem,
then we obtain the desired result. Furthermore, by a simple limiting argument, we can

assume that g € L°°. Hereafter, we write

D1(Qo) ={Q € D: Q C Qo},
Dy(Qo) ={Q €D : Q 2 Qo}-

Let us define for i = 1,2

Fi(z)= Y 4Q)*maq(f)xq(x)
Q€eDi(Qo)

(f wore) ) "

am (@) () i) " < Clal e ( A Moo ) ) "

and we shall estimate

First, we establish

by the duality argument. Take a nonnegative function w € L™, 1 /r+1/r" =1, satisfying
that w is supported on Qo, that [wll (g, =1 and that

0

(/0 (g(z)Fy ()" d:c)w :/ g(z)Fy (z)w(x) de.

Letting h = g - w, we shall apply Lemma 4.1 to estimate this quantity. It follows that

/ g(x)Fy(z)w(x) dx = Z €(Q)°‘m3Q(f)/Qg(:c)w(aj)daj

0 QeD1(Qo)

=D K(Q)amm(f)/Qg(x)w(a:) dx

QeDy

2.0 D, E(Q)am?)cg(f)/Qg(x)w(a:)dx.

j=1 k Q€Dj

First, we evaluate

(4.14) > 6Q) maolf) [ glayue) e

QEDy, 5 Q
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In view of the definition of Dy, ;, we have

R.H.S. of (4.14) = ) > Q) *mso(f) / g(x)w(z) dx
1=0 QEDy ; Q@
(Q)=2""(Qx,5)

=3y > Q) molw) [ (@) ds
1=0 QEDy 3Q
£(Q)=2""4(Qx ;)

Let @ € Dy, ;. Now that we have

(4.15) Yo < mo(gw) < o™, " <mg, ; (gw) < 2™0c", Q C Q.

we obtain mq(gw) ~ mq, ,(gw). Hence it follows that

R.H.S. of (4.14) < Cy ¢,amq,, (9w) Z Z 20Q)” /3Q f(x)dx

=0 QEDy,;
£(Q)=2""4(Qx ;)

< Cpga S 270UQL ) Mg, (g0) / S
=0 k,J

< Cpaal(@us)moy (gu) [ f(a)da,
3Qk,j
In summary, we have obtained

(4.16)

QEDy,;

Using Holder’s inequality, we have

(4.17) mo,, (gw) <m (@m) (w),
and
(4.18) M) (9) < gl 6(Qrg) "™
We denote
, 1 , 1/q'
(4.19) M@ yw(z) = sup (—/ w(x)? d:c> .
reEQEQ |Q| Q

Estimates (4.17) and (4.18) yield

(4.16) < Clgll pgoo 6(Qk ) T mag, , (N)m) ()| Ex ]
< Cllgllpao £(Qr )™ " maq, , (£)|Ek;| inf M@w(z)

rEEy,;

< Clgl g /E Moo f (@) M&w(z) de.
k,j

> E(Q)O‘m:),cg(f)/cgg(f'?)w(ﬂ?) dx < Cpq.al(Qr,j) m3q, ; (f) mq,  (gw) |Ey ;.

15
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Similarly, we have

> UQ)maq(f) | g@)yw(z)de < Cliglpmo | Ma—njgf(@) MO w () da.
Q E

QeDy

Summing up all factors we obtain
(4.14) < 0“9”/\433 / Moy /g0 f () M(qO')w(a:) dzr.
Qo

Another application of Holder’s inequality gives us that

1/r 1/’
(414) < CHgHMgO (/Q Ma_n/qof(x)r dx) ( o M(qO)’U)(aj)r d.TI?) )
0 0

The fact ' > ¢’ and the L"'/7 boundedness of maximal operator M yield

1/r ) 1/r’
(4.14) < g pqo ( /Q Ma_n/qof(x)de) ( / w(z)" dx)

1/r
— Cllgpge ( /Q Ma_n/qoﬂx)fd:c) .
0

This is our desired inequality.
The case i = 2 A cruder estimate suffices in this case. By a property of the dyadic
cubes, for all x € Qg we have

(4.20) By(a)= > UQ)maq(f)< D> UQ) 7| f] o
QeD2(Qo) QeD2(Qo)

In view of the definition of Ds(Qy), we have

(4.21) Fy(w) < Qo)™ 7 || o [ o= 270 n/v0)
=0

Thus, for all x € )y we obtain

a—

(4.22) By (2) < Ol fl pazo €(Qo)™ ¥o

and

1/r .
(4.23) ( | @r@y da:) < O (@)1l o €(Q0) 5 F.

