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Energy level statistics:
a formulation and some examples

By

NARIYUKI MINAMTI*

Abstract

A formulation of energy level statistics for random (and non-random) operators is given
based on the notions of unfolding of spectra and of asymptotic ergodicity of unfolded spec-
tra. Two concrete examples are discussed under this formulation. As a related question, we
also discuss the almost sure limit of the empirical distribution for the spacings between order
statistics.

§1. Introduction: a formulation of energy level statistics

§1.1. Statistics on the ensemble and statistics along individual spectra

Energy level statistics, or spectral statistics, is a group of questions in mathemati-
cal physics in which one asks about properties of statistical fluctuation of energy levels
(eigenvalues of a quantum Hamiltonian) rather than the asymptotic or average distri-
bution of levels. In order to obtain results with some universality, one needs to observe
a large number of energy levels, and for this purpose, one usually considers a family of
Hamiltonians depending on a parameter and see what would happen when this parame-
ter tends to a limit. The parameter may, e.g., be the Planck’s constant A, which one let
h — 0 to observe the semi-classical limit, or the size L of a spatial domain, which one let
L — oo to observe the thermodynamic limit. Moreover, in order to make the question
mathematically tractable, one often introduce some randomness into the Hamiltonian,
and try to obtain some results on level statistics on the ensemble in the following sense:
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Let {#H"}}, be a family of random operators, self-adjoint in some separable Hilbert space,
with discrete spectrum {Ejh’ (w);j =1,2,...}, where h > 0 is a parameter, and w is taken
from a probability space (2, F, Q) (the ensemble of Hamiltonians). Then if as h — 0 (or
h — o0), the point process £ (dx) := Y ;0 Bl (w)(dz) converges in law to a limiting point
process £(dx), this € would characterize the fluctuation of the spectrum of {H"}. A well
known result in this direction is Molchanov’s theorem ([9]), in which HZE is a rescaled
random one-dimensional Schrédinger operator, h = L is the length of the interval on
which the operator is restricted, and £ is a Poisson point process. Later, Molchanov’s
result was extended by the present author ([7]) to the multidimensional lattice Anderson
model H,: Namely, let H, = —A + V,, be a random operator acting in £2(Z¢), where
A is the discretized Laplacian (Au)(z) = >-, |, ;=1 w(y), and the random potential
Vo = {Vi(x)}peza consists of independent, identically distributed random variables
with a common bounded density p(v). Further, let HL be the restriction xs Hyxa of
H,, to the hypercube A = [0, L] NZ%, L =1,2,... and set HL = L4(HL — E). Then it
was shown in [7] that if the bound ||p||e of p(v) is small enough (namely if the disorder
is large enough), so that the Anderson localization holds throughout the spectrum of
H,, (see [1], [2]), then the point process £L(dz) converges in law to the Poisson point
process § with intensity measure n(FE)dz, provided E is in the interior of o(H,,) and
that the density of states n(FE) exists and is positive for E.
The level statistics on the ensemble describes, for example, the following situation:
Fix a cube A of large side length, and count the number ¢L(1) of eigenvalues of HL
within a fixed interval I. If you pick a large number of realizations wy, ..., w, indepen-
dently from €, then the empirical distribution (visualized as a suitable histogram) of
L(I),...,&5 (I) is close to the Poisson distribution. However, the situation usually
encountered in physics literature is something different, something which may be called
level statistics along individual spectra, in which one observes a large number of con-
secutive eigenvalues {E]h} of a typical realization of Hi’;, and asks, for example, about
the empirical distribution of the level spacings {E;l+1(w) - Ejh(w)}, with the hope of
obtaining something universal in the limit h — 0 or h — oco. But in this case, we need
to formulate our question more carefully.

§1.2. “unfoldability”and “unfolding”of spectra

Let {EJ”“} be a one-parameter family of a finite or infinite increasing sequences,
which we regard as the discrete spectrum of a one-parameter family of self-adjoint
operators {H"}.

Definition 1.1.  We shall say that a family of increasing sequences {Ejh} is un-
foldable as h — 0 (or h — o0) if there exist & > 0 and v(F), a non-negative, non-
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decreasing function of E with limg_,_ v(F) = 0, such that
(1.1) N™ME):=t{j; E} <E}~v(E)h™", h—0
(or ~ v(E)h® when we let h — o0).

