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A note on a few processes related to Dyson’s
Brownian motion

By

Tomohiro SASAMOTO*

Abstract

Some connections between processes related to Dyson’s Brownian motion are explained.
Starting from the Brownian motion of hermitian matrices, we consider noncolliding Brownian
motions, the interlacing structure of DBM with different number of particles, a system of
ordered reflection, the case with a boundary and their relations.

§1. Introduction

Let us consider a time dependent random matrix H = H(t) of size n of the form,

(1.1)
Bui (1) LB (1) +iBE (1) (B0 +iBL (1))

L(BY (1) - B (1) Bas(t) - (B (1) + B (1)
H(t) = | V2 7 | o | ,
LB 0~ i (1) 5 (BY 0 D) Bon(t) _

where Bjj;,1 < j < n, B(R) = B,(cf),B](Q = B,(eg),l < 7 < k < n are independent
Brownian motions. The stochastlc dynamics of the n eigenvalues of H denoted by
X1 < Xo <...< X, is described by the stochastic differential equation(SDE),

(1.2) dX;=dB;+ LX, 1<i<m,
1<j<m 0T
J#i
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Figure 1. Dyson’s BM

where B;,1 < i < m are independent one dimensional Brownian motions[2]. This is
known as Dyson’s Brownian motion (DBM). The process satisfies X;(t) < Xa(t) <
+ < Xpn(t) for all t > 0. The process X can be started from the origin, i.e., one can
take X;(0) = 0,1 < ¢ < m [12]. Pictorially this looks like Fig. 1.
Let x = (21,...,2,) € R". ;From the SDE (1.2), one sees that the transition
density p;" (z,2’) of this process from x to 2’ during time interval ¢ satisfies

0 . 0
(1.3) Epjzlza 2pt +szzix] pt'.

=1 j#i T

Due to the nonclliding properties of the process, it also satisfies

(1.4) P wimzi, =0, 1<i<n—1
If we set
(1.5) m@) =[] (a5 -,
1<i<j<n
(1.3) is rewritten as
0 + 1 " 2 + " 0 (A) 8]??_
(1.6) 2P =3 Z 6—%22% + Z o, log h,; () - o,

Dyson’s BM can be constructed from noncolliding Brownian motion through Doob’s
h-transformation using the function (1.5) [4]. By the Karlin-McGregor formula[6, 5],
the transition density of the noncolliding Brownian motion with n particles is given by

(1.7) pe(z,2") = det (¢ (s, x ))1<zj<n
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with
1

1.8 z,2)) = ———e(@=¥)?/20)

This satisfies

5, 1w 82
1. — - —_— —
( 9) 8tpt B £ 8x§pt
and
(1.10) pt|wi=fci+1 =0.

One notices that Ay in (1.5) is harmonic for (1.7), that is,

(1.11) /00 da'py(z, 2" )R (') = kY (2).

—00

Proof. This is easily seen from the fact that hng) is a Vandermonde determinant,
the Heine identity,
(1.12)

/divl 2+ day det(f(wr))1<),0<n det(g; (2r)) 1<) k<n = nldet (/ dxfj($)9k($)>

1<j,k<n
for nice functions f;, g; and
o] n n
(1.13) / o (z, 2") ()2 = Z (k) Yk
—oo k=0
where
oo ,—x?/(2t)
e
1.14 = S
( ) T /_oo V27t
O

We define the h-transform of p(x, 2’) by

/ h%A)(x/) /
(1.15) pf(x,2)) = h%T(x)pt(x’x ).

Then one has

Proposition 1.1.  RHS of (1.15) satisfies (1.6).
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Proof. We abbreviate the superscript (A) in hY. From the definition (1.15) and
(1.9) we have

0 1hn(2') < 02
1.1 —p (z,2)) = =2
By a straightforward computation one sees
(1.17)
J 0 hp(z') O
= — 1 n .yt -
8xipt Ox; 08 fn(x) - pr + I () 8xipt’
(1.18)
82 . () 9? d d 8?2 ] 2
——p = = d—2 log hy, () =—p;" - log h,, -log hn,
Here one computes
8 9 2 1
(1.19) ———logh,(x) — ( log hn(x)> =-2
z? ox; i %Z) (x; —x;) (@i — xp)
Noticing
(1.20) > Z - 0,
i k() &
we see that the RHS of (1.15) satisfies (1.6). O

The determinantal structure is the key to the tractability of the process.

