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A note on a few processes related to Dyson�s
Brownian motion

By

Tomohiro Sasamoto *

Abstract

Some connections between processes related to Dyson�s Brownian motion are explained.
Starting from the Brownian motion of hermitian matrices, we consider noncolliding Brownian

motions, the interlacing structure of DBM with dierent number of particles, a system of

ordered reection, the case with a boundary and their relations.

§1. Introduction

Let us consider a time dependent random matrix H=H(t) of size n of the form,

(1.1)

H(t)=[\displaystyle \frac{1}{\sqrt{2}}(B_{21}^{(R)}(t).-iB_{21}^{(I)}(t))B_{22}(t)\frac{1}{\sqrt{2}}(B_{n1}^{(R)}(t).-iB_{n1}^{(I)}(t))\frac{1}{\sqrt{2}}(B_{n2}^{(R)}(t).-iB_{n2}^{(I)}(t))B_{11}(t)\frac{1}{\sqrt{2}}(B_{12}^{(R)}(t).+iB_{12}^{(I)}(t)).\cdot.\cdot. \displaystyle \frac{}{}\frac{1}{\sqrt{2},\sqrt{2}1}((B_{2n_{B_{nn}(t)}}^{(R)}B_{1n}^{(R)}((tt))_{:}.++iiB_{1n}^{(I)}B_{2n}^{(I)}((tt))))],
where B_{jj}, 1\leq j\leq n, B_{jk}^{(R)}=B_{kj}^{(R)}, B_{jk}^{(I)}=B_{kj}^{(I)}, 1\leq j<k\leq n are independent
Brownian motions. The stochastic dynamics of the n eigenvalues of H denoted by

 X_{1}\leq X_{2}\leq :. :\leq X_{n} is described by the stochastic dierential equation(SDE),

(1.2) dX_{i}=dB_{i}+1\displaystyle \leq j\leq m\sum_{j\neq i}\frac{dt}{X_{i}-X_{j}}, 1\leq i\leq m,
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Figure 1. Dyson�s BM

where B_{i}, 1\leq i\leq m are independent one dimensional Brownian motions[2]. This is

known as Dyson�s Brownian motion (DBM). The process satises X_{1}(t)<X_{2}(t)<
. . . <X(t) for all t>0 . The process X can be started from the origin, i.e., one can

take X_{i}(0)=0, 1\leq i\leq m[12] . Pictorially this looks like Fig. 1.

Let x= (xl, . . .

, x_{n} ) \in \mathbb{R}^{n}. >From the SDE (1.2), one sees that the transition

density p_{t}^{+}(x, x') of this process from x to x' during time interval t satises

(1.3) \displaystyle \frac{\partial}{\partial t}p_{t}^{+}=\frac{1}{2}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}^{+}+\sum_{i=1}^{n}\sum_{j\neq i}\frac{1}{x_{i}-x_{j}}\cdot\frac{\partial p_{t}^{+}}{\partial x_{i}}.
Due to the nonclliding properties of the process, it also satises

(1.4) p_{t}^{+}|_{x_{i}=x_{i+1}}=0, 1\leq i\leq n-1.

If we set

(1.5) h_{n}^{(A)}(x)=\displaystyle \prod_{1\leq i<j\leq n}(x_{j}-x_{i}) ,

(1.3) is rewritten as

(1.6) \displaystyle \frac{\partial}{\partial t}p_{t}^{+}=\frac{1}{2}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}^{+}+\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}\log h_{n}^{(A)}(x) \frac{\partial p_{t}^{+}}{\partial x_{i}}.
Dyson�s BM can be constructed from noncolliding Brownian motion through Doob�s

h‐transformation using the function (1.5) [4]. By the Karlin‐McGregor formula[6, 5],
the transition density of the noncolliding Brownian motion with n particles is given by

(1.7) p_{t}(x, x')=\det($\phi$_{t}(x_{i}, x_{j}'))_{1\leq i,j\leq n}
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with

(1.8) $\phi$_{t}(x, x')=\displaystyle \frac{1}{\sqrt{2 $\pi$ t}}e^{-(x-x')^{2}/(2t)}.
This satises

(1.9) \displaystyle \frac{\partial}{\partial t}p_{t}=\frac{1}{2}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}
and

(1.10) p_{t}|_{x_{i}=x_{i+1}}=0.

One notices that h_{n}^{(A)} in (1.5) is harmonic for (1.7), that is,

(1.11) \displaystyle \int_{-\infty}^{\infty}dx' p_{t}(x, x')h_{n}^{(A)}(x')=h_{n}^{(A)}(x) .