This is our desired inequality.
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Remark.  In the course of the proof we have proved

(4.24) )<C Z ) mao(f)xo(x).
QeD

Here is a converse inequality:

429 Y Q) mo(fxe < X 4Q)" (M7 ) xo < CL(M/),

QeD QeD

§5. Counterexample

Proposition 5.1. Let1l <r <1y < oo and r < 1/a. Then, for any ¢ > 0 we
can find positive measurable functions f and g such that

lg - Lafllmrro > cllgll parara [ fll agrro-

Proof. The proof of this proposition is kind of lengthy and we use the predual
of Morrey spaces investigated originally by Zorko [19]. Here we content ourselves with
remarking that we chose g = f = xg, with j € N, where E; denotes the fractal set of
this note (See Example 2.1) and R > 1 is appropriately chosen. O

§6. Applications

§6.1. Application to the variation problem

Here we apply Theorem 1.1 to a variation problem.
Denote by X0 the closure of C2° with respect to M.

Theorem 6.1. Letn > 3 and V € MZ/Q with 1 < p < n/2. Let W € L.
Define a functional & and Evw by

Ev(p) = /Rn Veo(a)|* + V(@)lp(@)?dz (o€ H)
Eviw(p) = /Rn Veo()* + (V(z) + W(2))lp@)*dz (o€ H).

(a) There exists a constant o > 0 such that

(6.1) 1= VIVIllz < ay /IVI g2 IV 12

for all f € C°.
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(b) If || min(0, V)
on L*(R™).

||MZ/2 <a2and2 < p<2n, then H= —A+V is a positive operator

1
(c) Suppose that || min(0, V)|, n/2 < 1oz If {¢;}jen is an L*(R™)-sequence such that
P a
lejlle < 1 for each j € N and that sug€V+W(g0j) < 00, then {p;}jen forms a
WS
bounded sequence in H'(R™).

(d) Suppose in addition that W € L*. Then we have
(6.2) lim Eviw(p;) = Eviw(ep)
j—o0
if lim @; = ¢ in the weak topology of H'.
j—oo

(e) Let V € X;/Q and 1 < p < n/2. Suppose that W € L. Assume in addition that

|| min(0, V)HMZ/2 < i and that

(6.3) Eo = inf{&viw(e) : p€ HY, gl =1} <0
then there exists g € L? such that

(6.4) Evaw (po) = mf{Eviw(p) : p € H', o]z =13}, [lpoll2 = 1.

Assertions (a) and (b) are easy consequences of Theorem 1.1. Here we prove (c),

(d) and (e).
Proof of (¢). By (a)

: 1
(6.5) Il v/ Imin(V, 0)[[l2 < S Vsl

for each j € N. Thus, it follows that

(6.6) 1y, = [ 196 2 =4 [ o) min(v(a).0)da,

This pointwise estimate yields

3 | |
(67)  STp =Ty, — 1T, < T, + /R o3(2) P min(V (), 0) dr < Ev (i5):
Since
(6.8) sup Ev (¢;) < [Wloo +sup Evyw ;) < o0,
J J

it follows that {¢;}jen forms a bounded sequence in H?. O
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Proof of (d). Let us choose {Vi}reny C C2° that approximates V in the MZ/Q

topology. Since by our theorem (see Theorem 1.1) we have

(6.9) Eviw (¢)) = Eviyw (5)]| < CIIV = Vil ygnre [l ]| e

and {p;};en forms a bounded family in H', we can assume that V € C°. Once we
assume that V € C2°, then we can use the compact embedding H! — L?"¢ to conclude
the proof of (d). O

Proof of (e). Let us choose a sequence {¢;}jen C L? so that
(6.10) Eo = lim Eviw(e;), il =1.