At a fixed time ¢, the random matrix H(t) is nothing but the Gaussian unitary
ensemble [10, 3]. For instance the distribution of the position of the top particle X, (¢)
is given by an n fold integral as

Zo To N
(1.21) Pr[Xn(t)ng]:%(t)/_ da:1~-/ dex ] (@) H =

— 1<i<j<N

where Zn(t) is the normalization constant.

In the following we introduce a few processes related to DBM and discuss con-
nections between them. The main aim of this article is to give a short summary and
explanation of them with figures. The argument of seeing interlacing properties in
propositions 2.1, 4.3, 4.4 has not appeared and should be useful for further studies.
There are many references on related topics. For recent developments, see for instance
8, 9].
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n = 3 Dyson BM n = 3,4 Dyson BM

,,,,,,

Figure 2. Interlacing processes.

§ 2. Interlacing

In the last section we kept the number of particles fixed. In [16] Warren observed
there is an interesting interlacing in DBMs for different number of particles. Let W;, 1 <
J < n be the Dyson’s BM with n particles starting from the origin. Then let X;, 1 <
J <n+1bes.t. each X; performs a BM with the conditions that they interlace W,
ie. Xp <W; < Xo < ... <W, < X,+1- The interlacing is maintained by prescribing
that X; is reflected from W;_; and W;, where the reflection means the Skorokhod
construction. Now suppose we forget about the original W particles and focus on X
particles. One can show X is the Dyson’s BM with n + 1 particles. See Fig. 2 for
an example of n = 3. In the left figure, we see trajectories of the three particle DBM
starting from the origin. Next, in the right figure, we add four new particles. The
lowest one X; starts from the origin, performs a BM and is reflected by Wi. The next
two (Xo, X3) are also BMs starting from the origin and are reflected by the X particles
below and above them (by Wi, W5 for Xo and Wy, W3 for X3). The top one Xy starts
from the origin, performs a BM and is reflected by W3. The above statement says that
the dynamics of the X particles are distributed as a DBM with four particles.

Let us consider a system of 2n+1 particles in which the W;,1 < j < n are replaced
by noncolliding BM with n particles. The transition density g:((z,w), (', w’)) of this
process with 2n + 1 particles satisfies

o 1 n 82 n+1 82
(2.1) =z ( +> —) .

4t = p) p)
ot 2 pt ow; pt 0x;

Due to the noncolliding properties of W particles and the interlacing condition using
the Skorokhod, it also satisfies the boundary conditions,

0 0

2.2 s = 0, —_— - O7 -
( ) Gt lwi=w;11 6:1’}1 qt|z;=w; 8177;+1 qt

Tip1=w; 0.
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The transition density for X is given by integrating over the positions of W particles
and applying the h-transformation to X particles as

h(A) (')
(2.3) pi (,af) = 2l / g (2, w), (2, w'))dw.
h’n—l—l(x) wr(z)
Here the integration is over W™ (x) = {(wy,...,w,) € R"z; <w; <29 < ... <w, <

Tpy1) for a given x € R™L. That this is the transition density for DBM with n + 1
particles can be shown by performing the integral [16]. Here we see this in a different

way.

Proposition 2.1.  RHS of (2.8) satisfies (1.6) and (1.4) for n+ 1 particles.

