Necessary and Sufficient Conditions for the Fractional Gagliardo-Nirenberg Inequalities and Applications to Navier-Stokes and Generalized Boson Equations

Hichem Hajaiej, Luc Molinet, Tohru Ozawa and Baoxiang Wang

Abstract

Necessary and sufficient conditions for the generalized Gagliardo-Nirenberg inequalities are obtained. For $0 < q < \infty$, $0 < p, p_0, p_1 \leq \infty$, $s, s_0, s_1 \in \mathbb{R}$, $\theta \in (0, 1)$,

$$\|u\|_{\dot{B}_{p,q}^{s}} \lesssim \|u\|_{\dot{B}_{p_0,\infty}^{s_0}}^{1-\theta} \|u\|_{\dot{B}_{p_1,\infty}^{s_1}}^{\theta}$$

(0.1)

holds if and only if $n/p-s = (1-\theta)(n/p_0-s_0)+\theta(n/p_1-s_1)$, $s_0-n/p_0 \neq s_1-n/p_1$, $s \leq (1-\theta)s_0 + \theta s_1$, and $p_0 = p_1$ if $s = (1-\theta)s_0 + \theta s_1$. Applying this inequality, we show that the solution of the Navier-Stokes equation at finite blowup time T_m has a concentration phenomena in the critical space $L^3(\mathbb{R}^3)$. Moreover, we consider the minimization problem for the variational problem

$$M_c = \inf \{ E(u) : \|u_i\|_2^2 = c_i > 0, i = 1, \ldots, L \},$$

where

$$E(u) = \frac{1}{2} \|u\|_{H^{s}}^2 - \int_{\mathbb{R}^3} G(u(x))V(x-y)G(u(y))dxdy$$

for $u = (u_1, \ldots, u_L) \in (H^s)^L$ and show that M_c admits a radial and radially decreasing minimizer under suitable assumptions on s, G and V.

Keywords. Fractional Gagliardo-Nirenberg inequality, Besov spaces, Triebel-Lizorkin spaces, boson equation, minimizer.

1 Introduction

The Gagliardo-Nirenberg (GN) inequality is a fundamental tool in the study of nonlinear partial differential equations, which was discovered by Gagliardo [27], Nirenberg [51] (see also [36]) in some special cases. Throughout this paper, we denote by $L^p := L^p(\mathbb{R}^n)$ the Lebesgue space, $\|\cdot\|_p := \|\cdot\|_{L^p}$. $C > 1$ will denote positive universal constants, which can be different at different places. $a \lesssim b$ stands for $a \leq Cb$ for some constant $C > 1$, $a \sim b$ means that $a \lesssim b$ and $b \lesssim a$. We write $a \wedge b = \min(a, b)$, $a \vee b = \max(a, b)$.

The classical integer version of the GN inequality can be stated as follows (see [25] for instance):

Theorem 1.1 Let $1 \leq p, p_0, p_1 \leq \infty$, $\ell, m \in \mathbb{N} \cup \{0\}$, $\ell < m$, $\ell/m \leq \theta < 1$.

\[
\frac{n}{p} - \ell = (1 - \theta)\frac{n}{p_0} + \theta \left(\frac{n}{p_1} - m\right)\tag{1.1}
\]

Then we have for all $u \in C_0^\infty(\mathbb{R}^n)$,

\[
\sum_{|\alpha| = \ell} \|\partial^\alpha u\|_p^\sim \lesssim \|u\|_{p_0}^{1 - \theta} \sum_{|\alpha| = m} \|\partial^\alpha u\|_{p_1}^\theta,
\tag{1.2}
\]

where we further assume $\ell/m \leq \theta < 1$ if $m - \ell - n/p_1$ is an integer.

The classical proof of the GN inequality is based on the global derivative analysis in L^p spaces, whose proof is rather complicated, cf. [25, 29]. On the basis of the harmonic analysis techniques, there are some recent works devoted to generalizations of the GN inequality, cf. [5, 9, 10, 15, 16, 17, 22, 25, 29, 30, 38, 42, 50, 52, 55].

Now we introduce some function spaces which will be frequently used, cf. [57]. We denote by $\dot{H}^s_p := (-\Delta)^{s/2}L^p$ the Riesz potential space, $\dot{H}^s = \dot{H}_2^s$, $H^s = L^2 \cap \dot{H}^s$ for any $s \geq 0$. Let ψ be a smooth cut-off function supported in the ball $\{\xi : |\xi| \leq 2\}$, $\varphi = \psi(\cdot) - \psi(2\cdot)$. We write $\varphi_k(\xi) = \varphi(2^{-k}\xi)$, $k \in \mathbb{Z}$. We see that

\[
\sum_{k \in \mathbb{Z}} \varphi_k(\xi) = 1, \quad \xi \in \mathbb{R}^n \setminus \{0\}.\tag{1.3}
\]

We introduce the homogeneous dyadic decomposition operators $\triangle_k = \mathcal{F}^{-1}\varphi_k \mathcal{F}$, $k \in \mathbb{Z}$. Let $-\infty < s < \infty$, $1 \leq p, q \leq \infty$. The space $\dot{B}^s_{p,q}$ equipped with norm

\[
\|f\|_{\dot{B}^s_{p,q}} := \left(\sum_{k = -\infty}^\infty 2^{ksq} \|\triangle_k f\|_p^q\right)^{1/q}\tag{1.4}
\]

is said to be a homogeneous Besov space (a tempered distribution $f \in \dot{B}^s_{p,q}$ modulo polynomials). Let

\[-\infty < s < \infty, \quad 1 \leq p < \infty, \quad 1 \leq q \leq \infty.\tag{1.5}\]
The space $\dot{F}_{p,q}^{s}$ equipped with norm

$$\|f\|_{\dot{F}_{p,q}^{s}} := \left\| \left(\sum_{k=-\infty}^{\infty} 2^{ksq} |\triangle_{k}f|^q \right)^{1/q} \right\|_{p}$$

(1.6)

is said to be a homogeneous Triebel-Lizorkin space (a tempered distribution $f \in \dot{F}_{p,q}^{s}$ modulo polynomials).