Example 1.2 (Ergodic lattice Anderson model).  Let H, = —A+V,, be the lat-
tice Anderson model introduced in the previous subsection, where the random potential
Vo = {Vio(2)}yezae is only assumed to be a Z9-ergodic random field. Let HL be as
before and let {Ef(w)} be its spectrum. Then it is well known that there exists a
continuous non-decreasing function NV(E), called the integrated density of states (IDS),
with limg_, o N(E) =0 and limg_, - N (E) = 1, such that with probability one,

(1.2) NY(E):=#{j: Ef(w)<E}~LIN(E), L— o0
holds for all £ € R. Namely {E]L (w)} is unfoldable with probability one with v(E) =
N(E), h=L — oo, and a = d.

Example 1.3 (One-dimensional Schrodinger operator with d-potentials [6]).  Let
{E]h} (h > 0) be the spectrum of the operator

d2

1. H" .= —1?
( 3) v h de

+vZ§(w—x8), 0<zx<1,
s=1

with Dirichlet boundary condition at x = 0,1. Here v > 0 and 0 =: ¢ < 21 < -+ <
Tp < Tp+1 := 1. Then for each F > 0, one has

1
(1.4) NME):=4{j; E} <E}~—-VErR ", h—0,
7r
so that {E!'} is unfoldable with h = h — 0, « =1, and v(E) = 1(E v 0)!/2.

Returning to the general situation, let {Ejh} be an unfoldable family of sequences
in the sense of Definition 1.1. For each t € (0, (400)), define

(1.5) v 1(t) :=inf{E; v(E) >t} .

Then we see that v(v~1(t)) = t and that v(E) < t if and only if E < v~1(t). Now
let us call e? = V(E]h) the unfolded levels. Then for each t € (0,v(400)), we have the
asymptotic relation

(16)  #j=1 e <) =4{j; Bl < v (O} ~ v ) = th™, h—0,

-1/ 1/
(or = LeJL when

we let h — o), then {a:JL } has asymptotic uniform distribution (AUD) in the sense that

or ~ h® when we let h — oco. Hence if we further let xJL = LeJL

(1.7) #{j; 2f <yL} ~vL, L— o0
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for each v € (0, v(400)).
For the ergodic Anderson model of Example 1.2, we have a:f (w) = LN (E]L (w)),

and for the Schrodinger operator of Example 1.3, we have a:f = (L/m)\/E;(L71).

Remark. In [8], the present author called the unfolding described above the un-
folding of the first kind.

8§1.3. Asymptotic ergodicity of AUD sequences and the energy level
statistics along individual spectra

Let {xf} (L > 0) be a family of sequences which has asymptotically uniform
distribution in the sense that there exist constants 0 < A < oo and 0 < A < oo such
that for any v € [0, A) one has

(1.8) t{j; af <AL} ~ ML, (L= 0).

(In the example of the previous subsection, A = v(+oc) and A = 1.) Let u be the
uniform distribution on the interval (0, B), where we have set B = 1 A v(+00), and

consider the point process

(1.9) =l (dz) = Z5xj(L)_Lt(d:c) , te(0,B).

Definition 1.4. We shall say that an AUD family of sequences {xJL} L>0 18
asymptotically ergodic, if the probability law of Z under p converges weakly to the
probability law P of some stationary point process £ on R.

We shall say that energy level statistics along the individual spectrum is possible,
if the AUD family of sequences {wJL }r>0 which is made through unfolding from the
spectra of a family of operators {H"} is asymptotically ergodic.

If the asymptotic ergodicity holds in the above sense, then in particular for any
c>0and k=0,1,2,..., the limit

‘ 1 BL
Ti(c) = ng%o BL /0 1{(t,t—|—c] contains exactly k points from {«};}

= Jlim u({t € (0, Bl Z7((0,¢]) = k})
= P(£((0,¢]) = k)

dt

exists.
Now suppose that mo(c) is differentiable with respect to ¢ > 0. Then by Proposition
4.4 of [8], the limit

b af €I, why —af >}
(1.10) plc) = lim : H{j; ol € (70+,1L]} J
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exists for any ¢ > 0, and is given by p(c) = —(d/dc)mo(c). In particular, when the
limiting process in Definition 1.4 is the stationary Poisson point process, then mg(c) =
e~ ¢, and it holds that the limit of the empirical distribution of the level spacing is well
defined and coincides with the exponential distribution.

