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A note on the transition probability of ASEP
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Abstract

We discuss a few properties of the transition probabilities of the ASEP. Starting from the

formulation of the process and its connection to the XXZ spin chain, we explain some formulas

for the transition probability and how they are useful for studying current fluctuations.

§1. Introduction

The one‐dimensional asymmetric simple exclusion process(ASEP) is a stochastic

model of many particles in which each particle tries to perform the asymmetric random

walk but with an exclusion interaction among them so that if the target site is occu‐

pied the jump does not happen. In spite of its simplicity the ASEP shows nontrivial

behaviors due to its nonlinearity and noise. The ASEP was introduced as a model

for biopolymerization [7]. Later the system has been studied from several contexts of

mathematics and physics such as stochatic interacting particle systems in probability

theory [9, 10] and nonequilibrium statistical physics [24]. It also has a lot of applications
to traffic flow, surface growth, etc.

It has turned out that the ASEP is �exactly solvable� in the sense that some phys‐
ical quantities for several situations (initial and boundary conditions) can be obtained

explicitly. For instance the stationary measure can be written in the form of matrix

products [3, 15]. In the last decade, time dependent current fluctuations have been

studied extensively. First Johansson showed that it is related to the distributions from
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random matrix theory [8]. A lot of generalizations have been obtained since then. At

the same time the understanding of the underlying mathematical structure has deep‐
ened considerably. A key property is that there is a determinantal structure which is

not apparent in the original formulation of ASEP. In the case of [8], it appeared in the

combinatorics of Young tableaux. In [14] it was found that one can extend the model

to a system of non‐colliding walkers. It is similar to the Dyson�s Brownian motion in

random matrix theory and can be studied by standard methods. More recently, for

ASEP with general parameter value, the Fredholm determinant appears after taking
the thermodynamics limit [25, 26].

In these development, the transition probability of the process has played an im‐

portant role. This is because this quantity has a simple physical meaning and at the

same time shows a structure which makes the process tractable. It is the probability
that the particles are at certain positions at time t given that they started from certain

positions initially.
In this paper, we explain some properties of the transition probability of the ASEP.

We start from a few formulations of the process and explain the connection to the XXZ

spin chain. Then we introduce the transition probability and give a few formulas for it.

For the case of TASEP in which particles hop only in one direction it is written as a

single determinant. For general ASEP it is written as a summation over a permutation
of the order of the particle number. We discuss the same construction works for the

XXZ chain and mention an alternative way to derive it.

§2. Formulation of the model

There are several ways of formulating the ASEP. One is to focus on the time

evolution of occupation numbers. For simplicity let us first consider the ASEP on

a finite lattice [L]=\{1, 2, . . . , L\}, L\in \mathbb{Z}_{+}:=\{1 , 2, . . . \} with reflective boundaries.

Let us denote by $\eta$_{x} the occupation number at site (or vertex) x
, i.e., if the site x is

occupied by a particle $\eta$_{x}=1 and if it is empty $\eta$_{x}=0 . Then the particle configuration
of the whole system is specified by  $\eta$=\{$\eta$_{1}, \cdots, $\eta$_{L}\} . In ASEP,  $\eta$ is a stochastic

process. Let us denote the probability that the particle configuration is  $\eta$ at time  t by

P( $\eta$, t)=P($\eta$_{1}, \cdots, $\eta$_{L};t) . The dynamics of ASEP is defined by giving the evolution

equation for this probability.

(2.1)

\displaystyle \frac{d}{dt}P($\eta$_{1}, \ldots, $\eta$_{L};t)=-\sum_{j=1}^{L-1}\sum_{$\tau$_{j}=0,1}\sum_{$\tau$_{j+1}=0,1}h_{$\eta$_{j},$\eta$_{j+1};$\tau$_{j},$\tau$_{j+1}}P($\eta$_{1}, \ldots, $\tau$_{j}, $\tau$_{j+1}, \cdots, $\eta$_{L};t) .