2 Fractional GN inequalities

In this paper we will obtain necessary and sufficient conditions for the GN inequality in homogeneous Besov spaces $\dot{B}_{p,q}^{s}$ and Triebel-Lizorkin spaces $\dot{F}_{p,q}^{s}$. As a corollary, we obtain that the GN inequality also holds in fractional Sobolev spaces \dot{H}_{p}^{s}. The fractional GN inequalities in Theorems 2.1, 2.2 and 2.3 below cover all of the available GN inequalities in [5, 9, 10, 15, 16, 17, 22, 25, 29, 30, 38, 42, 50, 52, 55] for both integer and fractional versions. Moreover, our results below clarify how the third indices q in $\dot{B}_{p,q}^{s}$ and $\dot{F}_{p,q}^{s}$ contribute the validity of the GN inequalities. We have

Theorem 2.1 Let $0 < p, p_{0}, p_{1}, q, q_{0}, q_{1} \leq \infty$, $s, s_{0}, s_{1} \in \mathbb{R}$, $0 \leq \theta \leq 1$. Then the fractional GN inequality of the following type

$$\|u\|_{\dot{B}_{p,q}^{s}} \lesssim \|u\|_{\dot{B}_{p_{0},q_{0}}^{s_{0}}}^{1- \theta}, \|u\|_{\dot{B}_{p_{1},q_{1}}^{s_{1}}}^{\theta}$$

(2.1)

holds for all $u \in \dot{B}_{p_{0},q_{0}}^{s_{0}} \cap \dot{B}_{p_{1},q_{1}}^{s_{1}}$ if and only if

$$\frac{n}{p} - s = (1 - \theta) \left(\frac{n}{p_{0}} - s_{0} \right) + \theta \left(\frac{n}{p_{1}} - s_{1} \right),$$

(2.2)

$$s \leq (1 - \theta)s_{0} + \theta s_{1},$$

(2.3)

$$\frac{1}{q} \leq \frac{1 - \theta}{q_{0}} + \frac{\theta}{q_{1}}, \text{ if } p_{0} \neq p_{1} \text{ and } s = (1 - \theta)s_{0} + \theta s_{1},$$

(2.4)

$$s_{0} \neq s_{1} \text{ or } \frac{1}{q} \leq \frac{1 - \theta}{q_{0}} + \frac{\theta}{q_{1}}, \text{ if } p_{0} = p_{1} \text{ and } s = (1 - \theta)s_{0} + \theta s_{1},$$

(2.5)

$$s_{0} - \frac{n}{p_{0}} \neq s - \frac{n}{p} \text{ or } \frac{1}{q} \leq \frac{1 - \theta}{q_{0}} + \frac{\theta}{q_{1}}, \text{ if } s < (1 - \theta)s_{0} + \theta s_{1}.$$

(2.6)

Theorem 2.2 Let $0 < q < \infty$, $0 < p, p_{0}, p_{1} \leq \infty$, $0 < \theta < 1$, $s, s_{0}, s_{1} \in \mathbb{R}$. Then the fractional GN inequality of the following type

$$\|u\|_{\dot{B}_{p,q}^{s}} \lesssim \|u\|_{\dot{B}_{p_{0},\infty}^{s_{0}}}^{1- \theta}, \|u\|_{\dot{B}_{p_{1},\infty}^{s_{1}}}^{\theta}$$

(2.7)

holds if and only if

$$\frac{n}{p} - s = (1 - \theta) \left(\frac{n}{p_{0}} - s_{0} \right) + \theta \left(\frac{n}{p_{1}} - s_{1} \right),$$

(2.8)
In homogeneous Triebel-Lizorkin spaces $\dot{F}_{p,q}^{s}$, we have the following.

Theorem 2.3 Let $0 < p, p_0, p_1, q < \infty$, $s, s_0, s_1 \in \mathbb{R}$, $0 < \theta < 1$. Then the fractional GN inequality of the following type

$$\|u\|_{\dot{F}_{p,q}^{s}} \lesssim \|u\|_{\dot{F}_{p_0,\infty}^{s_0}}^{1-\theta} \|u\|_{\dot{F}_{p_1,\infty}^{s_1}}^{\theta}$$

(2.12)

holds if and only if

$$\frac{n}{p} - s = (1 - \theta) \left(\frac{n}{p_0} - s_0 \right) + \theta \left(\frac{n}{p_1} - s_1 \right),$$

(2.13)

$$s \leq (1 - \theta)s_0 + \theta s_1,$$

(2.14)

$$s_0 \neq s_1$$

if $s = (1 - \theta)s_0 + \theta s_1$.

(2.15)

The following is the GN inequality with fractional derivatives.

Corollary 2.4 Let $1 < p, p_0, p_1 < \infty$, $s, s_1 \in \mathbb{R}$, $0 \leq \theta \leq 1$. Then the fractional GN inequality of the following type

$$\|u\|_{\dot{H}_p^{s}} \lesssim \|u\|_{L^{p_0}}^{1-\theta} \|u\|_{\dot{H}_p^{s_1}}^{\theta}$$

(2.16)

holds if and only if

$$\frac{n}{p} - s = (1 - \theta) \frac{n}{p_0} + \theta \left(\frac{n}{p_1} - s_1 \right), \quad s \leq \theta s_1.$$

(2.17)

3 Corollaries of the GN inequalities

In this section we give some corollaries of our main results. Noticing that $BMO = \dot{F}_{\infty,2}^{0} \subset \dot{B}_{\infty,\infty}^{0}$ and $\|\nabla^s u\|_{\dot{B}_{p,\infty}^{s}} \lesssim \|\nabla^s u\|_{p}$, we can deduce the following useful interpolation inequalities:

$$\|u\|_{L^{10}(\mathbb{R}^3)} \leq C \|u\|_{\dot{B}_{\infty,\infty}^{-1/2}(\mathbb{R}^3)}^{2/3} \|u\|_{\dot{B}_{10/3,10/3}^{1}(\mathbb{R}^3)}^{1/3},$$