Proof. This is easily seen from the fact that h_{n}^{(A)} is a Vandermonde determinant,
the Heine identity,

(1.12)

\displaystyle \int dx_{1}\cdots dx_{n}\det(f_{j}(x_{k}))_{1\leq j,k\leq n}\det(g_{j}(x_{k}))_{1\leq j,k\leq n}=n!\det(\int dxf_{j}(x)g_{k}(x))_{1\leq j,k\leq n}
for nice functions f_{j}, g_{j} and

(1.13) \displaystyle \int_{-\infty}^{\infty}$\phi$_{t}(x, x')(x')^{n}dx'=\sum_{k=0}^{n}\left(\begin{array}{l}
n\\
k
\end{array}\right)$\gamma$_{k}x^{n-k}
where

(1.14) $\gamma$_{k}=\displaystyle \int_{-\infty}^{\infty}\frac{e^{-x^{2}/(2t)}}{\sqrt{2 $\pi$ t}}x^{k}dx.
\square 

We dene the h‐transform of p_{t}(x, x') by

(1.15) p_{t}^{+}(x, x') :=\displaystyle \frac{h_{n}^{(A)}(x')}{h_{n}^{(A)}(x)}p_{t}(x, x
Then one has

Proposition 1.1. RHS of (1.15) satises (1. 6).
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Proof. We abbreviate the superscript (A) in h_{n}^{(A)} . From the denition (1.15) and

(1.9) we have

(1.16) \displaystyle \frac{\partial}{\partial t}p_{t}^{+}(x, x')=\frac{1}{2}\frac{h_{n}(x')}{h_{n}(x)}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}.
By a straightforward computation one sees

(1.17)

\displaystyle \frac{\partial}{\partial x_{i}}p_{t}^{+}=-\frac{\partial}{\partial x_{i}}\log h_{n}(x)\cdot p_{t}^{+}+\frac{h_{n}(x')}{h_{n}(x)}\frac{\partial}{\partial x_{i}}Pt,
(1.18)

\displaystyle \frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}^{+}=\frac{h_{n}(x')}{h_{n}(x)}\frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}d-2\frac{\partial}{\partial x_{i}}\log h_{n}(x)\frac{\partial}{\partial x_{i}}p_{t}^{+}+\{-\frac{\partial^{2}}{\partial x_{i}^{2}}\log h_{n}(x)-(\frac{\partial}{\partial x_{i}}\log h_{n}(x))^{2}\}p_{t}^{+}.
Here one computes

(1.19) − \displaystyle \frac{\partial^{2}}{\partial x_{i}^{2}}\log h_{n}(x)-(\frac{\partial}{\partial x_{i}}\log h_{n}(x))^{2}=-2\sum \displaystyle \frac{1}{(x_{i}-x_{j})(x_{i}-x_{k})}.
j,k(\neq i)

Noticing

(1.20) \displaystyle \sum\sum \frac{1}{(x_{i}-x_{j})(x_{i}-x_{k})}=0,
ij,k(\neq i)

we see that the RHS of (1.15) satises (1.6). \square 

The determinantal structure is the key to the tractability of the process.

At a fixed time t
,

the random matrix H(t) is nothing but the Gaussian unitary
ensemble [10, 3]. For instance the distribution of the position of the top particle X(t)
is given by an n fold integral as

(1.21) \displaystyle \mathrm{P}\mathrm{r}[X_{n}(t)\leq x_{0}]=\frac{1}{Z_{N}(t)}\int_{-\infty}^{x_{0}}dx_{1} . . . \displaystyle \int_{-\infty}^{x_{0}}dx_{N}\prod_{1\leq i<j\underline{<}N}(x_{i}-x_{j})^{2}\prod_{i=1}^{N}e^{-\frac{x_{i}^{2}}{2t}}
where Z_{N}(t) is the normalization constant.

In the following we introduce a few processes related to DBM and discuss con‐

nections between them. The main aim of this article is to give a short summary and

explanation of them with figures. The argument of seeing interlacing properties in

propositions 2.1, 4.3, 4.4 has not appeared and should be useful for further studies.

There are many references on related topics. For recent developments, see for instance

[8, 9].
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Figure 2. Interlacing processes.

§2. Interlacing

In the last section we kept the number of particles fixed. In [16] Warren observed

there is an interesting interlacing in DBMs for dierent number of particles. Let W_{j},  1\leq

 j\leq n be the Dyson�s BM with n particles starting from the origin. Then let X_{j},  1\leq

 j\leq n+1 be s.t. each X_{j} performs a BM with the conditions that they interlace W_{j},
i.e. X_{1}\leq W_{1}\leq X_{2}\leq::. \leq W_{n}\leq X_{n+1} . The interlacing is maintained by prescribing
that X_{j} is reected from W_{j-1} and W_{j} ,

where the reection means the Skorokhod

construction. Now suppose we forget about the original W particles and focus on X

particles. One can show X is the Dyson�s BM with n+1 particles. See Fig. 2 for

an example of n=3 . In the left figure, we see trajectories of the three particle DBM

starting from the origin. Next, in the right figure, we add four new particles. The

lowest one X_{1} starts from the origin, performs a BM and is reected by W_{1} . The next