This is called the Kolmogorov�s forward equation in stochastic analysis and the master

equation in physics literature. The off‐diagonal (diagonal) elements of the matrix h
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represent the transition rates into (out of) configuration  $\eta$ . For the ASEP, the non‐zero

elements of the matrices are

(2.2)  h_{0,1;1,0}=-p, h_{1,0;1,0}=p,

(2.3) h_{1,0;0,1}=-q, h_{0,1;0,1}=q.

The parameter p (resp. q) represents the hopping rate to right (resp. left). When p=0
or q=0 ,

the process is called the TASEP (totally ASEP). One sees that the sums of

each column of the matrices are zero which represents the conservation of probability.
The equation (2.1) can be written in a compact form. We employ the formulation

using the quantum spin chain language, in which the particle occupation in ASEP is

identified as spin‐up and down state in spin‐1/2 representation, i.e., the empty site and

the occupied one correspond to up‐spin and down‐spin respectively. See e.g. [24]. Let

us define the Pauli matrices by

(2.4) $\sigma$^{x}=\left\{\begin{array}{l}
01\\
10
\end{array}\right\}, $\sigma$^{y}=\left\{\begin{array}{l}
0-i\\
0i
\end{array}\right\}, $\sigma$^{z}=\left\{\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right\}
We also set

s^{+}=\displaystyle \frac{1}{2}($\sigma$^{x}+i$\sigma$^{y})=\left\{\begin{array}{l}
01\\
00
\end{array}\right\},
(2.5) s^{z}=\displaystyle \frac{1}{2}$\sigma$^{z}=\frac{1}{2}\left\{\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right\},

s^{-}=\displaystyle \frac{1}{2}($\sigma$^{x}-i$\sigma$^{y})=\left\{\begin{array}{l}
00\\
10
\end{array}\right\},
n=\displaystyle \frac{1}{2}-s^{z}=\left\{\begin{array}{l}
00\\
01
\end{array}\right\}

Let us introduce a vector |0\rangle which corresponds to the empty system. One can construct

the state with occupation number  $\eta$=\{$\eta$_{1}, . . . , $\eta$_{L}\} by

(2.6) | $\eta$\rangle=|$\eta$_{1} ,
. . .

, $\eta$_{L}\rangle=(s_{1}^{-})^{$\eta$_{1}}\cdots(s_{L}^{-})^{$\eta$_{L}}|0\rangle.

Here s_{x}^{-}, x\in[L] means it acts nontrivially only on the space of site x as a 2\times 2 matrix

s^{-} in (2.5).
Let us construct the vector which represents the probability distribution of the

system at time t by

(2.7) |P(t)\displaystyle \rangle=\sum_{ $\eta$}P( $\eta$, t)| $\eta$\rangle
where \displaystyle \sum_{ $\eta$} means the summation over all particle configuration. The time evolution

(2.1) is compactly written as

(2.8) \displaystyle \frac{d}{dt}|P\rangle=-H|P\rangle.
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The transition rate matrix is given by

(2.9) H=\displaystyle \sum_{j=1}^{L}h_{j,j+1}
where h_{j,j+1} acts nontrivially only on the space of sites j, j+1 as a 4\times 4 matrix

\lceil 00 00\rceil
(2.10)  h=\lfloor_{0000}^{0q-p0}0-qp0\rfloor
Notice that the master equation (2.8) formally looks the same as the (imaginary‐time)
Schrödinger equation. The �Hamiltonian� is now not in general hermitian so that one

always has to keep in mind that many facts for hermitian matrices may not hold for

stochastic processes. Nevertheless the formal analogy of the master equation with the

Schrödinger equation has been useful for studying stochastic processes.

Because the number of particles is conserved, one can also specify the configuration
of the system by giving positions of the particles. One can construct an  n particle state

with positions at x_{1} ,
. . .

, x_{n} by

(2.11) |x_{1} ,
. . .

, x_{n}\rangle=s_{x_{1}}^{-}\cdots s_{x_{n}}^{-}|0\rangle.

Formally one can consider the ASEP on \mathbb{Z} by taking  L\rightarrow\infty limit in the above.

