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Abstract

Necessary and sufficient conditions for the generalized Gagliardo-Nirenberg in-
equalities are obtained. For 0 < g < 00, 0 < p,pg,p1 < 00, 8,580,581 € R, 8 € (0,1),

1-6 6
Il , S el luly (0.1)

holds if and only if n/p—s = (1—6)(n/po—s0)+60(n/p1—51), so—n/po # s1—n/p1, s <
(1 —8)sg + 0s1, and pp = p1 if s = (1 — 0)sg + Os1. Applying this inequality, we
show that the solution of the Navier-Stokes equation at finite blowup time T, has
a concentration phenomena in the critical space L3(R?®). Moreover, we consider the
minimization problem for the variational problem

M, =inf{BE(u): |wl3=¢ >0, i=1,..,L},

where

B(w) = 5l — [ Glu@)V (e~ y)Gluly))dady

for u = (u1,...,ur) € (H*)" and show that M, admits a radial and radially decreasing
minimizer under suitable assumptions on s, G and V.
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1 Introduction

The Gagliardo-Nirenberg (GN) inequality is a fundamental tool in the study of nonlinear
partial differential equations, which was discovered by Gagliardo [27], Nirenberg [51] (see
also [36]) in some special cases. Throughout this paper, we denote by LP := LP(R") the
Lebesgue space, || - ||, :== || - ||[zr. C > 1 will denote positive universal constants, which can
be different at different places. a < b stands for a < Cb for some constant C' > 1, a ~ b
means that a < b and b < a. We write a A b = min(a,b), a V b = max(a,b). The classical

integer version of the GN inequality can be stated as follows (see [25] for instance):

Theorem 1.1 Let 1 < p,po,p1 <00, {,m e NU{0}, £ <m, {/m <0 <1, and

%-5:(1-9)%%(&—771). (1.1)

Then we have for all uw € C§°(R™),

D 0%l S llully,” > 9%l (1.2)

|a|=¢ lal=m
where we further assume £/m < 0 <1 if m — € —n/p;1 is an integer.

The classical proof of the GN inequality is based on the global derivative analysis in
LP spaces, whose proof is rather complicated, cf. [25, 29]. On the basis of the harmonic
analysis techniques, there are some recent works devoted to generalizations of the GN
inequality, cf. [5, 9, 10, 15, 16, 17, 22, 25, 29, 30, 38, 42, 50, 52, 55].

Now we introduce some function spaces which will be frequently used, cf. [57]. We
denote by H; .= (—A\)%/2LP the Riesz potential space, H* = Hj, H* = L?> N H® for
any s > 0. Let ¢ be a smooth cut-off function supported in the ball {£ : |¢] < 2},
o =) —P(2-). We write pr(€) = ©(27%¢), k € Z. We see that

> er(©) =1, £eR"\{0}. (1.3)

keZ

We introduce the homogeneous dyadic decomposition operators A, = .Z 1o F, k€ Z.
Let —0c0 < s < 00, 1 < p,q < 0. The space Bf,yq equipped with norm

o

5, = ( 2

k=—o00

1/q
2’f8q|mkfug) (1.4)

is said to be a homogeneous Besov space (a tempered distribution f € B;q modulo

polynomials). Let

—co<s<oo, 1<p<oo, 1<qg<oo. (1.5)



The space Flf,q equipped with norm

o0 1/q
1y, = (X 2insr)

k=—o00

(1.6)

p

is said to be a homogeneous Triebel-Lizorkin space (a tempered distribution f € Fp";q

modulo polynomials).

