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On limit behavior of eigenvalues spacing for 1-D
random Schrodinger operators

By

Shinichi KOTANT*

Abstract

A limit distribution for spacing of random eigenvalues is obtained. The eigenvalues arise
from 1-D Schrodinger operators with decaying random potentials.

§1. Background

Let
d2

H =-2
! dt2

+¢q on (0,!) with Dirichlet boundary condition.

where ¢ is a random potential. Let {X;},., be a Brownian motion on a compact
Riemannian manifold M and F' be a smooth non- constant function on M. For a positive
decreasing function a(t), a typical random decaying potential ¢ is given by

q(t) = a(t)F (Xy).
Assume here for simplicity
a(t) ~ct™ as t — oo with some constant ¢ > 0.

Case 1. If a = 0, Goldseid-Molchanov-Pastur([1]) proved that the operator H., has
only point spectrum distributing densely on [0, c0).

Case 2. Kotani-Ushiroya([2]) obtained the followings:

()0<a< % = H, has only point spectrum distributing densely on [0, o).
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(i) a = % — H, has only point spectrum distributing densely on [0, Ey] and purely
singular continuous spectrum on [Ey, 00), where Fy can be determined exactly from F
and a(t).

(i4i) « > 3 and | F(z)dz = 0 = Hy has purely absolutely continuous spectrum on

[0,00).

Motivated by condensed matter physics, Molchanov investigated finer structure of
the spectrum in Case 1. Let {E; (1) < E2 (I) < ---} be the eigenvalues of H; and for an
interval I set

Ni(I) = #{k; Ep () € I}.

Molchanov ([3]): For each £k =0,1,2,---and £ >0, a >0

ﬁ)E + ﬁ)) _ k) l=00 —an(E) (cm(E))k

(1.1) P (Nl ((E DY 2l !

holds, where

To investigate the spacing between two neighboring eigenvalues let
An =n(Eny1 (nt) — Ey (nt)), t=N(E)".
Molchanov’s result (1.1) implies in particular that, in Case 1

lim P (A, <z)=1-¢ nE2/NE)

n—oo
holds. A similar problem can be considered in the case of random matrices { X (w)},
where X (w) is a sample of real symmetric n x n matrix whose elements {z; (W)}, ;< <,
are independent and distributed by an identical Gaussian law. Then it is known that
we have a different limit distribution.

For random Schrédinger operators in higher dimensions we can ask the same ques-
tion. In discrete case, the result corresponding to Molchanov’s one was established by
Minami ([4]) in point spectrum region. In continuous case, Combes-Germinet-Klein
([5]) obtained recently a similar result.

The purpose of this note is to investigate the limit behavior of A,, in Case 2. In
the third section we try to obtain a kind of central limit theorem, however the proof
has not been completed yet. We would like to postpone making the argument rigorous

in future.
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§2. First limit theorem (Law of large numbers)

For E > 0, setting x = v/E, we have the equivalence:

—z) +a(t)F (X; (w)) zy = Exy
(2.1) —

Ty /_ 0 K T
(%) a (ﬁ_la(t)F(Xt (w)) —’10> (3/1%) '

Since we are considering the Dirichlet boundary condition, we assume
xo =0, yo=1.

We transform the variables {z¢, y;} to

it) [ coskt —sinkt (a:t)
7:) \ sinkt coskt v )’
sin T _ {sin 0, ~
Tt =17 t , Nt =T ~t s Gt = kit —|— Gt.
Yt cos 0y Ut cos b,

Then the equation (2.1) is equivalent to

log 72 sin2 ( kKt + 0,
(22) 4 ( °§”> = 'a()F (X,) (42
at\ g, — sin? (/-tt n et)

and set

and it holds that
. 1 t 1 t . ~
0, = _%/0 a(s)F (Xg)ds + o Re/o a(s)F (Xs) 622(”8+‘95)d8,
t —
2.3) T2 = exp lIm a(s)F (X e2i(rst8:) g ,
( ; -
0

00 b2 1 ['72 2i(ks+0s)
%_/o?dﬁﬁ/o ﬁa(s)F(Xs) (1—Ree >ds.