For instance the transition rate matrix would be given by

(2.12)  H=\displaystyle \sum_{j\in \mathbb{Z}}h_{j,j+1}
with (2.10). But there is a difficulty in considering the dynamics of infinitely many par‐

ticles at the same time. For ASEP on \mathbb{Z}
,
the time evolution of ASEP is better described

using the backward Kolmogorov�s equation. Instead of considering the evolution of the

probability of a configuration, one looks at the evolution of a function f( $\eta$) which only

depends on the finite number of $\eta$_{x}' \mathrm{s} . The generator L for the time evolution of ASEP

is given by

(2.13) Lf ( $\eta$)=\displaystyle \sum_{x\in \mathbb{Z}}(p$\eta$_{x}(1-$\eta$_{x+1})+q(1-$\eta$_{x})$\eta$_{x+1})(f($\eta$^{x,x+1})-f( $\eta$))
Here

(2.14) $\eta$^{xy}(u)=\left\{\begin{array}{ll}
 $\eta$(y) , & \mathrm{i}\mathrm{f} u=x,\\
 $\eta$(x) , & \mathrm{i}\mathrm{f} u=y,\\
 $\eta$(u) , & \mathrm{i}\mathrm{f} u\neq x, y.
\end{array}\right.
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For more details see [9].

§3. Transition probability

A basic quantity in the analysis of stochastic process is the transition probability.
For the case of ASEP it is the probability that n particles starting from y_{1} ,

. . .

, y_{n} at

time 0 are on sites x_{1} ,
. . .

, x_{n} at time t . Using the formalism in the last section, it is

written as

(3.1) G(x_{1}, \ldots, x_{n}; ty, . . . , y_{n};0)=\langle x_{1} ,
. . .

, x_{n}|e^{-tH}|y_{1} ,
. . .

,  y_{n}\rangle

with \langle x_{1} ,
. . .

, x_{n}|=\langle 0|s_{x_{1}}^{+}\cdots s_{x_{n}}^{+} . We sometimes abbreviate this as G(\{x\}_{n};t|\{y\}_{n};0)
with the understanding \{x\}_{n}=(x_{1}, \ldots, x_{n}) . We often omit the depencence on y as

well. One could also consider the transition probability for particle occupation  $\eta$ ,
but it

is often more useful to focus on the dynamics of the particles. This is true in particular
for case with reflective boundaries or the infinite case because the number of particles
is conserved. For open boundary with particle input and output at the boundaries, this

is less useful because then one has to consider when each particle enters (or exit) the

system.
For stochastic interacting particle systems, it is in general difficult to obtain an

expression for the transition probability. But for the ASEP one can find useful expres‐

sions. As we will see shortly, for the TASEP on \mathbb{Z}
,

the transition probability can be

written as a single determinant. For ASEP with general p and q ,
the formula using the

Bethe ansatz contains a summation over permulations and is more involved than for

TASEP. But we can still utilize it to study current fluctuations. For the ASEP on a

finite lattice, one can still apply the Bethe ansatz. But this time one has to solve the

Bethe ansatz equation and the study of scaling behaviors have not been achieved.

Let us write down the master equation for the ASEP on Z. We start from a simple
case of one particle (N=1) for which it reads

(3.2) \displaystyle \frac{d}{dt}G(x;t)=pG(x-1;t)+qG(x+1;t)-(p+q)G(x;t) .

This is the master equation for a single asymmetric random walk. It can be solved using
Fourier series and the solution is given by

(3.3) G(x;t|y;0)=e^{-(p+q)t}(\displaystyle \frac{q}{p})^{-\frac{x-y}{2}}I_{x-y}(2\sqrt{\frac{q}{p}}) ,

where I(x) is the modified Bessel function. Next for N=2
,

we have to consider two
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cases separately. When x_{2}-x_{1}\geq 2 ,
the master equation reads

\displaystyle \frac{d}{dt}G(x_{1}, x_{2};t)=pG(x_{1}-1, x_{2};t)+qG(x_{1}+1, x_{2};t)+pG(x_{1}, x_{2}-1;t)
(3.4) +qG(x_{1}, x_{2}+1;t)-2(p+q)G(x_{1}, x_{2};t) .