(3.1)

$$\|u\|_{L^{4}} \lesssim \|\nabla u\|_{L^{2}}^{1/2} \|u\|_{\dot{B}_{\infty,\infty}^{-1}}^{1/2},$$

(3.2)

$$\|\nabla u\|_{L^{4}} \lesssim \|\nabla^2 u\|_{L^{2}}^{1/2} \|u\|_{BMO}^{1/2},$$

(3.3)

$$\|u\|_{L^{q}} \lesssim \|\nabla u\|_{L^{p}}^{\theta} \|u\|_{\dot{B}_{\infty,\infty}^{-\theta/(1-\theta)}}^{1-\theta}, \quad 1 \leq p < q < \infty, \theta = p/q.$$
Following Bourgain [8], we can show (3.1), which is useful to obtain the concentration phenomena of the solutions of the nonlinear Schrödinger equation. Meyer and Riviè re [50] studied the partial regularity of solutions for the stationary Yang-Mills fields by using (3.2) and (3.3). (3.4) and (3.5) are generalized versions of (3.2) and (3.3), respectively (see Ledoux [38], Strzelecki [55]). Machihara and Ozawa [42] showed that

Proposition 3.1 Let $1 \leq p_0 \vee p_1 \leq p \leq \infty$, $0 < \theta < 1$, $s_0, s_1 \in \mathbb{R}$. Assume that

$$\frac{n}{p} - s = (1 - \theta) \left(\frac{n}{p_0} - s_0 \right) + \theta \left(\frac{n}{p_1} - s_1 \right),$$

with $s_0 < \frac{n}{p_0} - \frac{n}{p}$ and $s_1 > \frac{n}{p_1} - \frac{n}{p}$. (3.6)

Then

$$\|u\|_{\dot{B}^0_{p,1}} \lesssim \|u\|_{\dot{B}^0_{p_0,\infty}}^{1-\theta} \|u\|_{\dot{B}^0_{p_1,\infty}}^\theta. \quad (3.7)$$

Oru [52] obtained that (see also [11])

Proposition 3.2 Let $0 < p_0, p_1, p < \infty$, $0 < r < \infty$, $-\infty < s_0, s_1, s < \infty$, $0 < \theta < 1$ and

$$\frac{1}{p} = \frac{1 - \theta}{p_0} + \frac{\theta}{p_1}, \quad s = (1 - \theta)s_0 + \theta s_1, \quad s_0 \neq s_1. \quad (3.8)$$

Then

$$\|u\|_{\dot{F}^s_{p,r}(\mathbb{R}^n)} \leq C \|u\|_{\dot{B}^0_{p_0,\infty}(\mathbb{R}^n)}^{1-\theta} \|u\|_{\dot{B}^0_{p_1,\infty}(\mathbb{R}^n)}^\theta. \quad (3.9)$$

The following interpolation inequality was shown in [58].

Proposition 3.3 Let $0 < p_0 < p < \infty$, $0 < r \leq \infty$, $-\infty < s_1 < s < s_0 < \infty$, $0 < \theta < 1$ and

$$\frac{1}{p} = \frac{\theta}{p_0} + \frac{1 - \theta}{\infty}, \quad s = \theta s_0 + (1 - \theta)s_1. \quad (3.10)$$

Then

$$\|u\|_{\dot{F}^s_{p,r}(\mathbb{R}^n)} \leq C \|u\|_{\dot{B}^0_{2|,\infty}(\mathbb{R}^n)}^{1-\theta} \|u\|_{\dot{B}^0_{0,0}(\mathbb{R}^n)}^\theta. \quad (3.11)$$
4 Concentration of solutions of NS equation

In the second part of this paper we consider some applications of the fractional GN inequality. First, We study the Cauchy problem for the Navier-Stokes (NS) equation

\[u_t - \Delta u + (u \cdot \nabla)u + \nabla p = 0, \quad \text{div} \, u = 0, \quad u(0, x) = u_0(x), \quad (4.1) \]

where \(\Delta = \sum_{i=1}^{n} \partial_{x_i}^2, \quad \nabla = (\partial_{x_1}, \ldots, \partial_{x_n}), \quad \text{div} \, u = \partial_{x_1}u_1 + \ldots + \partial_{x_n}u_n, \quad u = (u_1, \ldots, u_n) \) and \(p \) are real-valued unknown functions of \((t, x) \in [0, T_m) \times \mathbb{R}^n \) for some \(T_m > 0 \), \(u_0 = (u_0^1, \ldots, u_0^n) \) denotes the initial value of \(u \) at \(t = 0 \).

It is known that NS equation is local well posed in \(L^n \), namely, for initial data \(u_0 \in L^n(\mathbb{R}^n) \), there exists a unique local solution \(u \in C([0, T_m); L^n) \cap L^2_{\text{loc}}(0, T_m; L^{2+n}) \) (cf. [33, 34]). Whether the local solution can be extended to a global one is still open. Recently, Escauriaza, Seregin and Šverák [21] showed that any “Leray-Hopf” weak solution in 3D which remains bounded in \(L^3(\mathbb{R}^3) \) cannot develop a singularity in finite time. Kenig and Koch [34] gave an alternative approach to this problem by substituting \(L^3 \) with \(\dot{H}^{1/2} \). Dong and Du [19] generalized their results in higher spatial dimensions \(n \geq 3 \).

Noticing that \(L^3 \subset B^{-1}_{\infty, \infty} \) in 3D is a sharp embedding, for any solution \(u \) of the NS equation in \(C([0, T^*); L^n) \), we see that \(u \in C([0, T^*); B^{-1}_{\infty, \infty}) \). May [49] prove that if \(T^* < \infty \), then there exists a constant \(c > 0 \) independent of the solution of NS equation such that \(\lim \sup_{t \to T^*} \| u(t) - \omega \|_{B^{-1}_{\infty, \infty}} \geq c \) for all \(\omega \in \mathcal{S} \). In this paper we will use the fractional GN inequality to study the finite time blowup solution and we have the following concentration result:

Theorem 4.1 Let \(n = 3 \) and \(u \in C([0, T_m); L^n \cap L^2) \cap L^2_{\text{loc}}(0, T_m; L^{2+n}) \) be the solution of NS equation with maximal existing time \(T_m < \infty \). Then there exist \(c_0 > 0 \) and \(\delta > 0 \) such that

\[\lim_{t \to T_m} \sup_{t \geq T_m} \int_{|x-x_0| \leq (T_m-t)^{\delta}} |u(t, x-x_0)|^n dx \geq c_0, \quad (4.2) \]

where the constant \(c_0 > 0 \) only depends on \(\| u_0 \|_n \), \(\delta \) can be chosen as any positive constant less than \(2/n^2 \).