two (X_{2}, X_{3}) are also BMs starting from the origin and are reected by the X particles
below and above them (by W_{1}, W_{2} for X_{2} and W_{2}, W_{3} for X_{3} ). The top one X_{4} starts

from the origin, performs a BM and is reected by W_{3} . The above statement says that

the dynamics of the X particles are distributed as a DBM with four particles.
Let us consider a system of 2n+1 particles in which the W_{j}, 1\leq j\leq n are replaced

by noncolliding BM with n particles. The transition density q_{t}((x, w), (x', w of this

process with 2n+1 particles satises

(2.1) \displaystyle \frac{\partial}{\partial t}q_{t}=\frac{1}{2}(\sum_{i=1}^{n}\frac{\partial^{2}}{\partial w_{i}^{2}}+\sum_{i=1}^{n+1}\frac{\partial^{2}}{\partial x_{i}^{2}})q_{t}.
Due to the noncolliding properties of W particles and the interlacing condition using
the Skorokhod, it also satises the boundary conditions,

(2.2) q_{t}|_{w_{i}=w_{i+1}}=0, \displaystyle \frac{\partial}{\partial x_{i}}q_{t}|_{x_{i}=w_{i}}=0, \frac{\partial}{\partial x_{i+1}}q_{t}|_{x_{i+1}=w_{i}}=0.
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The transition density for X is given by integrating over the positions of W particles
and applying the h‐transformation to X particles as

(2.3) p_{t}^{+}(x, x')=\displaystyle \frac{h_{n+1}^{(A)}(x')}{h_{n+1}^{(A)}(x)}\int_{W^{n}(x)}q_{t}((x, w), (x', w'))dw.
Here the integration is over W^{n}(x)=\{(w_{1}, . . :; w_{n})\in \mathbb{R}^{n}|x_{1}\leq w_{1}\leq x_{2}\leq::. \leq w_{n}\leq

 x_{n+1}\} for a given x\in \mathbb{R}^{n+1} . That this is the transition density for DBM with n+1

particles can be shown by performing the integral [16]. Here we see this in a dierent

way.

Proposition 2.1. RHS of (2.3) satises (1.6) and (1.4) for n+1 particles.

Proof. First we see

\displaystyle \frac{\partial}{\partial t}p_{t}^{+}(x, x')=\frac{1}{2}\frac{h_{n+1}(x')}{h_{n+1}(x)}\{\int_{W^{n}(x)}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}qdw+\sum_{i=1}^{n}(\int_{W(x):w_{i}=x_{i+1}}(n)\frac{\partial}{\partial w_{i}} qdw (n-1)

(2.4) -\displaystyle \int_{W(x):w_{i}=x_{i}}(n)\frac{\partial}{\partial w_{i}} qdw (n-1))\} :

Here \{W^{(n)}(x) : w_{i}=x_{i+1}\} is W^{(n)}(x) but with the condition that the ith component

w_{i} is fixed to be x_{i+1} ; the meaning of \{W^{(n)}(x):w_{i}=x_{i}\} is analogous. We also have

\displaystyle \frac{\partial}{\partial x_{i}}p_{t}^{+}(x, x')=-\frac{\partial}{\partial x_{i}}\log h_{n+1}(x)p_{t}^{+}+\frac{h_{n+1}(x')}{h_{n+1}(x)}\{\int_{W^{n}(x)}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}qdw+(\int\frac{\partial}{\partial x_{i}}q_{t}^{+}dw
(2.5) +\displaystyle \int_{W(x):w_{i-1}=x_{i}}(n)\frac{\partial}{\partial w_{i}}q_{t}dw^{(n-1)}-\int_{W(x):w_{i}=x_{i}}(n)\frac{\partial}{\partial w_{i}}q_{t}dw^{(n-1)})\},
\displaystyle \frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}^{+}(x, x')=\frac{h_{n+1}(x')}{h_{n+1}(x)}\frac{\partial^{2}}{\partial x_{i}^{2}}q_{t}^{+}-2\frac{\partial}{\partial x_{i}}\log h_{n+1}(x) \displaystyle \frac{\partial}{\partial x_{i}}p_{t}^{+}-\frac{\partial^{2}}{\partial x_{i}^{2}}\log h_{n+1}(x)\cdot p_{t}^{+}

-(\displaystyle \frac{\partial}{\partial x_{i}}\log h_{n+1}(x))^{2}q_{t}^{+}
(2.6) +\displaystyle \frac{h_{n+1}(x')}{h_{n+1}(x)}(\int_{W(x):w_{i-1}=x_{i}}(n)\frac{\partial}{\partial w_{i}}q_{t}dw^{(n-1)}-\int_{W(x):w_{i}=x_{i}}(n)\frac{\partial}{\partial w_{i}}q_{t}dw^{(n-1)})
Combining these, we see that RHS of (2.3) satises (1.3) and (1.4) for n+1 particles. \square 