By virtue of the weak compactness of H! and (c), we can assume that p; — ¢ in
the weak topology of H'.

Since Eg = &y (y) < 0 by virtue of (d), it follows that ¢ # 0. Now that ¢ attains
Ey, its L?-norm must be 1. Therefore, we obtain the desired result. O

As an example to which we can apply our Theorem 1.1, we have the following
function V. Recall that we have defined En as a union of cubes of equal size in
Proposition 2.1. Here the auxiliary parameter R is chosen for the function space MZ/ 2,
that is, we have chosen R so that

61 () = ()

2nN
Write Eny = U Q(zn;,7N,;), Where
j=1
Q(Z,T) = {([1?1,[132, e 73317,) € ]Rn . |$1 - le; |$2 - Z2|7 T |xn - Zn| S T}~
We define
2nN
(6.12) Vn(z) := —/@Z XQ(ZN’].,TN’].)(J})M — ZN,j —2/n
j=1

Then there exists kg > 0 with the following property; if 0 < kK < kg and M € R satisfies
(6.13) Eo =inf{Evy+m(p) : ¢ € H, |lplla =1} <0
then for all N € N, there exists ¢ € H! such that

(6.14) Evyrw (o) = inf{Evy1w(p) « ¢ € H', [lplla =1}, [woll2 = 1.
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§6.2. Sobolev-Hardy inequality

Let 0 < s < 2. Then we have

(6.15)

< C||Vu
o < C IVl

Using Theorem 1.1, we can extend this theorem to some extent.
Here is our result.

Theorem 6.2. Letl <p<py<n,1<r<ryg<ooand0 < s <n. Assume
that

(6.16) =42 =L >

Then we have

||u|x|_% o < ClI V| o

nr
Proof. This is just a rephrasement of Theorem 1.1 obtained by setting qo = —
s

and g(z) = |z|=%/". Observe that g € ML __ for all 0 < ¢ < 1. O

do—¢

§6.3. An extension of Olsen’s result

Theorem 6.3. Assume that
n
O<a<n,1<cj§§,1<q§p<oo,1<t§s<oo

and that
5 1 1
q>q,_:_ ’ .
s p n' s p

Denote by My the multiplication operator generated by the potential V. Then we have

(6.17) IWVJVWMQSC%HVUMgﬂHVWMg

and that

(6.18) [(LeMv)" LW m; < C1C™ [V 2" W a2
q

for some Cy,Cy > 1.
In particular, if V € Mg/QﬁMg and the norm is sufficiently small, then the formal
solution (of Av + Vv =v)

v=1+ Z H(IMy )~ (12V)

satisfies

(6.19) o~ 1l < C.
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Proof. Inequality (6.17) is just a repetition of our results. As for (6.18), we have
[(T2Mv)" W [ am; < Cr[[(My I2)"W [ pg < Cr8"™ [V g™ W |z

using the first estimate n-times. Finally, the last assertion can be obtained directly from
(6.18). O

Remark.  Olsen postulated
_._n 2
(6.20) 0<Oz<n,1<q§§,1<t§3<oo,t<—qs
n

additionally on the parameters [10]. With this condition and the condition that all the
functions are supported in a bounded set, he obtained [[v — 1||p: < C. However, the

2
last condition ¢ < —¢s turned out to be superflous. We can replace this condition with
1 1 2 n
t < —qs with p given by — = — — —, keeping in mind that p < —.
P s p on 2

§7. Full statement of our main results
Here we formulate our main theorem as the full statement.

§7.1. A passage from [, to 7, and from M?! to generalized Morrey spaces

Here we describe what we actually obtained in our first paper [12]. Let p : [0, c0) —
[0, oo] be a suitable function. We define the generalized fractional integral operator T,
and the generalized fractional maximal operator M, by

15w = [ 2= ay,

|z —y|"
M,f(z):= sup p((Q))mq(|f])-

zeQEeQ

If p(t) =t"*, 0 < o< 1, then T, = I, and M, = M,. The Morrey norm || f||,,, is given
by

(7.1) I/

1 1/p

= 500 90Q) (15 [ I@Pac)

QeQ Q) Q
In general, by the Dini condition we mean that

1
(7.2) / pls) ds < o0,
0 S

while the doubling condition (with a doubling constant Cy > 0) is that

1
— <
Co ~ p

s

(S) < CO; if

(7.3) 5

<-<2

~+| ®»

1
2

—~
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A simple consequence that can be deduced from the doubling condition is

log 2 K
(7.4) ﬁp(t) < / pls) ds <log2- Cyp(t) for all t > 0.
CO t/2 S

In the sequel, we always assume that p satisfies (7.2) and (7.3), and, then denote the
set of all such functions by Gy. We will write, when p € G,

p(t) ::/O ﬁds.