When x_{2}=x_{1}+1 ,
due to the exclusion rule, the equation is

(3.5) \displaystyle \frac{d}{dt}G(x_{1}, x_{1}+1;t)=pG(x_{1}-1, x_{1}+1;t)+qG(x_{1}, x_{1}+2;t)-(p+q)G(x_{1}, x_{2};t) .

The initial condition for the transition probability is

(3.6) G(x_{1}, x_{2};t|y_{1}, y_{2};0)=$\delta$_{x_{1}y_{1}}$\delta$_{x_{2}y_{2}}.

The transition probability is determined as the solution to (3.4),(3.5),(3.6). It is a little

cumbersome that one has to deal with the two equations (3.4),(3.5) separately. But the

second one can be replaced by a boundary condition for G(x_{1}, x_{2};t) . Setting x_{2}=x_{1}+1

in (3.4) one gets

\displaystyle \frac{d}{dt}G(x_{1}, x_{1}+1;t)=pG(x_{1}-1, x_{1}+1;t)+qG(x_{1}+1, x_{1}+1;t)+pG(x_{1}, x_{1};t)
(3.7) +qG(x_{1}, x_{1}+2;t)-2(p+q)G(x_{1}, x_{1}+1;t) .

Comparing (3.7) with (3.5), we have

(3.8) pG(x_{1}, x_{1}, t)+qG(x_{1}+1, x_{1}+1;t)=(p+q)G(x_{1}, x_{1}+1;t) .

This means that instead of considering (3.4),(3.5) for x_{1}<x_{2} ,
one can consider (3.4)

with the boundary condition (3.8) for x_{1}\leq x_{2} and focus on the case x_{1}<x_{2}.

For general N the situation is similar to the N=2 case. The main master equation
reads

\displaystyle \frac{d}{dt}G(x_{1}, \ldots, x_{N};t)=\sum_{i=1}^{N}(pG(\ldots, x_{i}-1, \ldots ; t)+qG(\ldots, x_{i}+1, \ldots, t)
(3.9) -(p+q)G( \ldots

,  xi ,
. . . ; t )) .

One has to solve this with the boundary condition

(3.10) pG(\ldots, x_{i} , xi, . . . ; t)+qG(\ldots, x_{i}+1, x_{i}+1, \ldots ; t)=(p+q)G(\ldots, x_{i}, x_{i+1}, \ldots ; t)

and the initial condition,

(3.11) G(x_{1}, \displaystyle \ldots, x_{N};t=0)=\prod_{i=1}^{N}$\delta$_{x_{i}y_{i}}.
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§4. ASEP and XXZ

In this section we explain the relation between the ASEP and XXZ spin chain. For

the moment let us consider the ASEP on [L] with reflective boundary condition. To

see the connection it is useful to rewrite the transition rate matrix (2.9) in terms of the

spin matrices (2.5). It reads

(4.1) H_{\mathrm{A}\mathrm{S}\mathrm{E}\mathrm{P}}=-\displaystyle \sum_{j=1}^{L-1}[ps_{j}^{+}s_{j+1}^{-}+qs_{j}^{-}s_{j+1}^{+}-pn_{j}(1-n_{j+1})-q(1-n_{j})n_{j+1}] .

Now let us set, with  $\tau$=p/q,

(4.2) U=$\tau$^{-\frac{1}{2}$\Sigma$_{j=1}^{L-1}(j-1)n_{j}}.

Then one finds

(4.3) -UH_{\mathrm{A}\mathrm{S}\mathrm{E}\mathrm{P}}U^{-1}=H_{\mathrm{X}\mathrm{X}\mathrm{Z}\sqrt{pq}}

where

(4.4)

H_{\mathrm{X}\mathrm{X}\mathrm{Z}}=\displaystyle \frac{1}{2}\sum_{j=1}^{L-1}[$\sigma$_{j}^{x}$\sigma$_{j+1}^{x}+$\sigma$_{j}^{y}$\sigma$_{j+1}^{y}+\frac{$\tau$^{1/2}+$\tau$^{-1/2}}{2}($\sigma$_{j}^{z}$\sigma$_{j+1}^{z}-1)+\frac{$\tau$^{1/2}-$\tau$^{-1/2}}{2}($\sigma$_{j}^{z}-$\sigma$_{j+1}^{z})]
is the Hamiltonian of the XXZ spin chain. This means that the ASEP and the XXZ

chain are related by the similarity transformation.