By repeating this interlacing procedure from n=1 to n
,

one can construct a

process of \displaystyle \frac{n}{2}(n+1) particles. The position of particles, x_{i}^{k}\in \mathbb{R}, 1\leq i\leq k\leq n satisfy
the constraint x_{i}^{k+1}\leq x_{i}^{k}\leq x_{i+1}^{k} ,

which is known as the Gelfand‐Tsetlin cone. See

Fig. 3. Hence we now have a stochastic dynamics of particles on the GT cone. By
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x_{1}^{1}
x_{1}^{2}

x_{1}^{3} x_{2}^{3}
x_{2}^{2}

x_{3}^{3}

x_{1}^{n} x_{2}^{n} x_{3}^{n} . . . x_{n-1}^{n} x_{n}^{n}

Figure 3. Gelfand‐Tsetlin cone
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Figure 4. Z process

construction the dynamics of n particles x^{n}=(x_{1}^{n}, \ldots, x_{n}^{n}) of the n‐th row of the GT

cone is the DBM of n particles.

§3. DNLS model

Instead of looking at a row, one can focus on the n particles x_{i}^{i}, 1\leq i\leq n on the

upper right line of the GT cone. One sees that this is a Markov process. In this Z

process, Z_{1}\leq Z_{2}\leq. :\cdot\leq Z_{n}, Z_{1} is a Brownian motion and Z_{j+1} is reected by Z_{j},
1\leq j\leq n-1 . Here the reection again means the Skorokhod construction to push

Z_{j+1} up from Z_{j} . More precisely,

Z_{1}(t)=B_{1}(t) ,

(3.1)
Z_{j}(t)=\displaystyle \sup_{0\leq s\leq t}(Z_{j-1}(s)+B_{j}(t)-B_{j}(s)) , 2\leq j\leq n,

where B_{i}, 1\leq i\leq n are independent Brownian motions, each starting from 0 . For a

schematic figure, see Fig. 4.

The totally asymmetric simple exclusion process (TASEP) is a stochastic process

on \mathbb{Z} in which each particle tries to hop to the right neighboring site with rate 1 under

the exclusion interaction among particles, i.e., each site can be either occupied by a

particle or is empty. In the diusion scaling each particle tends to a BM and the
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exclusion interaction is replaced by a reective wall. The Z process can be considered

as a continuous version of TASEP.

For TASEP, a determinantal formula for the transition probability was found by
Schütz [14] and has turned out to be useful for studying fluctuations of TASEP. The

generator of ASEP is known to be equivalent (modulo a similarity transformation) to

the Hamiltonian of XXZ spin chain. Similarly the generator of the Z process is a

special case of the quantum version of the derivative non‐linear Schrödinger(DNLS)
model with imaginary coupling [13]. Let us set $\phi$_{t}^{(k)}(y)=\displaystyle \frac{d^{k}}{dy^{k}}$\phi$_{t}(y) for k\geq 0 and

$\phi$_{t}^{(-k)}(y)=(-1)^{k}\displaystyle \int_{y}^{\infty}\frac{(z-y)^{k-1}}{(k-1)!}$\phi$_{t}(z)dz for k\geq 1.

Proposition 3.1. The transition densities q_{t}(x, x') fr om x= (xl, . . .

, x_{n} ) at

t=0 to x'=(x\'{i}, :. :, x_{n}') at t of the Z process can be written as

(3.2) q_{t}(x, x')=\det\{a_{i,j}(x_{i}, x_{j}')\}_{1\leq i,j\leq n}
where a_{i,j} is given by

(3.3) a_{i,j}(x, x')=$\phi$_{t}^{(j-i)}(x-x') .

Proof. One has to check the Kolomogorov (or master) equation, boundary condi‐

tions and initial conditions. This was done in [16] and [13]. \square 

Suppose we are interested in the distribution of Z_{n} . A direct way to compute would

be to use the above transition densities and follow the arguments in [11]. But now

looking at the GT cone, one can also use the fact that it is the same as the distribution

of the nth particle in the n‐particle DBM. It is given by (1.21). The same picture is also

true for the TASEP. In [17] a discrete space stochastic process was introduced on the

GT cone. If one focuses on the nth row, it is a process related to the Charlier ensemble;
on the other hand, the dynamics on the upper right line is TASEP. This implies that the

distribution of a particle in TASEP is the same as that of the top particle in the Charlier

ensemble. In this way one has a clear understanding why random matrix expression

appears in the studies of TASEP.