2 Fractional GN inequalities

In this paper we will obtain necessary and sufficient conditions for the GN inequality in
homogeneous Besov spaces B;q and Triebel-Lizorkin spaces F§7q. As a corollary, we obtain
that the GN inequality also holds in fractional Sobolev spaces Hj. The fractional GN
inequalities in Theorems 2.1, 2.2 and 2.3 below cover all of the available GN inequalities
in [5, 9, 10, 15, 16, 17, 22, 25, 29, 30, 38, 42, 50, 52, 55] for both integer and fractional
versions. Moreover, our results below clarify how the third indices ¢ in Bf,yq and Flf,q

contribute the validity of the GN inequalities. We have

Theorem 2.1 Let 0 < p,po,P1,9¢, 90,91 < 00, S,80,81 € R, 0 <0 < 1. Then the fractional
GN inequality of the following type

.o < 1-0 0,
Jull g, S Nelld (2.1
holds for all u € Bf,g’qo N stiim if and only if
ﬁ—s=(1—9)(3—50>Jre(ﬁ—:ﬁ), (2.2)
b bo b1
s < (1—0)sg+ 0sq, (2.3)
1 _1-6 6
-< +—, if po#£p and s=(1—0)sy+0s1, (2.4)
q do |
1 1-6 0 ,
sSg £ 81 or —< . +q—, if po=p1 and s=(1—0)so+ Os1, (2.5)
0 1
1 _1-6 0
so—ﬁsﬁs—ﬁ or —< +—, if s<(1—0)so+0si. (2.6)
Po p q do0 q1

Theorem 2.2 Let 0 < g < 00, 0 < p, po, p1 <00, 0 <O <1, s,80,51 €R. Then the
fractional GN inequality of the following type

, 1-0 0
Jall gy, < Nl Nl (2.7)

holds if and only if

D os=1-0) (2] 40 (L), (28)



n n

S0 — — 7581__7 (29)
Po b

s < (1—0)sg+0s1, (2.10)

po=p1 if s=(1—0)so+0s1. (2.11)

In homogeneous Triebel-Lizorkin spaces Fps ¢ We have the following

Theorem 2.3 Let 0 < p,p;,q < 00, 8,809,851 € R, 0 < 6§ < 1. Then the fractional GN
mequality of the following type

lullgs . S HUI HUH% (2.12)
holds if and only if
n n
——s=(1-0){ ——s +9(——s> 2.13
p ( ) (]90 0> P ! ( )
s < (1—0)sg+ 0Osq, (2.14)
so#s1 if s=(1—0)sp+0s1. (2.15)

The following is the GN inequality with fractional derivatives.

Corollary 2.4 Let 1 < p,pg,p1 < o0, 8, s1 € R, 0 < 6 < 1. Then the fractional GN
mequality of the following type

lull 7 < lll 20 llull 5 (2.16)
holds if and only if
E—s:(1—9)£+9(£—81), s < Os;. (2.17)
p Po p1

3 Corollaries of the GN inequalities

In this section we give some corollaries of our main results. Noticing that BMO =

FQQQ C Bgopo and ||Voul| B9 < IV2ul|p, we can deduce the following useful interpolation

inequalities:

2/3 1/3

lullzroe) < Cllulte o lulg - es): (3.1)

1/2 1/2

lull s < ||V 15w n/ R (3.2)
1/2 1/2

IVull e S (V2035 | HB/MO, (3.3)

lullze S IVulGellull ;o 1<p << 00.0=p/a (3.4)



IV™ul|zo S IV ullZollullprgo, 1< m <k, g=kp/m, 6=m/k. (3.5)

Following Bourgain [8], we can show (3.1), which is useful to obtain the concentration
phenomena of the solutions of the nonlinear Schrédinger equation. Meyer and Riviere
[50] studied the partial regularity of solutions for the stationary Yang-Mills fields by using
(3.2) and (3.3). (3.4) and (3.5) are generalized versions of (3.2) and (3.3), respectively
(see Ledoux [38], Strzelecki [55]). Machihara and Ozawa [42] showed that

Proposition 3.1 Let 1 <pgVps <p<oo,0<b<1, sg,81 € R. Assume that

Lm0 (L) o (L),
p Po p1
so<— -2 g2 D (3.6)
Po b b1 b
Then
1-6 0
lull o, < IIUIIB;&WIIUIIB;%M (3.7)

Oru [52] obtained that (see also [11])

Proposition 3.2 Let 0 < pg,p1,p <00, 0 <r < oo, —00 < $p,81,5 <00, 0< 8 <1 and

1 1-6 6
g +—, s=(1—-6)so+0s1, soF# s1. (3-8)
D Po n

Then

, 1-0 0
”UHF;T(]Rn) § CHu’ FSS,M(R")HUHFil,oo(R")' (3'9)
The following interpolation inequality was shown in [58].