§2. One-dimensional Schrédinger operator with §-potentials

In this section, we consider the Schrodinger operator Hﬁ’ defined in Example 1.3,
and shall prove that by slightly refining results in [6], the energy level statistics along
individual spectra is possible for this operator. Namely we shall show

Theorem 2.1.  Suppose that the numbers y; == xj 41 —xj, j = 0,1,...,n, are
rationally independent. Then if we define :ch = (L/m)\/E;(L™Y), where E;(h)’s are
eigenvalues of H, then the one-parameter family {wJL }r>0 of sequences is asymptoti-
cally ergodic, and the probability law P of the limiting point process £ is characterized
by the Laplace functional

(1) £(6) = B [exp{ (0 H / exp Z¢( ) Jas.

¢ € Cf (R), where Cy(R) is the totality of compactly supported, continuous functions,
and Cj (R) := {¢ € Co(R); ¢ > 0}.

Proof. As in [6], we begin with treating the special case v = oo, where HZ is a
direct sum of n 4+ 1 Dirichlet Laplacians, each on [x;_1,2;]. In this case, the sequence
{z;(L)} does not depend on L, and is the rearrangement in ascending order of the
countable discrete set U"11{j/(xs — z5s_1); j > 1}. Hence the point process Z; ool i

given by
n+1l oo

(2.2) B0t (de) =0, g (da)
s—1 =1 7

The Laplace functional of this point process is defined for ¢ € Cj (R) by

23) c20)= [ en{-=H0) Janth),

where p is the uniform distribution on (0,1). If we set ys = z541 — x5, s =0,1,...,n,
we can compute L3°(¢) as follows:

1 [l S o
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Now define a function ® on T"*!, where T = R/Z, by

(2.4) @(zo,zl,...,zn):ﬁexp{ Z¢( — )}

meZ

Then limy,_, o £3°(¢) exists and equals to

1 L
(2.5) lim — / O (yot, y1t, ..., ypt)dt ,
L—oo L

if the latter exists. But if yg,v1,...,y, are rationally independent, then the flow
Si (0o, ...,0,) = (0o + yot,...,0n + ynt) on T"T! is uniquely ergodic, its invariant
distribution being the normalized Lebesgue measure on T"!. Hence we get

(2.6) hm Eoo / / 90, 91, ceey On)deodé?l s dGn
L— Tn+1

This being true for all ¢ € Cf (R), we see that the probability law of 22> under ju(dt)
converges as I, — oo weakly to the probability law P of a point process, whose Laplace
functional is

(2.7) H/ exp Z </5( >}d9

To prove the assertion in the general case of 0 < v < oo, first note that the equation

(2.6) is valid if ¢ € Cy(R) is replaced by an arbitrary piecewise constant function ¢ (z)
with compact support. It then suffices to show for such a function that

1

(2.8) Jim £5(0) = lim | eXp{ =Y (¢)}dt_ lim L3 (1),
where
(2.9) =0t (dr) =) 8qr _p4(d) .

j=1

For this purpose, it is sufficient to verify that for any bounded interval I = (a,b), one
has

(2.10) lim pu({t € (0,1); ZE(1) —EEI) £01) = 0.
L—oo
To show this, let us write for any positive integer K,
p({t € (0,1); EH(1) —ZH(1) # 0})

n({t € (0,1); =51 > K}) + Z ({t € (0,1); () =k, 20U #£kY) .
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The assertion which has just been proved for v = ocoimplies in particular that for any
e > 0, we can choose a sufficiently large K such that

(2.11) limsup p({t € (0,1); E*F(I) > K}) <e.

L—oo

On the other hand, the argument in the proof of Theorem 1 in [6] shows
(2.12) i p({t € (0,1); Z=F() =k, EPE(D) £ K =0
—00
for any kK =0,1,.... This completes the proof. O

Let us show that when n is large, the limiting point process obtained in Theorem
2.1 is close to the Poisson point process for “typical”’choice of xi,xs,...,x,. More
precisely, let X;, Xs,... be a sequence of independent random variables defined on a
probability space (2, F,Q) all of which are distributed uniformly on (0,1). For each
n, let X{n)(w) < XQ(n)(w) < < X,(ln)(w) be the rearrangement of (Xi,...,X,) in
the ascending order. Here the inequalities are strict with probability one, and if we let
v (w) = Xéi)l(w) —xM (w), s=0,1,...,n, with Xén) =0 and Xr(ﬁ_)l = 1, then the
numbers Ys(n) (w), s =0,1,...,n, are rationally independent with probability one.