5 Minimizing problem

As the second application to the fractional GN inequality, we consider the existence of the radial and radially decreasing non-negative solutions for the following system:

\[(m^2 - \Delta)^s u_i - [G(u) * V] \partial_i G(u) + r_i u_i = 0, \quad i = 1, \ldots, L, \quad (5.1) \]

where \(m^2 \geq 0, \ u = (u_1, \ldots, u_L), \ u_i \geq 0 \) and \(u \neq 0, \ G : \mathbb{R}^L_+ \to \mathbb{R}^L_+ = [0, \infty) \) is a differentiable function, \(\partial_i G(v_1, \ldots, v_L) := \partial G(v_1, \ldots, v_L)/\partial v_i \), \(V(x) = |x|^{-(n-\beta)} \), \(* \) denotes

6
the convolution in \mathbb{R}^n, $r_i > 0$. In order to work out a desired solution of (5.1), it suffices to consider the existence of the radial and radially decreasing non-negative and non-zero minimizers of the following variational problem. We write for $c_1, ..., c_L > 0$,

$$S_c = \{ u = (u_1, ..., u_L) \in (H^s)^L : \|u_i\|_2^2 = c_i, \ i = 1, ..., L \}. \tag{5.2}$$

We will consider the variation problem

$$M_c = \inf \{ E(u) : u \in S_c, \ c_1, ..., c_L > 0 \}, \tag{5.3}$$

where

$$E(u) = \frac{1}{2} \sum_{i=1}^{L} \|(m^2 + |\xi|^2)^{s/2}u_i\|_2^2 - \int \int G(u(x))V(|x-y|)G(u(y))dx \, dy. \tag{5.4}$$

Fractional calculus has gained tremendous popularity during the last two decades thanks to its applications in widespread domains of sciences, economics and engineering, see [1, 6, 35, 37]. Fractional powers of the Laplacian arise in many areas. Some of the fields of applications of fractional Laplacian models include medicine where the equation of motion of semilunar heart value vibrations and stimuli of neural systems are modeled by a Capulo fractional Laplacian; cf. [20, 41]. It also appears in modeling populations [53], flood flow, material viscoelastic theory, biology dynamics, earthquakes, chemical physics, electromagnetic theory, optic, signal processing, astrophysics, water wave, bio-sciences dynamical process and turbulence; cf. [1, 2, 6, 7, 13, 14, 18, 24, 23, 35, 37, 39, 43, 44, 56].

In [39], Lieb and Yau studied the existence and symmetry of ground state solutions for the boson equation in three dimensions:

$$(m^2 - \triangle)^{1/2}u - (|x|^{-1} \ast u^2) u + ru = 0, \tag{5.5}$$

Taking $G(u) = u^2$ and $V(x) = |x|^{-1}$ in three dimensions, (5.1) is reduced to (5.5). The variational problem associated with (5.5) is

$$M_c^{(3)} = \inf \left\{ \frac{1}{2} \|(m^2 + |\xi|^2)^{1/4}u\|_2^2 - \int \int \frac{|u(x)|^2 |u(y)|^2}{|x-y|}dx \, dy : u \in H^{1/2}, \ \|u\|_2^2 = c \right\}. \tag{5.6}$$

As indicated in [39], (5.5) and (5.6) play a fundamental role in the mathematical theory of gravitational collapse of boson stars. Indeed, Lieb and Yau essentially showed that

- For $m^2 = 0$, $s = 1/2$, there exists $c_* > 0$, such that (5.5) has a non-negative radial solution if and only if $c = c_*$.

- For $m^2 > 0$, $s = 1/2$, (5.5) has a non-negative radial solution if and only if $0 < c < c_*$, where c^* is the same as in the case $m^2 = 0$.

7
It was proven in [39] that boson stars with total mass strictly less than c^* are gravitationally
stable, whereas boson stars whose total mass exceed c^* may undergo a “gravitational collapse”
based on variational arguments and many-body quantum theory. The main
tools used by Lieb and Yau are the Hardy-Littlewood-Sobolev inequality together with
some rearrangement inequalities. Inspired and motivated by Lieb and Yau’s work, Frank
and Lenzmann [26] recently showed the uniqueness of ground states to (5.5).

Taking $G(u) = u^2$ and $V(x) = |x|^{-(n-2)}$ in n-dimensions with $n \geq 3$, (5.1) is reduced to
the general Choquard-Peckard equation

$$(m^2 - \triangle)^s u - \left(|x|^{-(n-2)} * u^2\right) u + ru = 0. \tag{5.7}$$

The variational problem associated with (5.7) is

$$M_{\beta}^{(n)} = \inf \left\{ \frac{1}{2} \left((m^2 + |\xi|^2)^{s/2} |u|^2 - \mathcal{T}_\beta (u) \right) : u \in H^{s}, \|u\|_2^2 = c \right\}, \tag{5.8}$$

where

$$\mathcal{T}_\beta (u) = \int \frac{|u(x)|^2 |u(y)|^2}{|x-y|^{n-\beta}} dxdy. \tag{5.9}$$

Taking $G(u) = u_1^2 + u_2^2$ and $V(x) = |x|^{-1}$ in 3-dimensions, (5.1) is reduced to the following
system

$$(m^2 - \triangle)^s u_i - \left(|x|^{-1} * (u_1^2 + u_2^2)\right) u_i + r_i u_i = 0, \ i = 1, 2, \tag{5.10}$$

which was studied in [4] and [26] in the cases $s = 1$ and $s = 1/2$, respectively. If we
treat $u = (u_1, u_2)$ and $\|u\|_X^2 = \|u_1\|_X^2 + \|u_2\|_X^2$, we see that the variational problem associated
with (5.10) is the same as in (5.8) if one constraint $\|u_1\|_2^2 + \|u_2\|_2^2 = c$ is considered.