§4. Dyson�s BM with a boundary and interlacing

One can introduce similar DBM type non‐colliding system of m particles in the

presence of a wall at the origin [4, 7, 15]. The dynamics of the positions of the m

particles X^{(C)}=(X_{1}^{(C)}, \ldots, X_{m}^{(C)}) satisfying 0<X_{1}(t)<X_{2}(t)<\cdots<X(t) for all

t>0 are described by the stochastic dierential equation,

(4.1) dX_{i}^{(C)}=dB_{i}+\displaystyle \frac{dt}{X_{i}^{(C)}}+1\leq j\leq m\sum_{j\neq i}(\frac{1}{X_{i}^{(C)}-X_{j}^{(C)}}+\frac{1}{X_{i}^{(C)}+X_{j}^{(C)}})dt, 1\leq i\leq m.
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Compare this with (1.2). This process is referred to as Dyson�s Brownian motion of

type C . It can be interpreted as a system of m Brownian particles conditioned to never

collide with each other or the wall. See Fig. 5.

One can also consider the case where the wall above is replaced by a reecting

wa11[7]. The dynamics of the positions of the m particles X^{(D)}=(X_{1}^{(D)}, \ldots, X_{m}^{(D)})
satisfying 0\leq X_{1}(t)<X_{2}(t)<\cdots<X(t) for all t>0 ,

is described by the stochastic

dierential equation,

(4.2)

dX_{i}^{(D)}=dB_{i}+\displaystyle \frac{1}{2}1_{(i=1)}dL(t)+1\leq j\leq m\sum_{j\neq i}(\frac{1}{X_{i}^{(D)}-X_{j}^{(D)}}+\frac{1}{X_{i}^{(D)}+X_{j}^{(D)}})dt, 1\leq i\leq m,

where L(t) denotes the local time of X_{1}^{(D)} at the origin. This process will be referred

to as Dyson�s Brownian motion of type D . See Fig. 6.

Th processes can be realized as those of eigenvalues of certain random matrix

ensembles. Let B_{ij}^{k}(t) , \tilde{B}_{ij}^{k}(t) , 0\leq k\leq 3, 1\leq i\leq j\leq N be independent one‐dimensional

standard Brownian motions starting from the origin. Put

(4.3) s_{ij}^{k}(t)=\left\{\begin{array}{ll}
\frac{1}{\sqrt{2}}B_{ij}^{k}(t) , & i<j,\\
B_{ii}^{k}(t) , & i=j, '
\end{array}\right. a_{ij}^{k}(t)=\left\{\begin{array}{ll}
\frac{1}{\sqrt{2}}\tilde{B}_{ij}^{k}(t) , & i<j,\\
0, & i=j,
\end{array}\right.
with s_{ij}^{k}(t)=s_{ji}^{k}(t) and a_{ij}^{k}(t)=-a_{ji}^{k}(t) for i>j . Let us also introduce the Pauli

matrices,

(4.4) $\sigma$_{0}=\left\{\begin{array}{l}
10\\
01
\end{array}\right\}, $\sigma$_{1}=\left\{\begin{array}{l}
01\\
10
\end{array}\right\}, $\sigma$_{2}=\left\{\begin{array}{l}
0-i\\
0i
\end{array}\right\}, $\sigma$_{3}=\left\{\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right\}
and set

(4.5) H^{(C)}(t)=ia^{0}(t)\otimes$\sigma$_{0}+s^{1}(t)\otimes$\sigma$_{1}+s^{2}(t)\otimes$\sigma$_{2}+s^{3}(t)\otimes$\sigma$_{3},
(4.6) H^{(D)}(t)=ia^{0}(t)\otimes$\sigma$_{0}+is^{1}(t)\otimes$\sigma$_{1}+is^{2}(t)\otimes$\sigma$_{2}+s^{3}(t)\otimes$\sigma$_{3}.

Then it is known that the processes of eigenvalues of H^{(C)} and H^{(D)} are the DBM of

type \mathrm{C} and \mathrm{D}[7].
The transition density of the positions,  0\leq X_{1}\leq X_{2}\leq :. :\leq X_{n} ,

satises (1.6)
with h_{n}^{(A)} replaced by h_{n}^{(b)} where (b) is either (C) or (D) and

(4.7) h_{n}^{(C)}(x)=\displaystyle \prod_{i=1}^{n}x_{i}\prod_{1\leq i<j\leq n}(x_{j}^{2}-x_{i}^{2}) ,

(4.8) h_{n}^{(D)}(x)=\displaystyle \prod_{1\leq i<j\leq n}(x_{j}^{2}-x_{i}^{2}) .
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The transition density satises (1.4) with an additional condition at the origin,

(4.9) p_{t}^{+}|_{x_{1}=0}=0

for type \mathrm{C} and

(4.10) \displaystyle \frac{\partial}{\partial x_{1}}p_{t}^{+}|_{x_{1}=0}=0
for type D.