Theorem 2.2.  Let L] (¢), ¢ € Co(R), be the Laplace functional for the limiting
point process £ obtained in Theorem 2.1 with §-potentials placed at an) (w), ... ,X,(J‘).
Then for Q-almost every w, £ converges weakly to the stationary Poisson point process
with intensity measure dx. Namely we have Q-almost surely

(2.13) lim £°(8) = exp{— / +00(1 . e—¢<w>)dx} —: Lo(¢)

n—00 s

for any ¢ € Cy (R).

Proof. As was verified in [6], for any § € (0, 1), and for Q- almost every w € (2,
one can choose a sufficiently large Ns(w) so that for all n > Ns(w), one has

(n) -
(2.14) Olélsa,SXnY; (w)y<n™°.

Now by periodicity, one can write

(2.15) Lr(g) = ﬁ/m exp{— 3 ¢( b —m )}d@s .

s=0 —1/2 meZ Y:?(n) (CU)

Set ¢7.(0) :
s

d(—(0s — m)/Ys(m) (w)). If maxg<s<n v (w) is small, then the supports
of ¢5(-), s =0

,1,...,n, are contained in (—1/2,1/2), so that for each s, supports of
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¢2.(+), m € Z\ {0}, are disjoint from each other and from (—1/2,1/2). This allows us
to write

(2.16) H /1/2 eXp s)}d@s .

1/2

Since the radius of the support of ¢§(-) is (9(}/;(”) (w)), we can compute, for n large, as
follows:

n 1/2
logL’Z(qﬁ):;log[l - /_1/2{1 —exp(—qﬁ(y(f)s(w)))}des}
n 1/2
3 [ f-esn(o(g)) Yo+ O i)

:—ZY(”) / (1—e" ¢(z) dz—l—O(max Y(”) ) )
0<s<n

Thus we have lim,, o log L1(¢) = — [*° (1 — e~?(#))dz with probability one, and the
proof is finished. O

§3. Lattice Anderson model

In this section, we shall consider the energy level statistics along individual spectra
of the lattice Anderson model of Example 1.2. Since our results are still partial, the
discussion in this section will be sketchy.

Let us assume that the following conditions hold:

(C.1) The random potential {V,,(x)},cza consists of independent, identically distributed
random variables, defined on a probability space (2, F, Q). The distribution of each
Vo (z) has a common bounded density p(v).

(C.2) The integrated density of states N'(F) is C! in E, and the density of states
n(E) := dN(F)/dE is strictly positive for all E € (Ey, E;), where

(3.1) Eo:=inf{E; N(E)>0}; FE;:=sup{F; N(FE)<1}.
(C.3) For some s € (0,1), C >0 and m > 0,

w

(3.2) E[|(HD _ z)_l(x,y)|s] < Ce—mle—l

holds for all hypercube D, all z,y € D and all z € C\ R.
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Note that, according to [1] and [2], given s € (0, 1), (C.3) holds as far as ||p||ec is
sufficiently small.

It was proved in [7] that under these conditions, the energy level statistics for H
on the ensemble € is possible in the sense that the point process

(3.3) €u(L. E)( Zégw w () |

where 5]’; (F;w) = Ld(EJL (w) — E), which is associated to the random operator HL =
|A|(HL — E), converges weakly to the Poisson point process on R with intensity measure
n(E)dz, for any E € (Ey, E1).

Now let us observe the spectrum {EF(w)} of HA under the unfolding defined in
§1. Namely consider

(3.4) af (W) = L'N(EF (w)) .

Then the one-parameter family of random sequences {a;JL (w)} has asymptotic uniform
distribution with probability one, namely

(3.5) His o (w) <yL% ~ 9L, L — o0
holds for any v € (0,1). For (w,t) € Q x (0,1), define the point process

(36) \_a(w t) 25 L(w) Lt d[l?) .

We conjecture that the following assertion should be true:

Conjecture. For Q-almost every w € €, the probability law of the point process
u( 4 (dz) under the uniform distribution p(dt) = dt on (0,1) converges to the law P of
the Poisson point process with intensity measure dzx.