We remark here that Sturm oscillation theorem implies for n = 1,2, -

(2.4) 0, (k) =nm <k =/ E, (t).
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Our method to investigate the problem is to use the identities (2.3) and the relation

(2.4).



70 SHiNIcHI KOTANI

First we study a non-random estimate of E,, (nt) depending only on F' and a(s).
Set

hp = max (F(z)a(t)), k= min (F(z)a(t).

Then the mini-max principle for eigenvalues shows

nmw 2

(7)2 +ro < B, ()< (TF) + e

Hence, if (%)2 + k>0

(2.5) \/(g)zw_sms (%)2+fe+

Set

il where 00
kKo = —, - =
T k) VO 0

Then, if t < kg is valid, then it holds necessarily that E,(lnt) > 0. On the other hand,
from (2.3) it follows that

~ F t
(2.6) ‘Qt’ < %/0 a(s)ds,

hence

O (\/En (nt))‘ < % Onta(s)ds < % 1P| /O nta(s)ds

holds. Then the identity

= e (VEw G001 = i/ ) + o (/5 ()

shows

o (VETD)| ey,
‘ E, (nt)— —| = < OO/ a(s)ds — 0 asn — oo.
t nt nT Jo

and gives

Proposition 2.1.  Aslong ast remains on any compact set of (0, ko) , / En (nt)
converges to 7/t as n — oo uniformly with respect to t.

In order to investigate the behavior of the difference

An =n (En—l—l (nt) - En (nt)) ’
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we have to know the asymptotic behavior of
Yi(k,B) = /Ota(s)F (Xs) eBilrst0:) gs for B eR.
We impose a condition on a(t) :
(2.7) /Oooa(s)2s‘5ds < oo for some ¢ > 0.
Lemma 2.2.  Assume a(t) satisfies (2.7) and F fulfils

/ F(x)dz = 0.
M
Let K be a compact set of (0,00). Then, for any 8 € R

tlim Yi(k, B) = Yoo (K, B) uniformly on K a.s..
— 00

Moreover, for any e < /2 and B € R
sup |Y;i("£7 ﬁ) — Y;i(’%laﬁﬂ

t>0,k,k1 EK |H - /€1|'E

< 00 a.Ss.

18 valid.
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Proof. The first statement is (2) of Lemma 2.2 of ([2]). The necessary estimates

for the second statement are given in the sublemma of ([2]). They proved the estimates

E (sup Yi(k, B) — Y}(/@l,ﬂ)|2p> < const. |k — k1" if K,k € K.
>0

Then Kolmogorov theorem implies the conclusion of Lemma.

Remark. In the proof of the sublemma, they estimated

E| sup [J(s)|*
Se(to,t)

by decomposing it into the 5 terms in page 254. However the third term should be

const. {|)\ — N /t (141" a(s)2ds}p .

to

Therefore the statement of the sublemma must be

E ( sup |I(t,w, )\,)\’)|2p> < const. A — X"
t€[0,00)
instead of

E ( sup |I(t,w,\, X)|2p> < const. |x — N7
t€]0,00)
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Then we can improve Proposition 2.1:

Theorem 2.3.  Assume the condition (2.7) and F has mean 0. Then, we have

1~ o0 ~
n ( E, (nt) — Z) — —=0 (E) = 71'/ a(s)F (X,)sin? (W—S + 0 (Z>) ds a.s..
t/ n—oo i t 0 t t
The convergence is compact uniform with respect to t € (0, ko) .

Remark.  We denote 6, by 0, (k) if it is necessary to make the k—dependence
explicit.

Setting

A (1) = 1 (VB (nt) = VE, (nh))
which is an equivalent quantity with A,,, we can conclude

Theorem 2.4.  Suppose a(t) satisfies the condition (2.7) and F has mean 0.
Then, if t < Ko
Ay (1) = % +0(n™) as. foranye<4/2.
This holds compact uniformly in t € (0, ko) .