The Dyson�s BM of type \mathrm{C} and \mathrm{D} can be constructed from noncolliding BM with

a boundary through Doob�s h‐transform using (4.7) and (4.8) as in (1.15). Let us

introduce

(4.11) $\phi$_{t}^{(C)}(x, x')=\displaystyle \frac{1}{\sqrt{2 $\pi$ t}}(e^{-(x-x')^{2}/(2t)}-e^{-(x+x')^{2}/(2t)}) ,

(4.12) $\phi$_{t}^{(D)}(x, x')=\displaystyle \frac{1}{\sqrt{2 $\pi$ t}}(e^{-(x-x')^{2}/(2t)}+e^{-(x+x')^{2}/(2t)})
The transition density of the noncolliding Brownian motion with n particles is given by

(4.13) p_{t}^{(b)}(x, x')=\det($\phi$_{t}^{(b)}(x_{i}, x_{j}'))_{1\leq i,j\leq n}.
This satises

(4.14) \displaystyle \frac{\partial}{\partial t}p_{t}^{(b)}=\frac{1}{2}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}p_{t}^{(b)}
and

(4.15) p_{t}^{(C)}|_{x_{i}=x_{i+1}}=0, p_{t}^{(C)}|_{x_{1}=0}=0

for type \mathrm{C} and

(4.16) p_{t}^{(D)}|_{x_{i}=x_{i+1}}=0, \displaystyle \frac{\partial}{\partial x_{1}}p_{t}^{(D)}|_{x_{1}=0}=0
for type D.

One notices that h_{n}^{(b)} in (1.5) is harmonic for (4.13), that is,

(4.17) \displaystyle \int_{-\infty}^{\infty}dx'p_{t}^{(b)}(x, x')h_{n}^{(b)}(x')=h_{n}^{(b)}(x) .

Proof. Notice a simple identity

(4.18)

\displaystyle \int_{-\infty}^{\infty}\frac{x^{n}}{\sqrt{2 $\pi$ t}}e^{-(x-x')^{2}/(2t)}dx=\int_{0}^{\infty}\frac{x^{n}}{\sqrt{2 $\pi$ t}}(e^{-(x-x')^{2}/(2t)}+(-1)^{n}e^{-(x+x')^{2}/(2t)})dx.
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(1.13) is rewritten as

(4.19) \displaystyle \int_{0}^{\infty}$\phi$_{t}^{(C)}(x, x')(x')^{2m}dx'=\sum_{k=0}^{2m+1}\left(\begin{array}{ll}
2m & +1\\
2l & 
\end{array}\right)$\gamma$_{2l}x^{2m+1-2l},
(4.20) \displaystyle \int_{0}^{\infty}$\phi$_{t}^{(D)}(x, x')(x')^{2m}dx'=\sum_{k=0}^{2m}\left(\begin{array}{l}
2m\\
2l
\end{array}\right)$\gamma$_{2l}x^{2(m-l)}.
>From this we know that h_{n}^{(b)}(x) in (4.8), which is the Vandermonde of \{1, x^{2}, . :. ; x^{2(n-1)}\}
or \{x, x3;:. :; x^{2n-1}\} are harmonic to h_{n}^{(b)} in (4.13). \square 

We dene the h‐transform of p_{t}^{(b)}(x, x') by

(4.21) p_{t}^{(b)+}(x, x') :=\displaystyle \frac{h_{n}^{(b)}(x')}{h_{n}^{(b)}(x)}p_{t}^{(b)}(x, x') .

Then one has

Proposition 4.1. RHS of (4\cdot 21) satises (1.6) with h^{(A)} replaced by h^{(b)}.

Proof. The proof is analogous to that of proposition 1.1. The dierence is h_{n} . For

C one computes

(4.22) \displaystyle \frac{\partial}{\partial x_{i}}\log h_{n}^{(C)}(x)=\sum_{j(\neq i)}(\frac{1}{x_{i}-x_{j}}+\frac{1}{x_{i}+x_{j}}) ,

(4.23) \displaystyle \frac{\partial^{2}}{\partial x_{i}^{2}}\log h_{n}^{(C)}(x)=-\sum_{j(\neq i)}(\frac{1}{(x_{i}-x_{j})^{2}}+\frac{1}{(x_{i}+x_{j})^{2}})
For D one finds

(4.24) \displaystyle \frac{\partial}{\partial x_{i}}\log h_{n}^{(D)}(x)=\frac{1}{x_{i}}+\sum_{j(\neq i)}(\frac{1}{x_{i}-x_{j}}+\frac{1}{x_{i}+x_{j}}) ,

(4.25) \displaystyle \frac{\partial^{2}}{\partial x_{i}^{2}}\log h_{n}^{(D)}(x)=-\frac{1}{x_{i}^{2}}-\sum_{j(\neq i)}(\frac{1}{(x_{i}-x_{j})^{2}}+\frac{1}{(x_{i}+x_{j})^{2}})
For both C and D

,
one has

(4.26) \displaystyle \sum_{i}(-\frac{\partial^{2}}{\partial x_{i}^{2}}\log h_{n}^{(b)}(x)-(\frac{\partial}{\partial x_{i}}\log h_{n}^{(b)}(x)))=0.
Hence we see that the RHS of (4.21) satises (1.6). \square 