To approach this conjecture, we observe the Laplace functional

1
(37) £ho) = [ e{ =L (@)}
defined for ¢ € Cy (R), where
(38) Elon(0) =D olaf (w) - L),

and wish to prove that

(3.9) lim £5(¢) :exp[— /_ T (1 )] = £y(6)

L—oo

holds for Q-almost every w € Q. A recent result of F. Klopp [4] enables us to prove a
weaker version of this conjecture in the case of space dimension one:
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Theorem 3.1.  In addition to conditions (C.1) to (C.3), assume d = 1, and
that p(v) is compactly supported. Then we have, for any ¢ € Cy (R),

(3.10) dim E[{£5(9) — Lo(#)}] =0 .

Remark. By a standard argument using a countable dense subclass of Cg' (R), it
is obvious from Theorem 3.1 that we can choose a subsequence L; — oo along which

the law of E(Lj ,)(daj) under p converges to P for Q-almost every w € €.

Remark.  If, by improving the estimate, we could prove
0
(3.11) S B[{£E(@) — Lo(@)}?] < o0 .
L=1

then this would give the proof of our conjecture. The remark following (4.14) suggests
however that this is hopeless. Nevertheless, the author believes that an argument similar
to the last part of the proof of Theorem 4.1 will enable us to accomplish the proof of
our conjecture.

The rest of this section is devoted to the proof of Theorem 3.1. We shall postpone
the restriction to the one-dimensional case until the necessity arises.
To prove Theorem 3.1, it suffices to show that

(a) limp,o0 E[LE(¢)] = Lo(¢) and
(b) limp o0 E[L5(4)%] = Lo(4)?
holds for any ¢ € Cf (R).
Now let us make the change of variable ¢t = N'(E) in the definition of £L(¢):

(3.12) Lh() = /E1 exp{_E(w,N(E))(¢)}n(E)dE :

Eo
For each E € (Ey, E1), define a function
(3.13) 0L5(x) = S(LUN(E + L") = N(E))) .
then we have
(3.14) Jlim o1, p(x) = 6(n(E)z) = 6p(x)
and

(3.15) EGnE) (@) = Z¢L,E(§]L(E;w)) =&u(L, E)(¢r,E) -
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If supp¢ C [a, B] with —oco < v < 8 < o0, then ¢, g(z) # 0 only if
(3.16) LYN YN (BE) + L7 %) - EY <z < LYN YN (E) + L798) — E} .

Left and right hand side of these inequalities converge to a/n(FE) and 8/n(E) respec-
tively. Hence ¢, g(-) is compactly supported, and for sufficiently large L,
o B

(3.17) suppor. g C [n(E) -1, (B

+1
Since E[¢, (L, E)(dz)] < ||pllcodz (see (2.23) of [7]), we have, as L — oo,
E |6, a5 (6) — &L, B)(65)l| =E[[€ (L, E)(61.8) — &(L, E)(0p)]]

1+8/n(E)
< lolloc / o 161.86) 0@z — 0.

This implies

(318)  Jim Elfexp{~ZL vz (0} — exo{-€.(L B)or) }|] =0

But since we already know that the point process &, (L, E')(dx) converges weakly to the
Poisson point process with intensity measure n(E)dz, we have

(3.19)
Jim Blexp{~€.(L.E)0p) )] =exp{= [ (1= @DnE)ar} = £0(0)

We can now complete the proof of (a) by dominated convergence theorem:

Ey

LILH;OE[LL( )]:Lll—?;o . E[exp{—E(Lw’N(E))(@Hn(E)dE
Ey

— lim | E[exp{~&(L, B)(¢p)n(E)dE
— 00 Eo

Ey
_ / Lo($)n(B)dE = Lo() .

Ey

This being true for every ¢ € Cf (R), we get the following result at the same time:

Proposition 3.2.  Under the probability measure Q X u, the point process E(L 9
converges weakly to the Poisson point process with intensity measure dx.

We proceed to the proof of (b). Again by the change of variable,

(3.20) E[£E($)Y] = /E dE / dE’E eXp E(LM,N(E))(QS)}exp{—E(Lw,N(E/))(qﬁ)H .
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Since we have

lim E HGXP{—E(LW,N(E)) (cb)} eXp{—E(Lw,N(E/)) (¢)}

L—oo

— exp{—Eu(L, E)(¢5)} exp{ &, (L. B') (95)}|| = 0

as before, it suffices for our purpose to prove that, for any F # E’ and for any ¢, €
Cy (R),

(321) Jim  Blexp{-£u(L B)(p) — &L B)(®))]

—exp [—n(E) / h

— 00

(1— e ?@)de — n(E") / h (1 — e ¥®)dz

—00

Note that this will show the asymptotic independence as L — oo of the point processes
€u(L,E) and &, (L, E") for E # E’. (See [4].)