Proof. First we see
O 4+, . Llhy(2) / "L 02 = / )
9 = Ol ——q.d d
8tpt ($’ v ) 2 hn+1($) n(z) ; Ox? G + ; W) (z):w; =41 dw e

0
2.4 - dw™=1) i
( ) /W(")(m):wizcci 6’(01 o ) }

Here {W ™ () : w; = x4,1} is W™ () but with the condition that the ith component
wy is fixed to be z;,1; the meaning of {W () (z) : w; = x;} is analogous. We also have

(n—1)

o . ) P1 () / "L 92 / )
- _ 1 n + na i\ ) . +
8xipt (@, 2) ox; 08 hn+1(z)p;” + hpt1(z) n () Z:ZI 8%2 qedw + o0x; ¢ dw
0 0
2.5 -I—/ dw —/ dw™=Y )
( ) W) (z)iw;—1=x; ow; & W) (z)iw;=x; Ow; &
8—x12pt (z,2") = m8_x§Qt - 28—% log b1 () - 8—:“197: T a2 log b1 () - py
2
(2 loghni1(z) ) ¢
axi g n+1 qt
Py (") / 0 1 0 _
2.6 +— dw( b —/ dw™ b | .
( ) hn-i-l(aj) W) (2):w;—1=x; 811)1 e W) (z)w;=x; awl &

Combining these, we see that RHS of (2.3) satisfies (1.3) and (1.4) for n+1 particles. O

By repeating this interlacing procedure from n = 1 to n, one can construct a
process of T (n + 1) particles. The position of particles, ¥ € R,1 < i < k < n satisfy
the constraint zF ™! < 2k < z¥ |, which is known as the Gelfand-Tsetlin cone. See

Fig. 3. Hence we now have a stochastic dynamics of particles on the GT cone. By
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p ap b oyl
Figure 3. Gelfand-Tsetlin cone
x
w \’_"RZ
Figure 4. Z process
construction the dynamics of n particles ™ = (z,...,2") of the n-th row of the GT

cone is the DBM of n particles.

§3. DNLS model

Instead of looking at a row, one can focus on the n particles x¢,1 < i < n on the
upper right line of the GT cone. One sees that this is a Markov process. In this Z
process, Z1 < Zy < ... < Z,, Z; is a Brownian motion and Z;; is reflected by Z;,
1 < j < n—1. Here the reflection again means the Skorokhod construction to push
Zj41 up from Z;. More precisely,

(3.1)

where B;,1 < ¢ < n are independent Brownian motions, each starting from 0. For a
schematic figure, see Fig. 4.

The totally asymmetric simple exclusion process (TASEP) is a stochastic process
on Z in which each particle tries to hop to the right neighboring site with rate 1 under
the exclusion interaction among particles, i.e., each site can be either occupied by a
particle or is empty. In the diffusion scaling each particle tends to a BM and the
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exclusion interaction is replaced by a reflective wall. The Z process can be considered
as a continuous version of TASEP.

For TASEP, a determinantal formula for the transition probability was found by
Schiitz [14] and has turned out to be useful for studying fluctuations of TASEP. The
generator of ASEP is known to be equivalent (modulo a similarity transformation) to
the Hamiltonian of XXZ spin chain. Similarly the generator of the Z process is a
special case of the quantum version of the derivative non-linear Schrédinger(DNLS)
model with imaginary coupling [13]. Let us set ¢§k)(y) = fy—i(ﬁt(y) for £k > 0 and

g_k)(y) = (=1)F [* (z(ky i </5t( Ydz for k > 1.

y
Proposition 3.1.  The transition densities qi(x,z") from v = (x1,...,z,) at

t=0toax' = (x,...,2}) at t of the Z process can be written as

(3.2) qi(z,2") = det{a; j (i, v}) hr1<ij<n

where a; ; is given by
(3.3) a;j(z,a') = oY (2 — ).

Proof. One has to check the Kolomogorov (or master) equation, boundary condi-
tions and initial conditions. This was done in [16] and [13]. O

Suppose we are interested in the distribution of Z,,. A direct way to compute would
be to use the above transition densities and follow the arguments in [11]. But now
looking at the G'T cone, one can also use the fact that it is the same as the distribution
of the nth particle in the n-particle DBM. It is given by (1.21). The same picture is also
true for the TASEP. In [17] a discrete space stochastic process was introduced on the
GT cone. If one focuses on the nth row, it is a process related to the Charlier ensemble;
on the other hand, the dynamics on the upper right line is TASEP. This implies that the
distribution of a particle in TASEP is the same as that of the top particle in the Charlier
ensemble. In this way one has a clear understanding why random matrix expression
appears in the studies of TASEP.