One has to pay attention to the boundary conditions. In the above, the ASEP is the

one with reflective boundary condition and the XXZ chain is the one with a special value

of boundary magnetic fields. It is known that this case corresponds to the existence of

the U(sl) symmetry [13]. For the ASEP one can show there is a duality in ASEP [23],
which turned out to be useful for studying the current fluctuations of ASEP [6]. We

remark that the ASEP with periodic boundary condition is not equivalent to the XXZ

spin chain with periodic boundary condition and that the ASEP with open boundary
condition is related to the XXZ chain with off‐diagonal boundary terms [5, 22].

By applying the Jordan‐Wigner transformation, the Hamiltonian can be written in

terms of fermion operators. For the XXZ chain, the Hamiltonian contains quartic term

in the fermion operators and in this sense it is not a free fermion.

§5. TASEP Case

For TASEP, Schütz found the following formula for the transition probability [23].

(5.1) G(x_{1}, \ldots, x_{N}; ty, . . . , y_{N};0)=\det(F_{l-j}(x_{l}-y_{j};t))_{1\leq j,l\leq N}
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Here the function F_{n}(x, t) appearing as a matrix element of the determinant can be

written as a contour integral,

(5.2) F_{n}(x, t)=\displaystyle \frac{1}{2 $\pi$ i}\int_{0,1}dz\frac{1}{z^{x+1}}(1-1/z)^{n}e^{-(1-z)t}
where the contour in the integral means the contour enclosing the poles of the integrand
at z=0 ,

1 anticlockwise.

It is not difficult to check the following properties of F_{n}(x, t) :

(5.3) F_{n+1}(x;t)=\displaystyle \sum_{y=x}^{\infty}F_{n}(y, t) ,

(5.4) \displaystyle \frac{d}{dt}F_{n}(x, t)=F_{n}(x-1;t)-F_{n}(x;t) .

Then using these one can show that the determinant in (5.1) satisfies (3.4),(3.8), (3.6),
i.e. it gives the transition probability for TASEP.

Notice that the determinant has a �nice� structure with respect to the indices j, l.

If this were a Slater determinant of the form \det(a_{l-j}) ,
it directly shows a free fermionic

nature of TASEP and the analysis would have been easy. But the determinant in (5.1) is

not really a Slater determinant, so one needs to find a reformulation to further proceed.
In fact the TASEP has some free fermion properties. First it became manifest

in [8] where the distribution of the integrated current for the step initial condition

can be written as a random matrix integral. Then the above determinantal transition

probability was utilized [2, 11] to reproduce and generalize the results in [8]. Later it was

realized that the above determinant formula has a �hidden� structure of non‐colliding

walkers, which allowed one to study the current fluctuations for other initial conditions

such as the alternating initial conditions [1, 16].

§6. ASEP Case

For ASEP, the transition probability is given by [25]

(6.1) G(\displaystyle \{x\}_{k}, t|\{y\}_{k}, 0)=\sum_{ $\sigma$\in S_{k}}\int_{C_{r}}\cdots\int_{C_{r}}d$\xi$_{1} . . .

d$\xi$_{k}A_{ $\sigma$}\displaystyle \prod_{i}$\xi$_{ $\sigma$(i)}^{x_{i}-y_{ $\sigma$(i)}-1}e^{$\Sigma$_{i} $\epsilon$($\xi$_{i})t}
where S_{k} is a set of all permutations of order k,  $\epsilon$( $\xi$)=p/ $\xi$+q $\xi$-(p+q) and