S

Let G be the set of all functions ¢ : [0, co) — [0, co) such that ¢(t) is nondecreasing
but that ¢(¢)t~" is nonincreasing. We notice that the condition ¢ € G; is stronger than
the doubling condition (7.3). More quantitatively, if we assume that ¢ € G;, then ¢
satisfies the doubling condition with the doubling constant 2.

Theorem 7.1. Letl<p<oo,q¢q>r,0<b<1,a>1and (a+b—1)r=ap.
Suppose that p satisfies the Dini condition, (7.3) and that p(t)™¥@PbDt=" s nonin-
creasing. The condition p(t)™*(@PbDt=" s nonincreasing implies that p(t)*Pt~" and
p(t)?4t~™ are nonincreasing, since

ﬁ(t)min(ap,bq)t—n — ﬁ(t)min(ap,bq)—max(ap,bq) . ﬁ(t)max(ap,bq)t—n.

Then
lg - Tpfllypate-1 < Clg|

where the constant C' is independent of f and g.

q,p° 1

|P»ﬁa’

Theorem 7.1 generalizes of [10, Theorem 2] and [17, Theorem 1]. Theorem 7.1 is
not longer true when g = r (see Proposition 5.1).
Letting b =0 and g = 1 in Theorem 7.1, we have the following:

Corollary 7.2. Letl <p<oo,a>1and (a—1)r =ap. Then

ITpfllr e < Cllfllppe-

Corollary 7.2 generalizes [1, Theorem 1.3].

< q 1 =1
p_qz.fp "0<b<1 andb< a. Suppose
p<qifp>1,

that p satisfies the Dini condition, (7.3) and that p(t)™2x(@PPDt=" js nonincreasing.
Then

Theorem 7.3. Let1 < p < o0, {

lg - T, f a7 [ Mpi-» f|

where the constant C' is independent of f and g.

pie < Cllgl P
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Corollary 7.4. Let1 <p <oo anda > 0. Then

1T fllp.pe < ClIMpSlp,pe-

Corollary 7.4 generalizes [2, Theorem 4.2].
Letting b = 1 in Theorem 7.3, we have the following too:

<gifp=1
Corollary 7.5. Let1 <p < o0, p=q z.fp " and a > 1. Then
p<qifp>1,
19 Tpfllp,pe < Cligllg,s 1M fllp,5e-

These results are somehow generalized. We generalized them in [13] as follows; we
content ourselves with stating them.

<gifp=1
Theorem 7.6. Let1 <p < oo, p=4 z.fp " Suppose that ¢(t) and n(t) are
p<qifp>1.
nondecreasing but that ¢(t)Pt~" and n(t)9t™" are nonincreasing. Assume also that
o
p(s)n(s) n(t)
7.5 / ——ds < C—= for allt > 0.
79 L saeee = o0
Then
19 Lo fllp.e < Cligllgmll Mz flip,e:

where the constant C is independent of f and g.

Theorem 7.7. Let 1 <p <r < q < oco. Suppose that ¢(t) and n(t) are nonde-
creasing but that ¢(t)Pt~"™ and n(t)9~" are nonincreasing. Suppose also that

pt) > p(s) n(t)
Then
g - Tpf| rgp/r < Cllg |q,n||f |p,¢v

where the constant C' is independent of f and g.

Theorem 7.8. Let 0 < p < co. Suppose that p, n and ¢ are nondecreasing and
that n(t)Pt=" and ¢(t)Pt™" are nonincreasing. Then

lg - M, f|

.t < Cllgllpnll My f

DM |p,¢a

where the constant C' is independent of f and g.
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§7.2. Extension of Theorem 1.1 to Orlicz-Morrey spaces

To describe Orlicz-Morrey spaces, we recall some definitions and notation. Here we
follow [15].