Proof. From (2.3) we have

0: (k) = Kt — QL ta(s)F (Xs)ds + QL Re /ta(s)F (Xs) e2i(rs+8:) g,
K Jo K 0
Hence
O (k) — 0y (k1) = (K — K1)t — % (% - %) /0 a(s)F (Xs)ds
(2.8) + % (% - %) ReYi(k,2) + 2—,11 Re (Yi(k,2) — Yi(k1,2))

is valid. Now we assume t moves in a compact set K of (0, ko) and set

\/ +/€_, l+—maxy/ +/€+,
t teK

where K is a compact set such that K C (I? ) cKCcC (0,k0) . Then the inequality

(2.5) assures that \/F, (nt) andy/FEy41 (nt) move in [[_,1;]. Therefore, setting x =
VEnt1 (nt) , k1 =/ E, (nt) and t — nt, we have

T =tAn (t) — % (1 - i) /Onta(s)F(Xs) ds + % (1 - i) Re Vi (k, 2)

KR K1 KR K1

(2.9) + 2%&1 Re (Ynt(k,2) — Yie(k1,2)) .
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Then Lemma2.2 implies

% (% _ %) /Onta(s)F (X,)ds = O

2\Kk K n
(2.10) 2%@1 Re (Yni(k,2) — Yii(k1,2)) = O (AnT(t)> .

A priori we know A, () /n is bounded, hence from (2.9) the boundedness of A, (1)
follows. Substituting this consequence to the estimates (2.10), we see

An(t) =5 =0(n").

§3. Second limit theorem
In this section we assume
1
a(t)=t"for t > 1 with a € (5, 1) and / F(z)dz = 0.
M

To investigate the asymptotic behavior of the error term we consider a sequence of
stochastic processes with parameters c¢; and ¢

() ot (o (e O G (e
©; " (c1,c2) =n (Gnt (/@—I— n) Qnt(/@—l— n))
Define
g(z) = (L + 2ir) "' F(x), where L = %A.

Then, Ito’s formula implies
t
/ 2 (X)) ds = e*'Flg (X¢) + My, with a martingale My = M, (k).
0

Then we have

ta s o2i(rs+0s) go — ta §) 20 g (p2iKs ta ) p2i0s
[ atrx) ds= [aerTa (g (X)) + [ )™ an,
= a(0)g (X0) — ) O )g () = a9 +48)g (x,) s

t o t _
—Qi/ a(s)e%(’“+95)9;g (Xs)ds—l-/ a(s)e?=dM,.
0 0
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Therefore, substituting (2.3) into the above identity leads us to

(3.1) / a()F (X)) ds = —a(0)g (Xo) + a(t)e? P 0)g (x))
_ ;Te @ (X9 (X ds - 10(5) 4 1 (5) + Ny ).

where

(3.2)

I (k) = — / o/ (s)e?i(m5+0:) g (X ) ds

T, (k) = —% Ota(s)%‘“(mﬂs) F(X.)g(X)ds+ % /0 a2 ) B (X)) g (X.) ds

t ~
Ny (k) = / a(s)e?™=dM,.
0

Setting K1 = ¢1/n + K, ko = ca/n + Kk we have

n ot [ 1 1 "
@E ) (01,62) = —n 2 (2—m — 2—%2) /O a,(S)F (Xs) dS
L nt eQi(mls—l—gs(ml)) 627)(&28—1—55(&2))
a7z F (X, —
+nte Re/O a(s)F (Xs) o 5s ds

1 1
< Cpozitlze — op=a)

1 1
< One iitloe = ops

— Y

hold with some constant C. Hence

(n) o3
©;" (c1,¢c2) =

nt _ . ~
Re (/ CL(S)F (Xs) (62i(nls+93(n1)) _ 62z(nzs+6’s(f€2))> d8> + nin)
0

K

_1
2

’ngn)‘ < const.n
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is valid. Denote g corresponding to x by g,. Then there exists a constant C’ such that
/ -1
|Gk, () — gy (2)] < C" |1 — Ka| = const.n™".

We use the inequality

|62m18 — 621”25| < 2|k, — kol s = const.n™ ",
Then we have
L nt L L L nt ) L L
no‘_5/ la’(s)| sn~"ds < const.n” 2, no‘_ﬁ/ a(s)sn”"ds < const.n2” <,
1 1
L nt N N nt ) N
no‘_i/ la’(s)| ds < const.n™ 2, no‘_ﬁ/ a(s)“ds < const.n2™“
1 1
hence
(3.3) 0" (c1,¢2) = n* F Re (S (k1) = 8 (k2) ) + &
‘St(n)’ < const.n%_o‘,
where
nt
n i M
Sé ) (k) = / a(s)ezl‘%(”)d—s (l{)
0 2K
Set

Tt(n) (c1,00) = n°"7 Re (Sgn) (k1) — S,fn) (/432)) .