Proposition 3.3 Let 0 <pg <p< o0, 0 <r<oo, —0<s<s<sg<00,0<0<1

and
-=— 4+ — 8:980+(1—9)81. (310)

Then

—0

. 1 0
el gy < CUl? o e (3.11)



4 Concentration of solutions of NS equation

In the second part of this paper we consider some applications of the fractional GN in-

equality. First, We study the Cauchy problem for the Navier-Stokes (NS) equation
ut —Au+ (u-V)u+Vp=0, divu=0, u0,z)=up(z), (4.1)

where A = 377 102, V = (Oysy0ny), divu = Opjur + oo + O un, u = (U, ..., up)
and p are real-valued unknown functions of (¢,z) € [0,7,,) x R" for some T,, > 0, ug =
(ug, ..., uy) denotes the initial value of u at t = 0. It is known that NS equation is local
well posed in L™, namely, for initial data ug € L™(R"), there exists a unique local solution
u € C([0,Tp); L") N LE™(0, Trn; L2+7) (cf. [33, 34]). Whether the local solution can
be extended to a global one is still open. Recently, Escauriaza, Seregin and Sverdk [21]
showed that any “Leray-Hopf” weak solution in 3D which remains bounded in L3(R3)
cannot develop a singularity in finite time. Kenig and Koch [34] gave an alternative
approach to this problem by substituting L? with H*/2. Dong and Du [19] generalized
their results in higher spatial dimensions n > 3. Noticing that L? C BO_O%OO in 3D is a
sharp embedding, for any solution u of the NS equation in C([0,T*); L3), we see that
u € C([0,T%); By!..). May [49] prove that if T* < oo, then there exists a constant ¢ > 0
independent of the solution of NS equation such that lim sup, ,p- [|u(t) —w|[z-1_ > c for
all w € .¢. In this paper we will use the fractional GN inequality to study the finite time

blowup solution and we have the following concentration result:

Theorem 4.1 Let n =3 and u € C([0,T,); L™ N L?) N L0, Tp; L*™) be the solution
of NS equation with mazximal existing time T, < co. Then there exist cog > 0 and § > 0
such that

lim sup / lu(t, © — xzo)|"dz = ¢y, (4.2)
£/ Tim 20 €R™ J |z—20|<(Trm —t)®

where the constant co > 0 only depends on ||ug||n, § can be chosen as any positive constant
less than 2/n>.

5 Minimizing problem

As the second application to the fractional GN inequality, we consider the existence of the

radial and radially decreasing non-negative solutions for the following system:

(m? — A)su; — [G(u) * V] 9;G(u) +riu; =0, i=1,...,L, (5.1)

2

where m* > 0, v = (uy,...,ur), u; = 0 and u # 0, G : Rfﬁ — Ry = [0,00) is a
=0

u
differentiable function, 9;G(v1, ..., vr) G(v1,...,vp)/0v;. V(z) = |z|~ P, « denotes



the convolution in R™, r; > 0. In order to work out a desired solution of (5.1), it suffices
to consider the existence of the radial and radially decreasing non-negative and non-zero

minimizers of the following variational problem. We write for ¢y, ...,cr, > 0,
Se={u=(u,....,ur) € (HHE w3 = ¢, i =1, . L}. (5.2)
We will consider the variation problem
M, =inf{E(u): ue S, c,..,c >0}, (5.3)

where

1 L
=2 |[(m?+ (€)% )3 - G(u(x)V(lz — y|)G(u(y))dwdy. (5.4)
2; // y y

Fractional calculus has gained tremendous popularity during the last two decades
thanks to its applications in widespread domains of sciences, economics and engineer-
ing, see [1, 6, 35, 37]. Fractional powers of the Laplacian arise in many areas. Some of the
fields of applications of fractional Laplacian models include medicine where the equation
of motion of semilunar heart value vibrations and stimuli of neural systems are modeled by
a Capulo fractional Laplacian; cf. [20, 41]. It also appears in modeling populations [53],
flood flow, material viscoelastic theory, biology dynamics, earthquakes, chemical physics,
electromagnetic theory, optic, signal processing, astrophysics, water wave, bio-sciences
dynamical process and turbulence; cf. [1, 2, 6, 7, 13, 14, 18, 24, 23, 35, 37, 39, 43, 44, 56).