(6.2) A_{ $\sigma$}=\displaystyle \mathrm{s}\mathrm{g}\mathrm{n} $\sigma$\frac{\prod_{i<j}(p+q$\xi$_{ $\sigma$(i)}$\xi$_{ $\sigma$(j)}-(p+q)$\xi$_{ $\sigma$(i)})}{\prod_{i<j}(p+q$\xi$_{i}$\xi$_{j}-(p+q)$\xi$_{i})}.
C_{r} is a contour enclosing the origin anticlockwise with a radius small enough that all

the poles in A_{ $\sigma$} are not included in C_{r}.
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The proof is given in [25]. Here to illustrate how it works, we consider the N=2

case. For N=2
,

the LHS of (6.1) reads

(6.3)

G(x_{1}, x_{2};t|y_{1}, y_{2};0)=\displaystyle \int_{C_{r}}\int_{C_{r}}d$\xi$_{1}d$\xi$_{2}$\xi$_{1}^{-y_{1}-1}$\xi$_{2}^{-y_{2}-1}($\xi$_{1}^{x_{1}}$\xi$_{2}^{x_{2}}+A_{21}$\xi$_{2}^{x_{1}}$\xi$_{1}^{x_{2}})e^{( $\epsilon$($\xi$_{1})+ $\epsilon$($\xi$_{2}))t}
with

(6.4) A_{21}=-\displaystyle \frac{p+q$\xi$_{1}$\xi$_{2}-(p+q)$\xi$_{2}}{p+q$\xi$_{1}$\xi$_{2}-(p+q)$\xi$_{1}}.
We check this satisfies the master equation (3.4), the boundary condition (3.8) and the

initial condition (3.6). The master equation is easily checked using the expression of

 $\epsilon$( $\xi$) . Next we check (3.8). We see

pG(x_{1}, x_{1};t)+qG(x_{1}+1, x_{1}+1;t)-(p+q)G(x_{1}, x_{1}+1;t)

=\displaystyle \int_{C_{r}}\int_{C_{r}}d$\xi$_{1}d$\xi$_{2}$\xi$_{1}^{x_{1}-y_{1}-1}$\xi$_{2}^{x_{2}-y_{2}-1}e^{( $\epsilon$($\xi$_{1})+ $\epsilon$($\xi$_{2}))t}
(6.5) \times\{p(1+A_{21})+q$\xi$_{1}$\xi$_{2}(1+A_{21})-(p+q)($\xi$_{2}+A_{21}$\xi$_{1})\}.

Here the factor in the parenthesis is seen to be zero due to (6.4). Finally we check the

initial condition (3.6). Setting t=0 in (6.3), we get

(6.6) G(x_{1}, x_{2},0)=\displaystyle \int_{C_{r}}\int_{C_{r}}d$\xi$_{1}d$\xi$_{2}$\xi$_{1}^{-y_{1}-1}$\xi$_{2}^{-y_{2}-1}($\xi$_{1}^{x_{1}}$\xi$_{2}^{x_{2}}+A_{21}$\xi$_{2}^{x_{1}}$\xi$_{1}^{x_{2}}) .

One can easily see that the first term gives $\delta$_{x_{1}y_{1}}$\delta$_{x_{2}y_{2}} . So we want to show that the

second term is zero, i.e.,

(6.7) \displaystyle \int_{C_{r}}\int_{C_{r}}d$\xi$_{1}d$\xi$_{2}\frac{p+q$\xi$_{1}$\xi$_{2}-(p+q)$\xi$_{2}}{p+q$\xi$_{1}$\xi$_{2}-(p+q)$\xi$_{1}}$\xi$_{2}^{x_{1}-y_{2}-1}$\xi$_{1}^{x_{2}-y_{1}-1}=0.
We change the integration variable from $\xi$_{2} to  $\eta$ by

(6.8)  $\eta$=$\xi$_{1}$\xi$_{2}.