One can again consider the interlacing of these processes. Given the DBM of type
\mathrm{C} with n particles, we can construct the DBM of type \mathrm{D} with n particles. Consider a
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system of 2n particles in which nW particles are noncolliding BM with a reective wall

at the origin, and nX particles are interlacing with W particles s.t.  W_{1}\leq X_{1}\leq W_{2}\leq

:. :\leq W_{n}\leq X_{n} . The transition density q_{t}((x, w), (x', w for the whole system with 2n

particles is the solution to

(4.27) \displaystyle \frac{\partial}{\partial t}q_{t}=\frac{1}{2}(\sum_{i=1}^{n}\frac{\partial^{2}}{\partial w_{i}^{2}}+\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}})q_{t}
and

(4.28) q_{t}|_{w_{i}=w_{i+1}}=0, \displaystyle \frac{\partial}{\partial w_{1}}q_{t}|_{w_{1}=0}=0,
The transition density for X is given by

\displaystyle \frac{\partial}{\partial x_{i}}q_{t}|_{x_{i}=w_{i}}=0, \displaystyle \frac{\partial}{\partial x_{i}}q_{t}|_{x_{i}=w_{i-1}}=0.

(4.29) p_{t}^{+}(x, x')=\displaystyle \frac{h_{n+1}^{(D)}(x')}{h_{n+1}^{(D)}(x)}\int_{W^{n}(x)}q_{t}((x, w), (x', w'))dw
where W^{n}(x)=\{(w_{1}, \ldots, w_{n})\in \mathbb{R}^{n}|0\leq w_{1}\leq x_{1}\leq w_{2}\leq:. : \leq w_{n}\leq x_{n}\}.

Proposition 4.2. RHS of (4\cdot 29) satises (1.6) with h^{(A)} replaced by h^{(D)} and

(4 \cdot 10) forn particles.

The proof is similar to that of proposition 2.1. Notice that one does not have to find

an expression of the transition densities of  2n particles as in [16]. This is an advantage
of verifying (1.3) to see the interlacing structure.

Similarly given the DBM of type \mathrm{D} with n particles, we can construct the DBM

of type \mathrm{C} with n+1 particles. The transition density q_{t}((x, w), (x', w for the whole

system with 2n+1 particles is the solution to

(4.30) \displaystyle \frac{\partial}{\partial t}q_{t}=\frac{1}{2}(\sum_{i=1}^{n}\frac{\partial^{2}}{\partial w_{i}^{2}}+\sum_{i=1}^{n+1}\frac{\partial^{2}}{\partial x_{i}^{2}})q_{t}
and

(4.31) q_{t}|_{w_{i}=w_{i+1}}=0, q_{t}|_{w_{1}=0}=0, \displaystyle \frac{\partial}{\partial x_{i}}q_{t}|_{x_{i}=w_{i-1}}=0, \frac{\partial}{\partial x_{i}}q_{t}|_{x_{i}=w_{i}}=0.
By construction the transition density for X is given by

(4.32) p_{t}^{+}(x, x')=\displaystyle \frac{h_{n}^{(C)}(x')}{h_{n}^{(C)}(x)}\int_{W^{n}(x)}q_{t}((x, w), (x', w'))dw
where W^{n}(x)=\{(w_{1}, \ldots, w_{n})\in \mathbb{R}^{n}|0\leq x_{1}\leq w_{1}\leq x_{2}\leq\ldots\leq w_{n}\leq x_{n+1}\}.

Proposition 4.3. RHS of (4\cdot 32) satises (1.6) with h^{(a)} replaced by h^{(C)} and

(4\cdot 9) forn particles.
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Figure 5. Dyson�s BM with an absorbing boundary
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Figure 6. Dyson�s BM with a reective boundary

The proof is similar to that of proposition 2.1, 4.2.

As a special case let us consider the n=1 case. Let us take a system of two

particles. The first one is reected at the origin and the second one is reected from

the first one. The transition density satises

(4.33) \displaystyle \frac{\partial}{\partial t}q_{t}=\frac{1}{2}(\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}})q_{t},
(4.34) \displaystyle \frac{\partial}{\partial z}q_{t}|_{z=0}=0, \frac{\partial}{\partial y}q_{t}|_{y=z}=0.
Now integrating over the first particle, let us dene

(4.35) p_{t}(y, x):=\displaystyle \frac{x}{y}\int_{0}^{y}q_{t}((y, z), (x, z'))dz.
Then this is the transition density for the BM with absorbing boundary.