Again from E[¢, (L, F)(dz)] < ||p|lccdz, we see that the right hand side of (3.21)
is equi-continuous in ¢ and v with respect to L'-topology. Hence it suffices to prove
(3.21) with ¢ and 1 replaced by arbitrary functions f and g from the function class

a;T
— 0 )2 + 12
r—0;)°+T

(322) A= {fi f2) = (

j=1

for somen >1, 7> 0, a; >0, 0; € R, forjzl,...,n},

because any ¢ € Car (R) can be approximated by elements of A. (See the argument in
Step 1 of [7].)

Now divide the cube A = [0, L] into (nearly) equal cubes Cp, p = 1,2,...,(Np)4,
with N = L® (a € (0,1)), and let {EJC” (w)} be the spectrum of the operator HS? =
xc,Huxc,. By the argument of Step 3 of [7], we have

N
(3.23) LTSTr(H) — 2)7 = L7 " STr(HS? —2) 7| — 0
p=1

in probability Q, uniformly in z € C\ R.
If for any hypercube D, {EJD (w)} is the spectrum of the operator HY = xpH,xp,
then for

one has

(3.24) DL, E)(f) =) fULUEP(w)-E) =LY a;$(TxGP(E + L)),

J J=1
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with (; = o; + i7. Combined with (3.23), this shows
J J )

(3'25) |£w(L7E)(f)_77w(L7E)(f)| —0

in probability Q as L — oo, where we have set n.,(L, E)(dz) = >_, ng”(L,E)(da:).
Hence we obtain for any F # E’ and any f,g € A,
Jim Blexp{ €, (L. B)(f) — &u(L E)(9)}]
(3.26) = lim Blexp{-n.(L, B)(f) - nu(L B (9)}]
In studying the right hand side of (3.26), we can again replace f,g € A by ,9 € Cyp(R)

because of E[n,, (L, E)(dx)] < ||p|lccdz. (See (2.45) in [7].) By stochastic independence
c . .
of H,” for different p, one can write

(3.27) Jlim Elexp{—n.(L, E)() = (L B') ()}
= Jim T] Blexp{—n" (L B)(@) — 15 (L, B (@)}]

For1<p<N g, consider the event

(3.28) B, = {w € @ 057 (L, B)(suppy) < 1, nJ* (L, E)(suppy) < 1} .
Since for each bounded interval I one has

(3.29) QIS (L, B)(I) = 2) = O(N )

uniformly in p and E (Step 6 in [7] and [3]), we have Q(B;) = O(N; 2.
But on the event B, one has

(330 (S L BY@)) = 1S (L))
and hence
exp{ =S (L, B)(¢) — 15 (L, E')(6)}
{2 g mer 1y EL g @ nw)*)

n>0 k>0
- e e men S C g )
n>0 k>0

={1-n" (L, E)(1 — e ?) {1l — 057 (L, E)(1 — e )}
=1-957(L,E)1 — e %) = ngr(L, B)(1 —e¥)
057 (L, B)(L—e )G (L E")(1—e7) .
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At this stage, we assume that the following “decorrelation estimate ”is valid: for
any F # E’ and any finite intervals I and J,
(3.31) Q(4,) =o(N;%), L— o0,
where the event A, is defined by
(3.32) Ay = {nS*(L,E)(I) > 1 and nSr (L, E')(J) > 1} .
Then we can compute, by taking such I and J that I D suppe, J D suppv,

lim  J[ Elexp(—nS"(L, B)(@) — 057 (L, B ()]

1<p<N¢

= lim H {E[pr\Ap exp(—ngp (L,E)(p) — ngp(L, E ()] + O(NL_d}

By the results of Step 4 in [7], we have
(3.33) B (LE)1 - e I~ Nt [ (1= e (BN

uniformly in p. Hence the right hand side of the above equality reduces to

Lh_rgo H [1 — Nig{n(E) /OO (1 — e *@)da +n(E) /OO

1<p<N{ e e

= exp [—n(E) /OO

—0o0

(1-— e_w(x))dx} + O(NL_d):|

(1 — e *@)de —n(E") /OO

—0o0

(1-— e‘qb(w))daj} .