The integration is over a circle of radius r^{2} . Then the LHS of (6.7) is

\displaystyle \int_{C_{r}}d$\xi$_{1}\int_{C_{r^{2}}}$\xi$_{1}d $\eta$\frac{p+q $\eta$-(p+q) $\eta$/$\xi$_{1}}{p+q $\eta$-(p+q)$\xi$_{1}}(\frac{ $\eta$}{$\xi$_{1}})^{x_{1}-y_{2}-1}$\xi$_{1}^{x_{2}-y_{1}-1}
(6.9) =\displaystyle \int_{C_{r}}d$\xi$_{1}\int_{C_{r^{2}}}d $\eta$\frac{p+q $\eta$-(p+q) $\eta$/$\xi$_{1}}{p+q $\eta$-(p+q)$\xi$_{1}}(\frac{ $\eta$}{$\xi$_{1}})^{x_{1}-y_{2}-1}$\eta$^{x_{1}-y_{2}-1}$\xi$_{1}^{x_{2}-x_{1}+y_{2}-y_{1}-1}
Let us consider the $\xi$_{1} integration first. Since x_{2}-x_{1}+y_{2}-y_{1}-1\geq 1 ,

there is no pole
at $\xi$_{1}=0 . In addition, for small enough r

,
the denominator is bounded away from zero

since |$\xi$_{1}|\leq r, | $\eta$|=r^{2}.
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It is interesting that the full transition probability (without any approximation) is

obtained by choosing the contours appropriately. More surprisingly, though the formula

(6.1) looks rather involved, it can be used to study the current fluctuations of the

ASEP [25, 26].

§7. XXZ Case

Next we consider a similar quantity for the XXZ spin chain, i.e., we define the

Green�s function of the XXZ chain by (3.1) with -H replaced by H_{\mathrm{X}\mathrm{X}\mathrm{Z}}(4.4) . One can

obtain the Green�s function for XXZ chain from that for ASEP by using the relation

(4.3). Here we repeat the previous arguments for ASEP again for XXZ chain. In terms

of (2.5), the Hamilotonian of the XXZ chain is writen as

H_{\mathrm{X}\mathrm{X}\mathrm{Z}}=\displaystyle \sum_{j=1}^{L-1}(s_{j}^{+}s_{j+1}^{-}+s_{j}^{-}s_{j+1}^{+}-\frac{$\tau$^{1/2}+$\tau$^{-1/2}}{2}(n_{j}+n_{j+1}-2n_{j}n_{j+1})
(7.1) +\displaystyle \frac{$\tau$^{1/2}-$\tau$^{-1/2}}{2}(n_{j}-n_{j+1})) .

One sees that the (imaginary time) Schrödinger equation for the XXZ is

(7.2)

\displaystyle \frac{d}{dt}G(x_{1}, \ldots, x_{N};t)=\sum_{i=1}^{N}(G(\ldots, x_{i}-1, \ldots ; t)+G(\ldots, x_{i}+1, \ldots, t)-2\triangle G(\ldots, xi, . . . ; t))
where \triangle=($\tau$^{1/2}+$\tau$^{-1/2})/2 and

(7.3) G(\ldots, x_{i}, x_{i}, \ldots ; t)+G(\ldots, x_{i}+1, x_{i}+1, \ldots ; t)=2\triangle G(\ldots, x_{i}, x_{i+1}, \ldots ; t) .

The initial condition is

(7.4) G(x_{1}, \displaystyle \ldots, x_{N};t=0)=\prod_{i=1}^{N}$\delta$_{x_{i}y_{i}}.
The Green�s function is given by

(7.5) G(\displaystyle \{x\}_{k}, t|\{y\}_{k}, 0)=\sum_{ $\sigma$\in S_{k}}\int_{C_{r}}\cdots\int_{C_{r}}d$\xi$_{1}\cdots d$\xi$_{k}A_{ $\sigma$}\prod_{i}$\xi$_{ $\sigma$(i)}^{x_{i}-y_{ $\sigma$(i)}-1}e^{$\Sigma$_{i} $\epsilon$($\xi$_{i})t}
where S_{k} is a set of all permutations of order k,  $\epsilon$( $\xi$)= $\xi$+$\xi$^{-1}-2\triangle and