By repeating these interlacing procedures from n=1 to n
,

one can construct a

process of many particles. Let \mathrm{K} denote the set with n layers x=(x^{1}, x2, ::. ; x^{n})
where x^{2k}=(x_{1}^{2k}, x_{2}^{2k}, \ldots, x_{k}^{2k})\in \mathbb{R}_{+}^{k}, x^{2k-1}=(x_{1}^{2k-1}, x_{2}^{2k-1}, \ldots, x_{k}^{2k-1})\in \mathbb{R}_{+}^{k} and the

intertwining relations,

(4.36) x_{1}^{2k-1}\leq x_{1}^{2k}\leq x_{2}^{2k-1}\leq x_{2}^{2k}\leq. . . \leq x_{k}^{2k-1}\leq x_{k}^{2k}
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x_{1}^{1}
x_{1}^{2}

x_{1}^{3} x_{2}^{3}
x_{1}^{4} x_{2}^{4}

x_{1}^{5} x_{2}^{5} x_{3}^{5}

x_{1}^{n} x_{2}^{n} x_{3}^{n} . . . x_{m}^{n}

Figure 7. Symplectic Gelfand‐Tsetlin cone.

and

(4.37) 0\leq x_{1}^{2k+1}\leq x_{1}^{2k}\leq x_{2}^{2k+1}\leq x_{2}^{2k}\leq. . . \leq x_{k}^{2k}\leq x_{k+1}^{2k+1}
This is known as the symplectic Gelfand‐Tsetlin cone. See Fig. 7. Hence we now have

a stochastic dynamics of particles on the symplectic GT cone.

By construction the dynamics of k particles x^{2k}=(x_{1}^{2k}, \ldots, x_{k}^{2k}) of the 2k‐th row

of the GT cone is the DBM of type \mathrm{C} of k particles. Those of k particles x^{2k+1}=

(x_{1}^{2k+1}, \ldots, x_{k}^{2k+1}) of the 2k+1‐th row of the GT cone is the DBM of type \mathrm{D} of k

particles. One can focus on the k particles x_{i}^{i}, 1\leq i\leq k on the upper right line of

the symplectic GT cone. One sees that this is a Markov process. In this Y process,

0\leq Y_{1}\leq Y_{2}\leq::. \leq Y_{n} ,
the interactions among Y_{i} �s are the same as in the Z process,

i.e., Y_{j+1} is reected by Y_{j}, 1\leq j\leq n-1 ,
but Y_{1} is now a Brownian motion reected

at the origin (again by Skorokhod construction). See Fig. 8. Similarly to (3.1),

Y_{1}(t)=B_{1}(t)-\displaystyle \inf_{0\leq s\leq t}B_{1}(s)=\sup_{0\leq s\leq t}(B_{1}(t)-B_{1}(s)) ,

(4.38)

Y_{j}(t)=\displaystyle \sup_{0\leq s\leq t}(Y_{j-1}(s)+B_{j}(t)-B_{j}(s)) , 2\leq j\leq n.
The transition density of the Y process is given in [1].

§5. Relations

Let us take the initial conditions to be X_{i}=X_{i}^{(C)}=X_{i}^{(D)}=0 . In [1], we proved

Theorem 5.1. The following equalities in law hold;

(5.1) 0\displaystyle \leq s\leq t\max X_{2n-1}(s)=dX_{n}^{(D)}(t) ,

(5.2) 0\displaystyle \leq s\leq t\max X_{2n}(s)=dX_{n}^{(C)}(t) ,

n\in \mathbb{Z}_{+}=\{1 , 2, . . . \}.
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Figure 8. \mathrm{Y} process.

The n=1 case of the first equality is nothing but the well known relation between

the maximum of BM and the reective BM.

The idea of the proof of (5.1),(5.2) was the following. >From the arguments in

section 2, we know

(5.3) X_{n}(t)=Z_{n}(t)d

and hence

(5.4) 0\displaystyle \leq s\leq t\max X_{n}(s)=d0\leq s\leq t\max Z_{n}(s) .

Similarly from the arguments in section 4, one has

(5.5) Y_{2n-1}(s)=X_{n}^{(D)}(t)d,

(5.6) Y_{2n}(s)=X_{n}^{(C)}(t)d,

 n\in \mathbb{Z}+\cdot In [1] we proved (5.5), (5.6) by a generalization of Rogers‐Pitman criterion.

But here we would emphasize that once the dynamics on the GT cone is understood,
these relations are obvious.

Now to prove (5.1),(5.2) it is enough to see

(5.7)  0\displaystyle \leq s\leq t\max Z_{n}(s)=dY_{n}(t) .

In [1] this is shown by reversing time and the order of particles. The argument does

not seem to be common in random matrix theory. It would be interesting to see this in

more algebraic terms.

As discussed above, both DBM an DBM with a boundary can be realized as eigen‐
values of certain random matrix ensembles. We show some monte carlo results for the
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equalities (5.1,5.2). The LHS is represented by * and the RHS by \circ
. The densities of

the RHS for  n=1
,

2 are simple. For n=1, p(x)=\displaystyle \frac{2}{\sqrt{ $\pi$}}e^{-x^{2}} ; for n=2, p(x)=\displaystyle \frac{4x^{2}}{\sqrt{ $\pi$}}e^{-x^{2}}
They are shown by solid curves.
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