The present author had been unable to prove the decorrelation estimate (3.31).
Recently, F. Klopp obtained it for the case d = 1. His result, translated into our
notation, reads as follows:

Lemma 3.3 (Lemma 1.1 of [4]).  Assume d =1 and that p(-) is compactly sup-
ported, and pick § € (1/2,1), a € (0,1) and E # E'. Then there exists a constant
C > 0 such that for L large

Q(4,) < CN;? exp[(ﬁ)ﬂ(logNL)ﬂ} .

In particular, one has

for any € > 0.
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Now restricting ourselves to the case d = 1, we complete the proof of Theorem 3.1.

Remark.  After finishing this work, our conjecture was proved by F. Klopp by a
different method ([5]).

§4. Appendix: Empirical distribution of the spacings
between order statistics

Under conditions (C.1) and (C.3), one has Anderson localization throughout the
energy spectrum of H,, (see [1], [2]). The main effect of Anderson localization on the
Poisson nature of energy level statistics is that the spectrum of H, i} is well approximated
by independent superposition of sparse random spectra of subsystems. In relation to
this, the following question was posed to the present author by F. Germinet and F.
Klopp during the workshop.

Let X;(w), X2(w),... be independent random variables defined on a probability
space (£, F,Q), each of which is uniformly distributed on (0,1), and for each n, let
X{n) < ..o < X be the rearrangement of X;(w),..., X, (w) in the ascending or-
der (order statistics). The question is: does the empirical distribution of the spacings
between nX J(-n) (w) and nX g('i)l (w) converges almost surely to the unit exponential dis-

tribution e~ “dc? The answer is yes. Precisely stated, we have, setting Xén) =0,

[
(4.1) o Z; LX) =X @ymemy =€
j=

for each ¢ > 0 and for Q-almost every w € €. Since we were unable to find a convenient
reference for this seemingly very old result, we shall provide a proof here. (The result
seems to be known since 1950’s. See the note at the end of [11]. See also [10] for related
topics.)

Instead of directly proving (4.1), we shall consider the following more general ques-
tion. By the strong law of large number, we have, for any t € R,

(4.2) 15 X[ (@) <8 = D7 1o (X)) ~ (O V1) A1)

as n — oo Q-almost surely. Hence the family of sequences {X ](n) (w)}i<j<n is unfold-
able with h = n — oo, @« = 1 and v(F) = (0V E) A 1. In this case, the unfolding
is trivial, and we see that the family of sequences {nX j(.n) (w)}1<j<n has asymptotic
uniform distribution. From the argument at the end of §1, (4.1) is a direct corollary of
the following
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Theorem 4.1.  For Q-almost every w € (2, the family of sequences {x} (w)}n>1
is asymptotically ergodic in the sense of Definition 1.4, and the limiting probability law
P is that of the Poisson point process with intensity measure dx.

Proof. For each w € (2, consider the point process
(4.3) u(w,t)(da:) = Z 5nX§n>(w)_nt(dx) = Z On(X; (w)—1)(dT)
j=1 j=1

defined for t € (0,1), and observed under the uniform distribution g on (0,1). Let

1
(4.4 £0) = [ en{-=, @} oeam)

be the Laplace functional of the point process E’&u 3 Although it suffices for our purpose

to show E,Ejn)(qﬁ) — Lo(¢) for non-negative ¢ € Cp(R) only, we do not impose this
restriction for the moment.
Now for each ¢ € Cy(R), we shall prove the following two estimates:

(c) Eq| £l (6)] = Lo(6) + O ;
(d) Eq[£8(9)?] = £o(6)? +O(n 1),

where L(¢) = exp [— [ .- e_‘ﬁ(w))daj} is the Laplace functional for the Poisson point
process with intensity measure dz.
Proof of (c): It is easy to see from the independence of X;(w)’s that

1

(4.5) E[Efu")(qﬁ)] :/01{/0 exp(—¢(n(aj — s)))daj}nds

1 1 n n
:/ {1 - —/ (1-— e_d’(y_”s))dy} ds .
0 nJo

Let inf(suppp) = a and sup(supp¢) = b. Then for s satisfying [ns + a,ns + b] C [0, n],

one has
(4.6) 1 /n(l — e Py = 1 /00 (1—e @) dy

n Jo nJ_ o ’
while
(4.7) {s €0, 1]; [ns +a,ns + 8] & [0, ]} = O(n~") .
Hence, from the boundedness of ¢, we have

1 [ n
(n) _Jl1_Z _ o~ 9(y—ns) -1

(45) Ba[c0)] = {1-+ [ a-c y} + O

=Lo(¢) +O(n™") .
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Proof of (d): Some simple computations give

(4.9) EQ /:<”> / / 1—— / 1—e—¢<y ns) == ”t)}dy} dsdt .