(7.6)  A_{ $\sigma$}=\displaystyle \mathrm{s}\mathrm{g}\mathrm{n} $\sigma$\frac{\prod_{i<j}(1+$\xi$_{ $\sigma$(i)}$\xi$_{ $\sigma$(j)}-2\triangle$\xi$_{ $\sigma$(i)})}{\prod_{i<j}(1+$\xi$_{i}$\xi$_{j}-2\triangle$\xi$_{i})}.
C_{r} is a contour enclosing the origin anticlockwise with a radius small enough that all

the poles in A_{ $\sigma$} are not included in C_{r} . Just as for the ASEP one can readily check that
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(7.5) is the Green�s function for the XXZ chain. (But as far as the authors know this

fact has not been written.)
Here we constructed the Green�s function by directly confirming the Schrödinger

equation. But it should be possible to obtain the Green�s function by summing up all

the excited states of the Hamiltonian. From the point of view of (7.5) this corresponds
to changing the radius of the contours and taking the contributions from poles in the

S‐matrix into account appropriately. Here we consider the N=2 case as an illustration.

When N=2
, (7.5) is

G(x_{1}, x_{2};t|y_{1}, y_{2};0)=\displaystyle \int_{C_{r}}\frac{dz_{1}}{2 $\pi$ i}\int_{C_{r}}\frac{dz_{2}}{2 $\pi$ i}\frac{1}{z_{1}^{y_{1}+1}z_{2}^{y_{2}+1}}
(7.7) \displaystyle \times(z_{1}^{x_{1}}z_{2}^{x_{2}}-\frac{1+z_{1}z_{2}-2\triangle z_{2}}{1+z_{1}z_{2}-2\triangle z_{1}}z_{1}^{x_{2}}z_{2}^{x_{1}})e^{( $\epsilon$(z_{1})+ $\epsilon$(z_{2}))t}
By considering the pole at z_{1}=1/(2\triangle-z_{2}) ,

what we get is

G(x_{1}, x_{2};t|y_{1}, y_{2};0)

=\displaystyle \int_{- $\pi$}^{ $\pi$}\frac{dk_{1}}{2 $\pi$}\frac{dk_{2}}{2 $\pi$}e^{-i(k_{1}y_{1}+k_{2}y_{2})}
\displaystyle \times(e^{ik_{1}x_{1}+ik_{2}x_{2}}-\frac{1+e^{i(k_{1}+k_{2})}-2\triangle e^{ik_{1}}}{1+e^{i(k_{1}+k_{2})}-2\triangle e^{ik_{2}}}e^{i(k_{2}x_{1}+k_{1}x_{2})})e^{( $\epsilon$(z_{1})+ $\epsilon$(z_{2}))t}

(7.8) +\displaystyle \frac{1}{ $\pi$}\int_{- $\pi$/2}^{ $\pi$/2}du(e^{2v}-1)e^{iu(x_{1}+x_{2}-y_{1}-y_{2})}e^{-v(x_{2}-x_{1}+y_{1}-y_{2})}e^{-$\epsilon$_{u}t}
where

(7.9) e^{v}=\displaystyle \frac{\triangle}{\cos u}, $\epsilon$_{u}=2(\triangle-\frac{\cos^{2}u}{\triangle})
It is possible to reproduce this by summing the contributions of the eigenstates of the

XXZ chain. Moreover the same construction would work for general N as well.

§8. Concluding remarks

In this article we have explained some properties of the transition probabilities
of the ASEP. As already mentioned in the main text, the transition probability is

now a very useful tool to study time dependent fluctuation properties of the ASEP.

For the TASEP, the first derivation of the current fluctuation was through a series of

mappings from TASEP to a combinatorics of semi‐standard Young tableaux [8, 17].
Later the determinantal transition probability by Schütz has turned out to be very

useful for various generalizations. For the ASEP with general parameter values, the

current fluctuations were computed based on the transition probability. Recenlty it has
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also led to the solution of the KPZ equation, a well‐known equation describing surface

growth phenomena [4, 1821]. For the moment it seems rather difficult to generalize
to various initial and boundary conditions. It would be useful to understand further

the structure behind the solvability of ASEP. For instance for a similar but different

directed polymer problem, the relation of the system to quantum Toda lattice has been

clarified [12].
Another point in the paper was the relation between the ASEP and the XXZ spin

chain. The connection itself has been known for some time already, but the real progress

based on this observation seems to be just on the way.
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