Now we state our main result on the existence of the minimizer of (5.3). There are two
types of basic nonlinearities, one is $G(u) = u_1^{\mu_1} \ldots u_L^{\mu_L}$ and another is $G(u) = u_1^{\mu} + \ldots + u_L^{\mu}$.
For the former case, we need to use m-constraints $\|u_i\|_2^2 = c_i > 0$ to prevent the situation
that the second term of $E(u)$ in (5.4) vanishes. For the later case, one can use one
constraint $\|u_1\|_2^2 + \ldots + \|u_L\|_2^2 = c$. Let $s \geq (n - \beta)/2$. We first consider the former case
and our main assumptions on G are the following:

(G1) $G : \mathbb{R}_+^L \ni (v_1, \ldots, v_L) \rightarrow G(v_1, \ldots, v_L) \in \mathbb{R}_+$ is a continuous function and there exists

$\mu \in [2, 1 + (2s + \beta)/n)$ such that

$$G(v) \leq C(\|v\|^2 + \|v\|^\mu), \ v = (v_1, \ldots, v_L). \tag{5.11}$$

Moreover, there exist $\alpha_i > 0$ such that for all $0 < v_1, \ldots, v_L < 1,

$$G(v) \geq c v_1^{\alpha_1} v_2^{\alpha_2} \ldots v_L^{\alpha_L}. \tag{5.12}$$

where $0 < n + \beta - n(\alpha_1 + \ldots + \alpha_L) + 2s$.

8
(G2) If \(v \) has a zero component, then \(G(v) = 0 \). The function \(G \otimes G : \mathbb{R}^L_+ \times \mathbb{R}^L_+ \ni (u, v) \rightarrow G(u)G(v) \in \mathbb{R}_+ \) is a supermodular\(^1\).

(G3) \(G(t_1 v_1, ..., t_L v_L) \geq t_{\max} G(v_1, ..., v_L) \) for any \(t_i \geq 1 \), where \(t_{\max} = \max(t_1, ..., t_L) \).

Noticing that \(v_1^{\alpha_1} v_2^{\alpha_2} ... v_L^{\alpha_L} \leq |v|^{\alpha_1 + ... + \alpha_L} \), we see that condition (5.11) covers the nonlinearity \(G(v) = v_1^{\alpha_1} v_2^{\alpha_2} ... v_L^{\alpha_L} \) if \(\alpha_1 + ... + \alpha_L \in [2, \mu] \). Our main result on the existence of the minimizer of (5.3) is the following:

Theorem 5.1 Let \(m^2 \geq 0, 0 < \beta < n, s > (n - \beta)/2 \). Assume that conditions (G1)–(G3) are satisfied. Then (5.3) admits a radial and radially decreasing minimizer in \((H^s)^L\).

We point out that both conditions \(s \geq (n - \beta)/2 \) and \(0 < n + \beta - n(\alpha_1 + ... + \alpha_L) + 2s \) are necessary for Theorem 5.1. Indeed, we can give a counterexample to show that \(M_c = -\infty \) if \(s < (n - \beta)/2 \) or \(0 > n + \beta - n(\alpha_1 + ... + \alpha_L) + 2s \) for a class of nonlinearities \(G(u) \).

The endpoint case \(s = (n - \beta)/2 \) can not be handled in Theorem 5.1. Note that for \(s = (n - \beta)/2 \), we have \(\mu = 2 \) in (5.11), a basic example is \(G(u) = u_1^2 + ... + u_L^2 \). Now we consider the variational problem

\[
M_{c, \beta}^{(n)} = \inf \left\{ \frac{1}{2} \| (m^2 + |\xi|^2)^{s/2} \mathbf{u} \|_2^2 - \mathbf{T}_\beta(u) : u \in (H^s)^L, \| u \|_2^2 = c > 0 \right\}.
\]

where \(u = (u_1, ..., u_L), \| u \|_2^2 = u_1^2 + ... + u_L^2 \) and \(\| u \|_X^2 = \| u_1 \|_X^2 + ... + \| u_L \|_X^2 \). Using the definition of the Riesz potential, the Plancherel identity, the Hardy-Littlewood-Sobolev, and fractional GN inequalities, we have

\[
\mathbf{T}_\beta(u) = C(n, \beta) \int |u(x)|^2 [(-\Delta)^{-\beta/2} |u|^2](x) dx = \|(-\Delta)^{-\beta/4} |u|^2\|_2^2 \\
\leq C \left(\| u_1 \|_{4n/(n+\beta)}^2 + ... + \| u_L \|_{4n/(n+\beta)}^2 \right)^2 \\
\leq C \| u_1 \|_2^2 \| u_1 \|_{\dot{H}^{(n-\beta)/2}}^2 + ... + \| u_L \|_2^2 \| u_L \|_{\dot{H}^{(n-\beta)/2}}^2 \\
\leq C \| u \|_2^2 \| u \|_{\dot{H}^{(n-\beta)/2}}^2.
\]

Define

\[
C^* = \sup_{u \in H^{(n-\beta)/2}\setminus\{0\}} \frac{\mathbf{T}_\beta(u)}{\| u \|_2^2 \| u \|_{\dot{H}^{(n-\beta)/2}}^2}.
\]

Theorem 5.2 Let \(m^2 = 0, 0 < \beta < n, s = (n - \beta)/2, G(u) = u_1^2 + ... + u_L^2 \). Then (5.13) admits a radial and radially decreasing minimizer in \((H^s)^L\) if and only if \(c = 1/2C^* \).