In [39], Lieb and Yau studied the existence and symmetry of ground state solutions

for the boson equation in three dimensions:
(m? — A2y — (Jz| 1 * u?) u +ru =0, (5.5)

Taking G(u) = u? and V(z) = |z|7! in three dimensions, (5.1) is reduced to (5.5). The

variational problem associated with (5.5) is

~ ul\y
© =it o+ gpy gy - [ OO gy e ug = o).
R3 |£B
(5.6)

As indicated in [39], (5.5) and (5.6) play a fundamental role in the mathematical theory

of gravitational collapse of boson stars. Indeed, Lieb and Yau essentially showed that

e For m? = 0, s = 1/2, there exists ¢, > 0, such that (5.5) has a non-negative radial

solution if and only if ¢ = ¢,.

e Form? > 0, s = 1/2, (5.5) has a non-negative radial solution if and only if 0 < ¢ < c,,

where ¢* is the same as in the case m?2 = 0.



It was proven in [39] that boson stars with total mass strictly less than ¢* are gravitationally
stable, whereas boson stars whose total mass exceed ¢ may undergo a “gravitational
collapse” based on variational arguments and many-body quantum theory. The main
tools used by Lieb and Yau are the Hardy-Littlewood-Sobolev inequality together with
some rearrangement inequalities. Inspired and motivated by Lieb and Yau’s work, Frank
and Lenzemann [26] recently showed the uniqueness of ground states to (5.5).

Taking G(u) = u? and V(z) = 2|~ ™2 in n-dimensions with n > 3, (5.1) is reduced
to the general Choquard-Peckard equation

(m? — A)su — (]x\_(”_g) * u2> u—+ru = 0. (5.7)
The variational problem associated with (5.7) is
M =it {2 16203 - Yot we L =), (58)
where
() = / %dmdy. (5.9)

Taking G(u) = u? +u2 and V(z) = |z|~! in 3-dimensions, (5.1) is reduced to the following

system
(m® — Ay — (2|71 (uf + ud)) wi + 1w =0, i = 1,2, (5.10)

which was studied in [4] and [26] in the cases s = 1 and s = 1/2, respectively. If we treat
u = (u1,uz) and |lul|% = |u1l|% + |luzl|%, we see that the variational problem associated
with (5.10) is the same as in (5.8) if one constraint ||up||3 + ||uz||3 = c is considered.

Now we state our main result on the existence of the minimizer of (5.3). There are two
kinds of basic nonlinearities, one is G(u) = uf"...uf* and another is G(u) = u} + ... + uf.
For the former case, we need to use m-constraints ||u;]|3 = ¢; > 0 to prevent the situation
that the second term of E(u) in (5.4) vanishes. For the later case, one can use one
constraint |[uy]|3 + ... + ||url|3 = ¢. Let s > (n — 3)/2. We first consider the former case

and our main assumptions on G are the following:

(G1) G :RY 3 (vi,...;vr) = G(v1,...,v1) € Ry is a continuous function and there exists
p € 2,1+ (2s+ (3)/n) such that

G(v) < C([v]? + [v]*), v=(vy,...,v1). (5.11)
Moreover, there exist «; > 0 such that for all 0 < vq,...,vp < 1,
G(v) = cof'vg?. vPr. (5.12)

where 0 < n+ 8 —n(ag + ... + ar) + 2s.



(G2) If v has a zero component, then G(v) = 0. The function GG : RE x REL 5 (u,v) —
G(u)G(v) € Ry is a super-modular?.

(G3) G(t1v1, ..oy tpvr) = timaxG(v1, ..., vp) for any t; > 1, where tpax = max(ty,...,t1).