Now we compute <T(”) (01,02)>t and obtain the limit of Tt(n) (c1,¢2) when n — oo.
Introduce the notation:

[91, 92] (x) = L (g192) (z) — g1(x) (Lg2) (v) — ga(=) (Lg1) (z)
= (Vg1,Vg2) ().

To simplify the notations we set

1 2z’§s(n)62ms

Ir (s,2) = 2.¢ g (7).

Then

(500,50 6)), = [ a6 00 50 (5] (X0

<s<n> (), S (F/)> = /O nta(s)2 [g,.i (s),gn ()] (X4)ds.

t
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and
1 0,11,
_ /Onta(sf [Re (g, (5:7) — 9us (5.7))  Re (g (5.7) = g (5,))] (X,) ds

hold, where k| = ¢|/n + K, k5 = ¢5/n + k. Hence

(T (e1,00) T (¢h,65)).

= n2a_1/0n CL(S)2 [Re (gm (3, ) — ko (S, )) ,Re (gm’l (3, ) — 9kl (37 ))] (Xs) ds

is valid. Now applying Lemma 2.2 for § = 0,2 and (2.3) imply

g, (k1) — 0, (/@)‘
sup

€
s>0 |k1 — K|

< 00 a.s.,

which shows

‘621(33(&1) _ o2i0:(r)

sup <00  a.s.

€
s>0 |k1 — K]

for any € < a — 3. Hence we see

<T(n) (c1,00), T (¢, 0/2)>t

_ nza—l/onta(s)z [Re (eQicls/n _ €2iczs/n) gn (5,-), Re (62730/15/71 _ 62ic'28/n> gn (s, )} (X,) ds
+0(n°) as.

Because of the strong averaging property of {X;}, the main term is
n2a—1

8K2

nt
<[gmg—ﬁ]> / CL(S)2 Re (€2iC1S/TL o eQiczs/n) (€2ic/ls/n o eQic’zs/n)ds — lt ((Cl7 02) 7 (Clla 6/2)) ,
0

where

gt
I ((c1,¢2),(ch,ch)) = @g’—gw/ s72* Re (%1% — e212%) (%15 — e2i%3) ds,
K 0

and (g) denote the integral of g by the Riemannian volume element dz. To give a

complete proof we have to use the martingale representation if the term 205 () g2iks

appears. The detail of the proof will be given elsewhere. We remark

(195, Gx)) = (—Agx, gx) = —2Re ((L +2ik) "' F, F) ,
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Let {Z (t,c1,¢2)} 50, ¢, c,>0 D€ @ Gaussian system with covariance

lt/\t/ ((Cla 02) ’ (Civ 6/2)) .

Since Tt(n) (c1,c2) is a sequence of martingales, the martingale central limit theorem

implies

Lemma 3.1.  For fired k > 0, as n — {@i’”‘) (61,02)} converges
tZO, C1, 0220
weakly to

{Z (t, e, 02)}1&20, c1, c2>0 "

From now on we make a heuristic argument to guess a result. Set
C2 (&1 . v
k+—=+vVE,(nt), K+ — =+ Ept1(nt) Wlthlﬁ:zz.
n n

Then we can describe the difference by @En) as follows:

1

n“"2 (An (t) — Z)

t

-7 (= (o (VB 0) =0 (VB )
_ _no‘t—i (gnt (n-l— %) — O (/ﬁ?+ %2))

L
= —;@g ) (01,62) .

From Theorems 2.3,2.4 it follows that

co — —%500 (%) = 7r/Oooa(s)F(Xs)sin2 (%8 + 0, (%)) ds,

n—oo

™
Cip —Co — — a.S..
n— o0

Hence, to obtain the conclusion we have to investigate the limiting behavior of joint
distributions:

Ot (), O™ (c1,c0).

The complete proof will be given elsewhere.
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