\(^1\)\(F \) is said to be a supermodular if (40)

\[F(y + he_i + ke_j) + F(y) \geq F(y + he_i) + F(y + ke_j) \ (i \neq j, h, k > 0), \]

where \(y = (y_1, ..., y_L) \), and \(e_i \) denotes the \(i \)-th standard basis vector in \(\mathbb{R}^L \). It is known that a smooth function is a supermodular if all its mixed second partial derivatives are nonnegative.
As a straightforward consequence of Theorem 5.1, we see that (5.8) admits a radial and radially decreasing minimizer in $H^{(n-2)/2}$ if and only if $c = 1/2C^*$, where $\beta = 2$ in the definition of C^*.

In the case $m^2 > 0$ we have the following

Theorem 5.3 Let $m^2 > 0$, $0 < \beta < n$, $s = (n - \beta)/2$, $c > 0$. Then we have

1. If $n > 2 + \beta$, then (5.13) has no minimizer in in $(H^s)^L$.

2. If $n < 2 + \beta$, then (5.13) admits a radial and radially decreasing minimizer in $(H^s)^L$ if and only if $0 < c < 1/2C^*$.

3. If $n = 2 + \beta$, then (5.13) admits a radial and radially decreasing minimizer in $(H^s)^L$ if and only if $c = 1/2C^*$.

6 **Sketch Proofs of the GN inequalities**

Let us start with an interpolation inequality in Besov spaces, see [28, 30].

Proposition 6.1 (Convexity Hölder’s inequality) Let $0 < p_i, q_i \leq \infty$, $0 \leq \theta_i \leq 1$, $\sigma_i, \sigma \in \mathbb{R}$ $(i = 1, \ldots, N)$, $\sum_{i=1}^N \theta_i = 1$, $\sigma = \sum_{i=1}^N \theta_i \sigma_i$, $1/p = \sum_{i=1}^N \theta_i/p_i$, $1/q = \sum_{i=1}^N \theta_i/q_i$. Then $\cap_{i=1}^N \dot{B}_{p_i,q_i}^{\sigma_i} \subset \dot{B}_{p,q}^{\sigma}$ and for any $v \in \cap_{i=1}^N \dot{B}_{p_i,q_i}^{\sigma_i}$,

$$\|v\|_{\dot{B}_{p,q}^{\sigma}} \leq \prod_{i=1}^N \|v\|_{\dot{B}_{p_i,q_i}^{\sigma_i}}^{\theta_i}.$$

This estimate also holds if one substitutes $\dot{B}_{p,q}^{\sigma}$ by $\dot{F}_{p,q}^{\sigma}(p, p_i \neq \infty)$.

In the convexity Hölder inequality, condition $1/q = \sum_{i=1}^N \theta_i/q_i$ can be replaced by $1/q \leq \sum_{i=1}^N \theta_i/q_i$. Indeed, noticing that $\ell^q \subset \ell^p$ for all $q \leq p$, we see that Proposition 6.1 still holds if $1/q < \sum_{i=1}^N \theta_i/q_i$. In [28, 30], Proposition 6.1 was stated as the case $1 \leq p_i, q_i \leq \infty$, however, the proof in [30] is also adapted to the case $0 < p_i, q_i \leq \infty$.

Sketch Proof of Theorem 2.1 (Sufficiency) First, we consider the case $1/q \leq (1 - \theta)/q_0 + \theta/q_1$. By (2.3), we have

$$\frac{1}{p} - \frac{1 - \theta}{p_0} - \frac{\theta}{p_1} = \frac{s}{n} - (1 - \theta) \frac{s_0}{n} - \theta \frac{s_1}{n} := -\eta \leq 0. \tag{6.1}$$

Take p^* and s^* satisfying

$$\frac{1}{p^*} = \frac{1}{p} + \eta, \quad s^* = s + n\eta.$$

Applying the convexity Hölder inequality, we have

$$\|f\|_{\dot{B}_{p^*,q^*}}^{\sigma^*} \leq \|f\|_{\dot{B}_{p_0,q_0}^{\sigma_0}}^{1 - \theta} \|f\|_{\dot{B}_{p_1,q_1}^{\sigma_1}}^\theta. \tag{6.2}$$
Using the inclusion $B_{p_0,q}^{s_0} \subset B_{p,q}^{s}$, we get the conclusion.

Next, we need to consider the following two cases: (i) $s = (1 - \theta)s_0 + \theta s_1$, $p_0 = p_1$ and $s_0 \neq s_1$; (ii) $s < (1 - \theta)s_0 + \theta s_1$ and $s - n/p \neq s_0 - n/p_0$. We can show that

$$\|f\|_{B_{p,q}^{s}} \leq \|f\|_{B_{p_0,\infty}^{s_0}}^{1 - \theta}\|f\|_{B_{p_1,\infty}^{s_1}}^{\theta}, \quad (6.3)$$

(6.3) implies the result, as desired.

(Necessity) By scaling

$$\|f(\lambda \cdot)\|_{B_{p,q}^{s}} \sim \lambda^{-n/p}\|f\|_{B_{p,q}^{s}}, \quad \lambda \in \mathbb{Z},$$

We immediately obtain that $s - n/p - [(1 - \theta)(s_0 - n/p_0) + \theta(s_1 - n/p_1)] = 0$.

Next, we show that $s - s_0 \leq \theta(s_1 - s_0)$. Assume on the contrary that $s - s_0 > \theta(s_1 - s_0)$. Assume that $s_0 = 0$. Let φ satisfy $\text{supp } \varphi \subset \{\xi : 1/2 \leq |\xi| \leq 3/2\}$ and $\varphi(\xi) = 1$ for $3/4 \leq |\xi| \leq 1$. So, $\varphi(2^{-j}\xi) = 1$ if $3 \cdot 2^{-j-2} \leq |\xi| \leq 2^j$. Denoting

$$\rho_j(\xi) = \varphi(2(\xi - \xi^{(j)})), \quad \xi^{(j)} = (7 \cdot 2^{j-3}, 0, ..., 0). \quad (6.4)$$

and for sufficiently small $\varepsilon > 0$, we write

$$\hat{f}(\xi) = \sum_{j=100}^{N}2^{\varepsilon j}\rho_j(\xi). \quad (6.5)$$

We see that

$$\|f\|_{B_{p,q}^{s}} \sim 2^{(s+\varepsilon)N}, \quad \|f\|_{B_{p_0,q_0}^{s_0}} \sim 2^{\varepsilon N}, \quad \|f\|_{B_{p_1,q_1}^{s_1}} \sim 2^{(s_1+\varepsilon)N}.$$

By (2.1), we obtain that $2^{(s+\varepsilon)N} < 2^{\varepsilon N}2^{s_1\theta N}$. However, for sufficiently large N, it contradicts the fact $s > \theta s_1$. Substituting s by $s - s_0$, we get the proof in the case $s_0 \neq 0$.