8§4. Dyson’s BM with a boundary and interlacing

One can introduce similar DBM type non-colliding system of m particles in the
presence of a wall at the origin [4, 7, 15]. The dynamics of the positions of the m
particles X(© = (X9 .. x{9) satistying 0 < X1(t) < Xo(t) < -+ < X (t) for all
t > 0 are described by the stochastic differential equation,

d 1 1
(4.1) dx'9 =dB;+ —— + + dt, 1 <i<m.
) X7,(C) 5 Xi(C) . XJ(C) Xi(C) + XJ(C)
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Compare this with (1.2). This process is referred to as Dyson’s Brownian motion of
type C'. It can be interpreted as a system of m Brownian particles conditioned to never
collide with each other or the wall. See Fig. 5.

One can also consider the case where the wall above is replaced by a reflecting
wall[7]. The dynamics of the positions of the m particles X(P) = (XI(D), . .,X,(nD))
satisfying 0 < X (t) < Xa(t) < --- < X, (t) for all ¢ > 0, is described by the stochastic
differential equation,

(4.2)
1 1 1
dXZ.(D) =dB; + ;1i=1dL(t) + Z ( D ) B05) D ) dt, L<i<m,
2 1<i<m X2 - x? X xg
VED

where L(t) denotes the local time of X 1(D) at the origin. This process will be referred
to as Dyson’s Brownian motion of type D. See Fig. 6.

Th processes can be realized as those of eigenvalues of certain random matrix
ensembles. Let ij (1), ij(t), 0<k<3,1<i<j<N beindependent one-dimensional
standard Brownian motions starting from the origin. Put

(4.3) sht) =4 V2T Al =4 O

Bi(t), =1, 0, i =,
with sfj(t) = sfi(t) and afj(t) = —a;‘?i(t) for i > j. Let us also introduce the Pauli
matrices,

10 01 0—1 10

4.4 _ _ _
and set
(4.5) HO(t) = O(t) ® 0o+ s (t) @ o1 + 52(t) ® 0g + 53(t) ® 03,
(4.6) HDP) (1) = ia®(t) @ 0¢ 4 is'(t) @ 01 + is*(t) @ 09 + 53 (1) @ 3.

Then it is known that the processes of eigenvalues of H(©) and HP) are the DBM of
type C and D [7].

The transition density of the positions, 0 < X; < X, < ... < X,,, satisfies (1.6)
with hY replaced by h{? where (b) is either (C) or (D) and

(4.7) A (z 1_[:13z H T 2 2?),

i=1 1<i<j<n

(4.8) WP@)= ] (F-ad).

1<i<j<n
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The transition density satisfies (1.4) with an additional condition at the origin,
(4.9) Py lor=0 =0

for type C and

0

4.1 —
(4.10) Py

p;’_|£1=0 - 0
for type D.

The Dyson’s BM of type C and D can be constructed from noncolliding BM with
a boundary through Doob’s h-transform using (4.7) and (4.8) as in (1.15). Let us
introduce

1 \2 N2
(4.11) O (z,2") = (e—@c—w) /2t) _ o~ (w+a) /(2t)) 7
V2mt
1 \2 N2
(4.12) D)z 2') = (e—(w—az) /@) | p—(@ta’) /(2t)) '
V2mt

The transition density of the noncolliding Brownian motion with n particles is given by
b b
(4.13) P (@, a’) = det(6)”) (i, )1z

This satisfies

3 p® = p®
4.14
( ) Z 8.7;
and
(415) p7(§C) Ti=Ti41 = O; p7(§C)|x1=O == O

for type C and

0
WP

(416) Ti=Tiy1 07 a_xlpl(tD) |331=0 =0

for type D.
One notices that A in (1.5) is harmonic for (4.13), that is,

(4.17) / da'p\? (z, 2 )b (2') = KO (2).