Noticing that v{"v§?...07" < o/ FT2L we see that condition (5.11) covers the nonlin-

earity G(v) = v{"v5?...07" if a1 + ... + o € [2,u]. Our main result on the existence of

the minimizer of (5.3) is the following:

Theorem 5.1 Letm?> > 0,0 < 3 <n, s> (n—f)/2. Assume that conditions (G1)—(G3)

are satisfied. Then (5.3) admits a radial and radially decreasing minimizer in (H®)".

We point out that both conditions s > (n—f)/2 and 0 < n+ f —n(ay + ...+ ar) + 2s are
necessary for Theorem 5.1. Indeed, we can give a counterexample to show that M, = —oo
ifs<(n—p)/20r0>n+p—n(ag+ ...+ ar) + 2s for a class of nonlinearities G(u).
The endpoint case s = (n — 3)/2 can not be handled in Theorem 5.1. Note that for
s = (n—8)/2, we have u = 2 in (5.11), a basic example is G(u) = u? + ... + u%. Now we

consider the variational problem

C

n . ]‘ S -~ S
w) = it { G + 672008 — Tatu) s we (O, uli=e> o). (613)

where u = (u1,...,ur), [u*> = u} + ...+ w2 and ||ul}% = |u1|% + ... + lur|%. Using the
definition of the Riesz potential, the Plancherel identity, the Hardy-Littlewood-Sobolev,

and fractional GN inequalities, we have
Ts(u) = C(n, B) / (@) P[(=2) PP uf)(z)de = [|(=A) "7 |ul?3

2
<C (IImllin/(n% + ot ||UL||in/(n+ﬁ)>

2
< C (lull2lluall gen-sysz + - + llucllzllucll gm-s2)
< CH“”%H“H%{@—B)/Q' (5.14)
Define
T
c* = sup B(Qu) . (5.15)

we€H®m=B)/2\{0} ||u||%||u||H(n—B)/2

Theorem 5.2 Let m* =0,0< B <n, s=(n—)/2, G(u) = ui + ...+ u}. Then (5.13)

admits a radial and radially decreasing minimizer in (H®)* if and only if c = 1/2C*.

! F is said to be a supermodular if ([40])
F(y+hei + kej) + F(y) 2 F(y + he:) + F(y + ke;) (i # j, b,k > 0),

where y = (y1,...,y1), and e; denotes the i-th standard basis vector in R”. It is known that a smooth

function is a supermodular if all its mixed second partial derivatives are nonnegative.



As a straightforward consequence of Theorem 5.1, we see that (5.8) admits a radial and
radially decreasing minimizer in H"=2/2 if and only if ¢ = 1 /2C*, where 8 = 2 in the
definition of C*.

In the case m? > 0 we have the following
Theorem 5.3 Let m> >0,0< 3 <n, s=(n—)/2, c>0. Then we have
(1) If n > 2+ B, then (5.13) has no minimizer in in (H*)".

(2) Ifn < 248, then (5.13) admits a radial and radially decreasing minimizer in (H*®)"
if and only if 0 < ¢ < 1/2C*.

(3) If n =2+, then (5.13) admits a radial and radially decreasing minimizer in (H*)"
if and only if c = 1/2C*.

6 Sketch Proofs of the GN inequalities

Let us start with an interpolation inequality in Besov spaces, see [28, 30].

Proposition 6.1 (Convexity Holder’s inequality) Let 0 < p;,¢; < oo, 0 < 6; < 1,
oo €R(i=1,....,N), " 0i=1,0=2% 0i0, 1/p= 31", 0i/pi, L/g = >, bi/as.
Then ﬂ,filngyqi C Bg,q and for any v € ﬁi]\ilBgZ_ﬂqi,
N
o, < TT el

Z)Qi
This estimate also holds if one substitutes B;,:q by ng (p, pi # 00).

In the convexity Holder inequality, condition 1/q = Zfi 1 0i/q; can be replaced by 1/¢ <
le\i 19i/¢;. Indeed, noticing that ¢¢ C (¢ for all ¢ < p, we see that Proposition 6.1 still
holds if 1/¢q < Zf\;l 0;/q;. In [28, 30], Proposition 6.1 was stated as the case 1 < p;, ¢; < o0,
however, the proof in [30] is also adapted to the case 0 < p;, ¢; < oco.