Now define two subsets A,,, B, of [0,1] by

(4.10) An = {(s,t) €10,1)% (ns+a,ns+b) N (nt+a,nt +b) # 0}

and

(4.11) B, ={(s,t) €[0,1)*; (ns+a,ns+b) C [0,n], (nt+a,nt+b) C[0,n]},

then |A,| = O(n™1) and |BS| = O(n™1). Moreover, when (s,t) € B,, \ A, one has

1 Mm 2 [
el _ o~ #(y—ns)—¢(y—nt) _Z _ —9(x)
(4.12) n/o {1 e }dy n/_oo(l e 4@z
Hence again from the boundedness of ¢, we can conclude
2 [ n
(4.13) Eq [,cgm(qs)Q] - [1— - / (1—e—¢<w>)dx} + O™

s R
=Lo(¢)* +O(n™ 1) .

Combining the estimates (c¢) and (d) just proved, we obtain

(4.14) Bo[{£0V(6) ~ £6)} ] = 0™ n — o0

for each ¢ € Cy(R).
It should be noted that the speed of L?-convergence cannot be faster than estimated
n (4.14). This is because at the final stages of the proofs of (c¢) and (d), we used the

well known equality .
lim (1 - E) =e °.

n—o0 n

But concerning this equality, we also know

—c .2

(4.15) (1 - %)n e

Anyway, we can conclude from (4.14) that

(4.16) i E[{{Lﬁfu”2)(¢) - E(qﬁ)}Q] < const. i % < 00

for any ¢ € Cy(R). Hence by the standard argument using a countable dense subclass

of Cy(R), we obtain the following
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Proposition 4.2.  For Q-almost every w € €2, one has
(4.17) lim £0)(9) = Lo(¢)
n—oo
for any ¢ € Co(R), so that the law of EEZZ_)) under the uniform distribution p on (0,1)
converges to the law P of the Poisson point process with intensity measure dzx.

To complete the proof of Theorem 4.1, let us fix an w € 2 for which the assertion
of the above proposition holds, and pick any ¢ € C’SF (R). For any k satisfying n? < k <
(n +1)2, we can write

k
(418)  E (@)= o(k(X;(w) — 1)

=>6(o5 A Xw) — D) + S o (k(X;w) = 1)) -

7j=1 j=n2+1
If we let ¥ 1 (2) = ¢(Zz) — ¢(z), then ¥, x € Co(R) and it holds that

4.19 n — 0 — .
(4.19) n2<1§2?f+1)222£|¢ k()] (n — o0)

Moreover, there exists a compact interval [a, b] such that the supports of ¢,  and ¢ are
all contained in [a, b]. Then we have

k
(4:20) 5E(9) = ZE00) + D bar(P (@) =) + 3 S(R(Xj(w) 1))

and hence

£8)(6) - £59(0)| =

/01 exp { =2y (@)t - /01 exp { - EEZ?)(as)}dt‘

/01 exp { — Z00(0) } [exp{~ L x(t)} exp{—Jux(t)} ~ 1] dt‘

1 1
< [ exp{-Tun(t)} = tldt+ [ Jexp{~Tnalt)} ~ 1l
0 0
1 2
TTLR
Clearly we have
1 1 k
(4.21) /OIJn,k(t)ldt§||¢lloo/0 Y Ly (R(X;(w) —1)dt

j=n2+1

2n +1
< [¢lloolb— @)= — 0,
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so that

2n +1

3 — 0.
n

2
(4:22) o L < 8llec(b = a)

To estimate LS}C, we note that for any £ > 0, there exist an N € N and an
n € Cf (R) with 0 < n(x) < ¢ such that for all n > N, one has

4.2 ) 5 |
- n2<1?%%§+1)2 |thn k()| < ()

S

Then noting the inequality |e™* — 1] < elsl — 1 and Proposition 4.2, we see

1 1 )
(4.24) / |exp{—1,x(t) — 1|dt < / exp(EEZ%(n))dt —1— Lo(—m)—1.
0 0

But since we can assume supp 1 C [a—1,b+ 1], the right hand side tends to 0 as £ \, 0.
Hence we get max,2 «p<(n41)2 LSL — 0 (n — 0), as desired. O
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