A function @ : [0, 0o) — [0, oo] is said to be a Young function if it is left-continuous,
convex and increasing, and if ®(0) = 0 and ®(t) — oo as t — oco. We say that ® is a
normalized Young function when & is a Young function and ®(1) = 1. It is easy to see
that t7, 1 < p < 00, is a normalized Young function.

A Young function @ is said to satisfy the As-condition, denoted & € A, if for some
K>1

O(2t) < K®(t) for all t > 0.

Meanwhile, a Young function ® is said to satisfy the Vy-condition, denoted ® € Vo, if
for some K > 1 .
< — .
d(t) < 2K<I>(Kt) forallt >0

The function ®(t) = ¢ satisfies the Ag-condition but fails the Vy-condition. If 1 < p <
00, then ®(t) = tP satisfies both conditions. The complementary function ® of a Young
function @ is defined by

®(t) := sup{ts — ®(s) : s € [0, c0)}.

Then & is also a Young function and ® = ®. Notice that ® € Vs, if and only if ® € A,.
For the other properties of Young functions and the examples, see [8, p196].
Given a Young function ®, define the Orlicz space L2(R™) = L® by the Luxemberg

norm
Il ze ::inf{)\>0: /n@<@) dg;gl},

When ®(t) =tP, 1 <p < oo, ||fllze = ||f]|lzr- We need the following basic two facts.
Generalized Holder’s inequality:
[ @@l de < Clflcelgl o
The dual equation:

[fllze ~ sup {[[fgllzr - llgllze <1}

Given a Young function ®, define the mean Luxemburg norm of f on a cube Q € Q

by
— o1 |f ()]
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When ®(t) =7, 1 < p < o0,

/]

B L » 1/p
<I>,Q—(|Q|/Q|f(93)| dx> |

that is, the mean Luxemburg norm coincides with the (normalized) L? norm. It should
be noticed that

(7.7) /]

where 75, 6 > 0, is the dilation operator 75f(x) = f(dz). It follows from this relation

®,Q = T lfxalllce,

and generalized Holder’s inequality that for any cube Q € Q

(7.8) mq(|fgl) < Cllflle, o9l

®,Q-
The Orlicz maximal operator, for any Young function W, is defined by

MY f(z) = SUPQ [ fllw, q-

rEQCE
Now let us introduce Orlicz-Morrey spaces.
Definition 7.9. Let ¢ € G; and let ® be a Young function. The Orlicz-Morrey

space L®?(R") = L® ¢ consists of all locally integrable functions f on R™ for which
the norm

1fllce.o := sup ¢(£(Q))I flla, ¢
QeQ

is finite. In particular, in order that the characteristic function of the unit cubes belongs
to L2 ¢, it is always assumed that

o(t)
iglla —<I>—1(t”) < 00.

Example We define

(7.9) vz, = [ e, o
when ¢(t) = t"/P and ®(t) = tlog(3 +t).

We have shown in [15] that
(7.10) IM fllag ~ M lmg -

If ®(t) = P and ¢(t) = t"/P, 1 < p < py < oo, then L& ? = MPPo. When
®(t) = tP, 1 < p < oo, we will denote L¥? by MP:¢. In this case we will call it
the (generalized) Morrey space. We consider MP>? even for 0 < p < 1. We define an
auxiliary space too.
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Definition 7.10. Let ¢ € G; and let ® be a Young function. The space
i@,d)(Rn) _ i@,d)

consists of all locally integrable functions g on R™ for which the norm

9]l ze. o := sup { | Mg[gwxollls o : @€ Q, [wlls,q <1}
is finite.

Related to the space £2 ¢, we need the following notion too.

Definition 7.11. Let ® and ¥ be Young functions. One says that “MY is
locally bounded in the norm determined by ®”, when it satisfies

MY [gx0]

3,0 < C|glla, g for all cubes Q € Q.

We now state our first results, which extend those in [12, 13] to Orlicz-Morrey
spaces.