Sketch Proof of Theorem 2.1 (Sufficiency) First, we consider the case 1/¢ < (1 —
0)/q0+0/q. By (2.3), we have

1 1-6 6
S A R ) S LEA ) (6.1)
p Po P n n n
Take p* and s* satisfying
1 1
—=—+n, s =s+nn.
p p

Applying the convexity Holder inequality, we have
aet K 10 A 2
HfHBp*’q =N ”fl Bpg,qOHfHBp%,ql (6 )

10



Using the inclusion B;;q - B;’,’q, we get the conclusion.

Next, we need to consider the following two cases: (i) s = (1 —6)sg + 0s1, po = p1 and
S0 # s1; (ii) s < (1 —0)sp + 0s; and s — n/p # so — n/po. We can show that

—0 0
170, < 1A150 WA (63)
(6.3) implies the result, as desired.

(Necessity) By scaling
Moo~ N\ST/P ) Z
1FOy, ~ XY fll g, . A2,

We immediately obtain that s —n/p — [(1 — 0)(so — n/po) + 0(s1 —n/p1) = 0.

Next, we show that s—sp < 0(s; —sp). Assume on the contrary that s—sg > 6(s1—sg).
Assume that sp = 0. Let ¢ satisfy supp ¢ C {£ : 1/2 < [{] < 3/2} and ¢(§) = 1 for
3/4 < €| < 1. So, p(277¢) = 1if 32772 < |¢| < 27. Denoting

pi(€) = p(2(¢ —€V))), €V =(7-2/7%,0,...,0). (6.4)

and for sufficiently small € > 0, we write

N

F©) =" 29p;(9). (6.5)

j=100

We see that

N N N
15, ~ 2590 Wl ~ 2 Wy, ~ 209

By (2.1), we obtain that 268N < 2eN2s10N However, for sufficiently large N, it contra-
dicts the fact s > 6s1. Substituting s by s — sg, we get the proof in the case sy # 0.

Thirdly, we consider the case pg # p1 and s = (1 — 6)sp + 6s1 and show that 1/¢ <
(1-0)/q +0/q. Put

S1 — 8o
A= ——————. 6.6
w(1p0—1/p7) (%)
We see that
1 1 1
s+n)\(——1):so+n)\(——1>:sl+n)\(——1>. (6.7)
p Po al
Case 1. We consider the case A > 0. Let ¢ and ¢ be as in (6.4). Put
gy =92V (€~ €
and
J
F= " 2muml/p=high, (6.8)
j=100

11



We have
.o TV . ~ T/ . ~ T @
1y~ 79, [Fllgrg o~ TV, [ F gy~ TV, (6.9)

By (2.1), we have JV/7 < j1=0)/%0 j0/a1 for any J > 1. It follows that 1/¢ < (1 —6)/qo +

9/ qi-
Case 2. We consider the case A < 0. Denote

oM = 2N, W = 2N Ay = 7N

It is easy to see that

1/q
N .
170, = | D@02 Nl
is an equivalent norm on B;’q (see also [57]). Let
~ J . . .
F= Y 2759 mW/pDigoN.), (6.10)

j=100

Assuming that N > 100(|A| 4+ 1), analogously to the above, we have from the definition of
N)
(R

B} 4
N N N
IENSD ~ g, B~ gt )~ g (6.11)
».q P0-90 P1-91

By (2.1) we have 1/¢ < (1 —0)/q0 + 0/q1.

Fourthly, we show the necessity of (2.5). If not, then we have py = p1 =p, so =s1 = s
and 1/¢ > (1 —0)/q0+ 0/q1. Let

J
F= S omsitnli/o-Dig(o-i (6.12)
j=100

We easily see that for N > 1,
N N N
[ R T U L 2 (UL (6.13)
p,q p,90 p,q1

We have 1/g < (1 —0)/qo+ 0/q1, which is a contradiction.