Thirdly, we consider the case $p_0 \neq p_1$ and $s = (1 - \theta)s_0 + \theta s_1$ and show that $1/q \leq (1 - \theta)/q_0 + \theta/q_1$. Put

$$\lambda = \frac{s_1 - s_0}{n(1/p_0 - 1/p_1)}. \quad (6.6)$$

We see that

$$s + n\lambda \left(\frac{1}{p} - 1\right) = s_0 + n\lambda \left(\frac{1}{p_0} - 1\right) = s_1 + n\lambda \left(\frac{1}{p_1} - 1\right). \quad (6.7)$$

Case 1. We consider the case $\lambda \geq 0$. Let φ and $\xi^{(j)}$ be as in (6.4). Put

$$\varphi^\lambda_j := \varphi(2^\lambda(\xi - \xi^{(j)}))$$

and

$$\hat{F} = \sum_{j=100}^{J}2^{-sj-n\lambda(1/p-1)j}\varphi^\lambda_j. \quad (6.8)$$
We have
\[
\|F\|_{\dot{B}^{s}_{p,q}} \sim J^{1/q}, \quad \|F\|_{\dot{B}^{s}_{p_{0},q_{0}}} \sim J^{1/q_{0}}, \quad \|F\|_{\dot{B}^{s}_{p_{1},q_{1}}} \sim J^{1/q_{1}},
\]
(6.9)
By (2.1), we have \(J^{1/q} \leq J^{(1-\theta)/q_{0}}J^{\theta/q_{1}}\) for any \(J \gg 1\). It follows that \(1/q \leq (1-\theta)/q_{0} + \theta/q_{1}\).

Case 2. We consider the case \(\lambda < 0\). Denote
\[
\varphi^{(N)} = \varphi(2^{-N} \cdot), \quad \varphi_{j}^{(N)} = \varphi(2^{-j-N} \cdot), \quad \triangle_{j,N} = \mathcal{F}^{-1}\varphi_{j}^{(N)}\mathcal{F}.
\]
It is easy to see that
\[
\|f\|_{\dot{B}^{s}_{p,q}^{(N)}} = \left(\sum_{j}(2^{sj}\|\triangle_{j,N}\|_{p})^{q}\right)^{1/q}
\]
is an equivalent norm on \(\dot{B}^{s}_{p,q}\) (see also [57]). Let
\[
\hat{F} = \sum_{j=100}^{J} 2^{-sj-n\lambda(1/p-1)j} \varphi(2^{\lambda j} \cdot).
\]
(6.10)
Assuming that \(N \gg 100(|\lambda| + 1)\), analogously to the above, we have from the definition of \(\| \cdot \|_{\dot{B}^{s}_{p,q}^{(N)}}\) that
\[
\|F\|_{\dot{B}^{s}_{p,q}^{(N)}} \sim J^{1/q}, \quad \|F\|_{\dot{B}^{s}_{p_{0},q_{0}}^{(N)}} \sim J^{1/q_{0}}, \quad \|F\|_{\dot{B}^{s}_{p_{1},q_{1}}^{(N)}} \sim J^{1/q_{1}}.
\]
(6.11)
By (2.1) we have \(1/q \leq (1-\theta)/q_{0} + \theta/q_{1}\).

Fourthly, we show the necessity of \(\Box\). If not, then we have \(p_{0} = p_{1} = p, s_{0} = s_{1} = s\) and \(1/q > (1-\theta)/q_{0} + \theta/q_{1}\). Let
\[
\hat{F} = \sum_{j=100}^{J} 2^{-sj+n(1/p-1)j} \varphi(2^{-j} \cdot).
\]
(6.12)
We easily see that for \(N \gg 1\),
\[
\|F\|_{\dot{B}^{s}_{p,q}^{(N)}} \sim J^{1/q}, \quad \|F\|_{\dot{B}^{s}_{p_{0},q_{0}}^{(N)}} \sim J^{1/q_{0}}, \quad \|F\|_{\dot{B}^{s}_{p_{1},q_{1}}^{(N)}} \sim J^{1/q_{1}}.
\]
(6.13)
We have \(1/q \leq (1-\theta)/q_{0} + \theta/q_{1}\), which is a contradiction.

Finally, we show the necessity of (2.6). Assume for a contrary that \(s-n/p = s_{0}-n/p_{0}\) and \(1/q > (1-\theta)/q_{0} + \theta/q_{1}\). Using the same way as in (6.12) and (6.13), we have a contraction.

\[\square\]
7 Sketch Proof of Theorem 5.2

(Necessity) Put $u_{\lambda} = \lambda^{n/2} u(\lambda \cdot)$, $s = (n - \beta)/2$. For any $\phi \in (H^s)^L$, we write

$$I_{c, \beta}^{(n)}(\phi) = \frac{1}{2} \|\phi\|_{\dot{H}^s}^2 - \Upsilon_{\beta}(\phi).$$ \hfill (7.1)

we have

$$I_{c, \beta}^{(n)}(\phi_{\lambda}) = \lambda^{n-\beta} \left(\frac{1}{2} \|\phi\|_{\dot{H}^s}^2 - \Upsilon_{\beta}(\phi) \right).$$ \hfill (7.2)

By (5.15),

$$\Upsilon_{\beta}(u) = \int_{\mathbb{R}^{2n}} \frac{|u(x)|^2 |u(y)|^2}{|x-y|^{n-\beta}} dx dy \leq C^* c \|u\|_{\dot{H}^s}^2.$$

Using the scaling argument, we can show that $C^* c = 1/2$.