Proof. Notice a simple identity
(4.18)

T a0 g, / -t (et /2 ng-(ota/(20)
e T = e +(—1)"e dx.
/— 27t o V2wt ( )

o0
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(1.13) is rewritten as

2m-—+1
(C) nom 2m+1 2m1—21
(4.19) g (@)?rda’ = 3 (7, e :
k=0
2m
2
(4.20) / o (z,a') (@) rda =Y ( o ) o2,
k=0

;From this we know that 2’ (z) in (4.8), which is the Vandermonde of {1, 22, ..., 22("=1}
or {z,x3,..., 22" 1} are harmonic to h in (4.13). O

We define the h-transform of p( )( x’) by

(4.21) P\t (@, a') =

Then one has

Proposition 4.1.  RHS of (4.21) satisfies (1.6) with h') replaced by h®).

Proof. The proof is analogous to that of proposition 1.1. The difference is h,,. For
C' one computes

) 1 1
4.22 —logh{9 (2) = ( + )
(422) Ox; 8 (@) j(z#:i) Ti—x; T+ T
0? 1 1
4.23 —— logh{(z) = - > ( + >
( ) 3.7:7)2 g ( ) = («Tz o J/’j)Q (xz + xj)2

For D one finds

0 1
4.24 log h{P)(z) = — + ( ) ,
( ) 8$ g €T; ](Z;é;) x; Z; xi + Zj

0? 1
(4.25) log AP (z) = —= — ( > :
For both C' and D, one has

O ogh® 0 Loe h®
i g v

Hence we see that the RHS of (4.21) satisfies (1.6). O

One can again consider the interlacing of these processes. Given the DBM of type
C with n particles, we can construct the DBM of type D with n particles. Consider a
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system of 2n particles in which n W particles are noncolliding BM with a reflective wall
at the origin, and n X particles are interlacing with W particles s.t. W; < X; < Wy <
... < W, < X,. The transition density ¢:((z,w), (2’,w")) for the whole system with 2n
particles is the solution to

0 1 [ 02 "L 52
(4.27) 7%= 3 <i=1 3_1022 + - 6—%2) qt
and

0 0 0
4.28 i =0, ——qtlwi—0 =0, —Gtlw—w;, =0, ——t|p—w: ; = 0.
( ) qt| i i+1 8w1 qt| 1 0 axzqt| 1 i 6$1Qt| i i—1

The transition density for X is given by

h(D)l(x/)

(4.29) pf (z,2") = %/ gt ((z,w), (2, w'))dw
h’n—l—l(x) W (z)

where W (z) = {(wy,...,w,) ER?"0<w; <21 <wy <...<w, <ax,}.

Proposition 4.2.  RHS of (4.29) satisfies (1.6) with h) replaced by hP) and
(4.10) for n particles.

The proof is similar to that of proposition 2.1. Notice that one does not have to find
an expression of the transition densities of 2n particles as in [16]. This is an advantage
of verifying (1.3) to see the interlacing structure.

Similarly given the DBM of type D with n particles, we can construct the DBM
of type C with n + 1 particles. The transition density ¢;((z,w), (', w")) for the whole
system with 2n + 1 particles is the solution to

o 1 n 82 n+1 82
(4.30) _—< + ——)%

" T2\ Lau? T L2
i=1 ¢ i=1 g
and
0 0
4.31 wy—=w, i, = 0, wi=0 =0, —@t|lz.=w,_; =0, =—qt|z,—w, = 0.
( ) qt| 7 i+1 qt| 1 0 8$th| 7 i—1 axzqt| i 7

By construction the transition density for X is given by

h(C)($/)
(4.32) b)) =2 [ e, @ w)dw
hy ' () Jwn(a)
where W (z) = {(wy,...,w,) ER?"0<z; <wy <z <...<w, <Tpyi}

Proposition 4.3.  RHS of (4.32) satisfies (1.6) with h'®) replaced by h'®) and
(4.9) for n particles.
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T

Sv

Figure 5. Dyson’s BM with an absorbing boundary

Y

Figure 6. Dyson’s BM with a reflective boundary

The proof is similar to that of proposition 2.1, 4.2.