Finally, we show the necessity of (2.6). Assume for a contrary that s—n/p = so—n/po
and 1/g > (1 —60)/qo + 0/q1. Using the same way as in (6.12) and (6.13), we have a

contraction. O

12



7 Sketch Proof of Theorem 5.2

(Necessity) Put uy = A"?u(X-), s = (n — B8)/2. For any ¢ € (H*)L, we write

n 1
180(9) = 5119113 — Ts(0). (7.1)

we have
SETOVED (%WH% - Tﬁ(¢)> . (7.2)

By (5.15),

w(z)|?|lu(y)|? .
Tp(u) = /]R?" )ty ‘(x ! z‘/!"(‘;‘ drdy < C*e|lul%,,.

Using the scaling argument, we can show that C*c = 1/2.

(Sufficiency) First, we show that MC(? = 0. Since C*¢ = 1/2, we have

1
To(w) < 5llul?,.

It follows that MC(Z;) > 0. On the other hand, for any € > 0, we find some ¢ € (H*)"
satisfying
1—-¢

2

For s = (n — 2)/2, the above inequality is invariant under the scaling ¢ — A"2¢p(X-),

Ts(¢) >

which implies that we can assume that ||¢[/ ;. = 1. It follows that Ic(rg (¢) < e. Hence
M, = 0.
Now, let ug be a sequence verifying

Tolun) o o (1 N l) , (7.3)

[ AT k
Let uj, be the rearrangement of uy. Using the fact that
Tp(ur) < Tp(up), [ullge < lullges o2 = lullz,

we see that (7.3) also holds if uy is replaced by uj. One can find Ay > 0 such that
H/\Z/ZUZ()\k Ngs = 1. Since (7.3) is invariant under the scaling u} — A"/2uf () ), we see
that for vy = )\Z/QUZ(A;@ ),

Ts(vr) ( 1)
T 2> O (1 -+ 7.4
llorlI3]|vwl|%,, k (7.4)

and |lvg||3 = ¢, ||vgllys = 1. The inequality (7.4) also implies that I(%) (k) < 1/2k — 0.

(&
It follows that v; is a radial and radially decreasing minimizing sequence. In view of

13



llvgll%s < 14 ¢ we see that vy, has a subsequence which is still written by vy such that
vj, converges to v with respect to the weak topology in (H*)“. On the other hand, the
embedding H® C L? with s = (n — 3)/2, 2 < ¢ < 2n/f is compact for the class of radial
functions, we see that vy strongly converges to v (up to a subsequence) in (L?)™ for all
2 < g <2n/B. By (7.4) and Theorem 2.2, we have for k > 2,

1/4 < Ca(0) < CllunlBn sy < Cllvslit el oo (75)

It follows that [lvg| ;-n/2 > co, where co := 1/2V/C is independent of k. Let v, =

(v, ...,v,f). It is easy to see that there exist i € {1,2,...,L} and a subsequence of v}

which is still written by v}, verifying ||v|| pon/2 2 €0 /L. From the definition of BS, . we

can choose j € Z4 and zp € R”,
co/2L < 272 |(A g 0p) (k). (7.6)
By (7.6), we find some A > 1 such that We have
ORIl £2(—ap | <) = co/4C.

Since v}, is radial, we have |z;| < Xg := Xo(co, C, A). Indeed, in the opposite case we will
have [[vi[|3 > ¢ if [xx] > 1. So, we further have

[0l 22 < x04-4) = Co/AC.
By Holder’s inequality,
||Uf;||Lq(|~|§X0+A) > ¢y, Co:= co(A, Xo, ).

Since v, — v in (L9)*, 2 < ¢ < 2n/B, we immediately have v # 0. Using the same way as
in the proof of Theorem 5.1, we can get that

0 < 1% (v) < 1) (v) — 0.

It follows that IC(%) (v) = 0. To finish the proof, it suffices to show that ||v||3 = c. If not,
then we have ||v||3 < c. Putting & = v/cv/||v||2, we have

(@) <o, (7.7)

which contradicts the fact that Ic("ﬁ) (u) = 0 for all u € (H®%)".
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