(Sufficiency) First, we show that $M_{c, \beta}^{(n)} = 0$. Since $C^* c = 1/2$, we have

$$\Upsilon_{\beta}(u) \leq \frac{1}{2} \|u\|_{\dot{H}^s}^2.$$

It follows that $M_{c, \beta}^{(n)} \geq 0$. On the other hand, for any $\varepsilon > 0$, we find some $\phi \in (\dot{H}^s)^L$ satisfying

$$\Upsilon_{\beta}(\phi) \geq \frac{1-\varepsilon}{2} \|\phi\|_{\dot{H}^s}^2.$$

For $s = (n - 2)/2$, the above inequality is invariant under the scaling $\phi \mapsto \lambda^{n/2} \phi(\lambda \cdot)$, which implies that we can assume that $\|\phi\|_{\dot{H}^s} = 1$. It follows that $I_{c, \beta}^{(n)}(\phi) \leq \varepsilon$. Hence $M_{c} = 0$.

Now, let u_k be a sequence verifying

$$\frac{\Upsilon_{\beta}(u_k)}{\|u_k\|_{\dot{H}^s}^2 \|u_k\|_{\dot{H}^s}^2} \geq C^* \left(1 - \frac{1}{k} \right).$$ \hfill (7.3)

Let u_k^* be the rearrangement of u_k. Using the fact that

$$\Upsilon_{\beta}(u_k) \leq \Upsilon_{\beta}(u_k^*), \quad \|u^*\|_{\dot{H}^s} \leq \|u\|_{\dot{H}^s}, \quad \|u^*\|_2 = \|u\|_2,$$

we see that (7.3) also holds if u_k is replaced by u_k^*. One can find $\lambda_k > 0$ such that $\|\lambda_k^{n/2} u_k^*(\lambda_k \cdot)\|_{\dot{H}^s} = 1$. Since (7.3) is invariant under the scaling $u_k^* \mapsto \lambda^{n/2} u_k^*(\lambda \cdot)$, we see that for $v_k = \lambda_k^{n/2} u_k^*(\lambda_k \cdot)$,

$$\frac{\Upsilon_{\beta}(v_k)}{\|v_k\|_{\dot{H}^s}^2 \|v_k\|_{\dot{H}^s}^2} \geq C^* \left(1 - \frac{1}{k} \right)$$ \hfill (7.4)

and $\|v_k\|_{\dot{H}^s}^2 = c$, $\|v_k\|_{\dot{H}^s} = 1$. The inequality (7.4) also implies that $I_{c, \beta}(v_k) \leq 1/2k \rightarrow 0$. It follows that v_k is a radial and radially decreasing minimizing sequence. In view of
\[\|v_k\|_{H^s}^2 \leq 1 + c \] we see that \(v_k \) has a subsequence which is still written by \(v_k \) such that \(v_k \) converges to \(v \) with respect to the weak topology in \((H^s)^L\). On the other hand, the embedding \(H^s \subset L^q \) with \(s = (n - \beta)/2, \) \(2 < q < 2n/\beta \) is compact for the class of radial functions, we see that \(v_k \) strongly converges to \(v \) (up to a subsequence) in \((L^q)^m\) for all \(2 < q < 2n/\beta \). By (7.4) and Theorem 2.2, we have for \(k \geq 2, \)

\[
\frac{1}{4} \leq \mathcal{T}_\beta(v_k) \leq C \|v_k\|^2_{2n/(n+\beta)} \leq C \|v_k\|^2_{B^{2n/2}_{2,\infty}} \|v_k\|^2_{B^{n/2}_{\infty,\infty}}. \tag{7.5}
\]

It follows that \(\|v_k\|_{B^{n/2}_{\infty,\infty}} \geq c_0, \) where \(c_0 := 1/2\sqrt{C} \) is independent of \(k \). Let \(v_k = (v_k^1, \ldots, v_k^L) \). It is easy to see that there exist \(i \in \{1, 2, \ldots, L\} \) and a subsequence of \(v_k^i \) which is still written by \(v_k^i \) verifying \(\|v_k^i\|_{B^{n/2}_{\infty,\infty}} \geq c_0/L \). From the definition of \(B^{a}_{\infty,\infty} \) we can choose \(j_k \in \mathbb{Z}_+ \) and \(x_k \in \mathbb{R}^n, \)

\[
c_0/2L \leq 2^{-nj_k/2}|(\triangle_{j_k}v_k)(x)|. \tag{7.6}
\]

By (7.6), we find some \(A \gg 1 \) such that We have

\[
\|v_k^i\|_{L^2(|\cdot-x_k|\leq A)} \geq c_0/4C.
\]

Since \(v_k^i \) is radial, we have \(|x_k| \leq X_0 := X_0(c_0, C, A) \). Indeed, in the opposite case we will have \(\|v_k^i\|^2 > c \) if \(|x_k| \gg 1 \). So, we further have

\[
\|v_k^i\|_{L^2(|\cdot|\leq X_0+A)} \geq c_0/4C.
\]

By Hölder’s inequality,

\[
\|v_k^i\|_{L^q(|\cdot|\leq X_0+A)} \geq \tilde{c}_0, \quad \tilde{c}_0 := \tilde{c}_0(A, X_0, c_0).
\]

Since \(v_k \to v \) in \((L^q)^L, 2 < q < 2n/\beta, \) we immediately have \(v \neq 0 \). Using the same way as in the proof of Theorem 5.1, we can get that

\[
0 \leq I_{c,\beta}^{(n)}(v) \leq I_{c,\beta}^{(n)}(v_k) \to 0.
\]

It follows that \(I_{c,\beta}^{(n)}(v) = 0 \). To finish the proof, it suffices to show that \(\|v\|^2 = c \). If not, then we have \(\|v\|^2 < c \). Putting \(\delta = \sqrt{c}/\|v\|^2 \), we have

\[
I_{c,\beta}^{(n)}(\delta v) < 0, \tag{7.7}
\]

which contradicts the fact that \(I_{c,\beta}^{(n)}(u) \geq 0 \) for all \(u \in (H^s)^L \).

References