As a special case let us consider the n = 1 case. Let us take a system of two
particles. The first one is reflected at the origin and the second one is reflected from
the first one. The transition density satisfies

0 1 [ 0? 0?
(4.33) 5% =3 (3—y2 + @) qt»
0 0
(4-34) $Qt|z=0 =0, 8_yqt|y=z =0.

Now integrating over the first particle, let us define

(4.35) plyz) = / (v 2), (@, 2))d=.

Then this is the transition density for the BM with absorbing boundary.

By repeating these interlacing procedures from n = 1 to n, one can construct a
process of many particles. Let K denote the set with n layers z = (x!,22,...,2")
where 22* = (23% 23F, ... 23F) € ]R’j_, g2k—1 = (a:%k_l,a:gk_l, . .,ajik_l) € Rﬁ and the

intertwining relations,

(4.36) x%k_l < xfk < x%k_l < x%’f <...< xik_l < ajik
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n n n n
] x5 xy ... xy

Figure 7. Symplectic Gelfand-Tsetlin cone.

and

(4.37) 0<aiPt! <afh <o <adF <<t <2

This is known as the symplectic Gelfand-Tsetlin cone. See Fig. 7. Hence we now have
a stochastic dynamics of particles on the symplectic GT cone.

By construction the dynamics of k particles 22% = (3%, ... 22¥) of the 2k-th row
of the GT cone is the DBM of type C of k particles. Those of k particles 22¥+! =
(a:%kﬂ, . ..,xzkﬂ) of the 2k + 1-th row of the GT cone is the DBM of type D of k
particles. One can focus on the k particles z¢,1 < i < k on the upper right line of
the symplectic GT cone. One sees that this is a Markov process. In this Y process,
0<Y; <Y, <...<Y,, the interactions among Y;’s are the same as in the Z process,
i.e., Y4 is reflected by Y;, 1 < j <n —1, but Y7 is now a Brownian motion reflected
at the origin (again by Skorokhod construction). See Fig. 8. Similarly to (3.1),

V() = But) — inf Bi(s) = Oiugt(Bl (t) — Bi(s)),

Y;(t) = Oililit(yj—l(S) + B;(t) = Bj(s)), 2<j<n.

(4.38)

The transition density of the Y process is given in [1].

§5. Relations

Let us take the initial conditions to be X; = XZ-(C) = XZ-(D) = 0. In [1], we proved

Theorem 5.1.  The following equalities in law hold;

4 (D)
(5.1) Orggécthn_l(s)—Xn (1),

4 ()
(5.2) Orggécthn(s)—Xn (1),

n€Z+:{1,2,}
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T A

vy

Figure 8. Y process.

The n = 1 case of the first equality is nothing but the well known relation between
the maximum of BM and the reflective BM.

The idea of the proof of (5.1),(5.2) was the following. ;From the arguments in
section 2, we know

(5.3) Xo(t) £ Z,(t)
and hence
d
(5.4) Jnax, Xn(s) = [nax, Zn(8).

(5.5) Yan-1(s) £ XP)(2),
(5.6) Yan(s) £ XLO(1),

n € Z4. In [1] we proved (5.5), (5.6) by a generalization of Rogers-Pitman criterion.
But here we would emphasize that once the dynamics on the GT cone is understood,
these relations are obvious.

Now to prove (5.1),(5.2) it is enough to see

(5.7) max Zn(s)

(max, Yo (t).

In [1] this is shown by reversing time and the order of particles. The argument does
not seem to be common in random matrix theory. It would be interesting to see this in
more algebraic terms.

As discussed above, both DBM an DBM with a boundary can be realized as eigen-
values of certain random matrix ensembles. We show some monte carlo results for the
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the RHS for n = 1,2 are simple. For n =1, p(z) =
They are shown by solid curves.
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