Theorem 7.12. Let p € Gy, ¢ € G1 and ® € V,. Suppose that the condition

G @ or a
(7.11) /t 8¢(8)ds§0¢(t)f lt>0.

Then
lg-Tpfllce.o < Cllgllse sl fllce s

Theorem 7.13.  Let U be a Young function. With the same condition posed in
Theorem 7.12, if, in addition, MY is locally bounded in the norm determined by ®, then
we have

lg - Tofllew.o < Cliglewallfllee.e

Theorems 7.12 and 7.13 are the trace inequalities of the generalized fractional
integral operators for Orlicz-Morrey spaces.

Theorem 7.14. Let pe Gy, ¢, € G, P e Vy and 0 < a < 1. Set

n(t) = o), V(1) = ().

Suppose that the condition

(7.12) ¢(t)+/t s¢(s)d Scn(t) for all t > 0.
Then

lg-Tofllcen <Cllgllpo,ollfllze s
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Theorem 7.14 is a general form of Theorem 7.12 (letting @ = 1) and is the Olsen
inequality of the generalized fractional integral operators for Orlicz-Morrey spaces.

Letting g(x) = 1 and 9(¢) = 1 in Theorem 7.14, we can recover the boundedness
property of T,.

Corollary 7.15. Let p€ Go, 9 €G1, P Vo and 0 <a < 1. Set
n(t) = 6(t)",  W(t) = (V).
Suppose that U € Vo and that the condition

@ T ) s o or a
*/t so(s) 5 = e Jor et >0

B(t)
Then
T fllcv.n < CJfllce e

However, in the next theorem we reproved this corollary directly without the as-
sumption ¥ € V.

Theorem 7.16. Let p€ Gy, p € Gy, PEVy and 0 <a < 1. Set
n(t) = (t)", W(t) = ().

Suppose that the condition

o) (<) o C o
¢(t)+/t s¢(s)d < o for el > 0.

Then
I Tpfll e n <O fllce s

Corollary 7.15 generalizes [13, Corollary 1.7]. In [7] Nakai studied the boundness
of the generalized fractional integral operator T}, on Orlicz spaces. Since, we cannot

recover Orlicz spaces as a special case of our Orlicz-Morrey spaces, we dare not compare
Corollary 7.15 with [7, Theorem 3.1].

§ 8. Appendix-Boundedness of the fractional maximal operator

Lemma 8.1. Let p > 1. Suppose that ¢(t) is nondecreasing and ¢(t)Pt~" is
nonincreasing. Then

1M f

|p,¢ < C“f

|pa¢'
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Proof. Fix a cube Q. Let fi = x30,f and fo = f — fi. Then the subadditivity
of M yields
Mf(z) < M fi(z) + M fo(z).

It follows from the definition of M that for all x € Qo

1
Mpyx)=  sup = / ) dy.
r€QEQ: 6(Q)>1(Q0) 1€ Jo

Suppose that z € Qp, x € @ € Q and £(Q) > ¢(Qo). Then

$(UQ0))ma(|f]) < SU@))mP (1)) <

where we have used Holder’s inequality and the fact that ¢ is nondecreasing.

This gives us that

P(U(Qo))M fa(z) < [|flp,p for all x € Qo,

and that

S(L(Q0))mB (M )P < $(0(Q0))mEB) (M f1)P + (£(Qo))meb) (M fa)?
< CHE(3Q0))mEY. (f)

where we have used L? boundedness of maximal operator M. This implies our desired
inequality. O

Lemma 8.2. Let1l < p < g < oo. Suppose that ¢(t) is nondecreasing and
@(t)Pt™" is nonincreasing. Then

It is worth noting that the surjectivity of ¢ was superflous.

Proof. Let x € R™ be a fixed point. For every cube @ 5 x we see that

S(UQ)) P mg (| f]) < min(¢(£(Q)) P/ IM f(z), $(U(Q))”

< supmin(t* P IMf(x), t 7P £|lp.o)
>0

=11l M F @)

)

This implies

Md)l—p/qf(a?) ~ _pr(a:)p.

It follows from Lemma 8.1 that for every cube Qg

M) (Mys-raf) < 115 “m&) (M f) Qo))"
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The desired inequality then follows. O
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